激光多普勒测速技术 LDV
- 格式:pdf
- 大小:19.69 MB
- 文档页数:71
1 绪论自上世纪60年代末,激光多普勒测速(Laser Dopper velocimeter,LDV)技术末出现以来,已经成为现代化生产必不可少的检测手段[1],伴随着近现代激光技术的不断发展,特别是因其所具有的非接触测量[2],高分辨率,动态响应快以及高测量精度等优点,使激光多普勒测速系统被应用于科研和工业领域。
目前,在科研领域,激光多普勒技术已广泛的应用到流体力学、空气动力学、燃烧学、生物学、航空、航天、机械和医学,工业生产等领域的速度测量和其他有关测量也有其成功运用的范例。
激光测速技术发展至今已有40年历史。
1842年奥地利科学家Doppler,Christian Johann首次发现,任何形式的波传播,由于波源,接收器,传播介质或散射体的运动,会使频率发生变化,即产生多普勒频移。
早在1905年爱因斯坦就证明了在光波中也存在多普勒效应。
和[3],激光多普勒测速技术获得飞速的发展。
起初的光学装置比较简单,光学性能和效率不高,调准不方便;信号处理方面大多采用频谱分析仪[4],这样就不能得到瞬时速度。
随着光学系统和信号处理器方面的发展,首先是集成光学单元的出现,使光路结构大为紧凑,调准也方便多了,因而有可能发展更加复杂和高效率的光学系统,光束扩展、空间滤波、偏振分离、光学频移等现代技术相继应用到激光测速仪中,并成为系列化产品不可缺少的一部分。
其发展大体可分为三个阶段:上世纪七十年代前后,是激光测速发展的初期。
这个时期的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便。
各种外差检测模式都在被采用和实验当中,频移技术虽然已经出现,但由于器件的效率不高和增加了光学系统的复杂性,难以得到推广。
从八十年代开始,激光多普勒测速应用得到迅速发展,有关流动研究的论文急剧增加,这一时期明显的标志是1982年首次在里斯本召开的“激光技术在流体力学中的应用国际讨论会”,该国际会议每两年召开一次。
激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。
由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。
示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。
因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。
幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。
如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。
图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。
图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。
3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。
激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。
多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。
例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。
如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。
但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。
设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。
激光多普勒测速仪
1 激光多普勒测速仪概念
激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种
仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。
由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风
速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。
示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。
因此它实际上测的是微粒的运动速
度,同流体的速度并不完全一样。
幸运的是,大多数的自然微粒(空
气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。
如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性
和LDV测量的要求。
《现代流体测试技术》第八章激光多普勒测速技术刘宝杰,于贤君2015年6月15日主要内容8.1关键背景8.2基本原理8.3 测量精度的影响因素8.4典型应用案例8.5思考题测速技术的分类测量技术激光多普勒测速仪(LDV)皮托管接触式非接触式气动探针热线风速仪粒子图像测速技术(PIV、SPIV)激光诱导荧光技术(LIF、PLIF )DGV、MTV ……Laser Doppler Velocimeter简称LDV激光多普勒效应什么是多普勒效应?多普勒效应声波设光源O、运动微粒P和静止的光检测器S之间的相对位置如,粒子的运动速度为下图所示。
其中光源光波的频率为f Array则粒子接收到的光波频率为:当U << c时,上式可以非常近似地表示为:激光多普勒效应当静止的光检测器接收到微粒散射的光波时,其间同样存在多普勒效应,其频率为:粒子向四周散射的光的频率,就是其接受到光的频率:激光多普勒效应由以上两式可得:激光多普勒效应多普勒频移f D:激光多普勒测速仪(LDV/LDA)激光器入射光学单元被测流场收集光学单元信号采集和处理激光多普勒测速仪(LDV/LDA)1964年,Yeh和Cummins三个阶段:1964-1972年:发展阶段——平均速度测量1973-1978年:成熟阶段——湍流速度测量1979年-至今:应用发展阶段——计算机化8.2.2 示踪粒子8.2.3 信号采集和处理激光光源:氩(Ar)离子激光器:476.5nm、488nm、514.5nmLDV的光源能不能不用激光光源?定向性高亮度,高能量密度相干性8.2.2示踪粒子>>>跟得上>> 粒子的跟随性问题>> 粒子的光散射性问题>>> 看得见8.2.2示踪粒子>> 粒子的跟随性8.2.2示踪粒子湍流中粒子的跟随性水中粒子的跟随性>> 粒子的跟随性8.2.2示踪粒子湍流中粒子的跟随性空气中粒子的跟随性>> 粒子的跟随性8.2.2示踪粒子高速气流中粒子的跟随性可压流中粒子的阻力系数:为Knudsen数激波波前速度波后速度x(激波下游的距离),inch在超声速或高亚音速中理想的粒子直径应小于>> 粒子的跟随性mm8.2.2示踪粒子 粒子的直径粒子的密度粒子的形状除了流体的性质外,粒子对其跟随性的主要影响因素:>> 粒子的跟随性8.2.2示踪粒子1.散射光是由包括不同阶的球谐波组成的,它们是强度取决于两种介质的特性和粒子直径与光波波长的比值;米氏(G.Mie)散射理论:1908年2.当粒子直径远小于光波波长时,散射光强度分布如下图所示,这种散射称为瑞利(Rayleigh)散射;瑞利(Rayleigh)散射>> 粒子的光散射性8.2.2示踪粒子3.当粒子直径逐渐增大,散射光强度分布逐渐偏离对称,前向比后向散射更多的光线,这种效应称为米氏效应。
>> 粒子的光散射性8.2.2示踪粒子3.当粒子直径逐渐增大,散射光强度分布逐渐偏离对称,前向比后向散射更多的光线,这种效应称为米氏效应。
>> 粒子的光散射性4.空间不同方向上的散射光之间还存在相位差。
8.2.2示踪粒子粒子的有效散射截面与粒子直径的关系:颗粒直径几何截面瑞利散射Nd:YAG(532nm)m 2颗粒直径→μm>> 粒子的光散射性8.2.3信号采集和处理>>>如何提取多普勒频移?>> 光学外差检测模式>> 条纹模型>> 光学频移>>> 如何优化控制多普勒频移?8.2.3信号采集和处理没有传感器可以直接测量,只能想办法直接测频移量。
氩(Ar)离子激光器:476.5nm、488nm、514.5nm 对应的频率:6.3×1014Hz、6.1×1014Hz、5.8×1014Hz >> 如何测量多普勒频移?参考光模式:8.2.3信号采集和处理>> 光学外差检测模式单光束-双散射模式:由于:则:8.2.3信号采集和处理>> 光学外差检测模式双光束-双散射模式:由于:则:多普勒频移只取决于两束入射光的方向,与散射光方向无关!8.2.3信号采集和处理>> 光学外差检测模式LDV基本光路结构 8.2.3信号采集和处理>> 光学外差检测模式8.2.3信号采集和处理>> 条纹模型PDirectionofmotionI n c i d e n t b e a m s >>> 光学外差/频差>>> 混频/相干8.2.3信号采集和处理>> 条纹模型•Focused laser beams intersect and form themeasurement volume(测量体)•Plane wave fronts: beam waist in the plane of intersection•Interference in the plane of intersection•Pattern of bright and dark stripes/planes8.2.3信号采集和处理>> 条纹模型Flow with particlesd (known)t (measured)SignalTimeLaser BraggCell backscattered lightmeasuring volume Detector Processor8.2.3信号采集和处理>> 条纹模型•The transmittingsystem generatesthe measurementvolume•The measurement volume has a Gaussian intensity distribution in all 3 dimensions •The measurement volume is an ellipsoid •Dimensions/diamet ers δx, δy and δz are given by the 1/e2 intensity pointsFθD LYZXTransmittingsystemMeasurementvolumeIntensitydistribution 01/e 21δzδxδy XZY控制体高度控制体宽度控制体长度控制体中的条纹间距入射光系统和控制体积8.2.3信号采集和处理>> 条纹模型控制体中的条纹间距当粒子以速度U Y 穿过控制体控制体中的条纹数为控制体的体积为 8.2.3信号采集和处理>> 条纹模型8.2.3信号采集和处理>> 光学频移LDV的测量能否判断速度方向?8.2.3信号采集和处理>> 光学频移条纹的移动速度为:频移后多普勒频率和速度间的关系:频移的可以帮助LDV的测量判断方向!8.2.3信号采集和处理>> 光学频移LDV测量是否有速度幅值的限制?频移后的信号频谱基底信号与多普勒频谱的混叠频移的第二个功能是实现高湍流度流场的测量! 8.2.3信号采集和处理>> 光学频移8.2.3信号采集和处理>> 光学频移LDV测量是否有速度最大值的限制?LDV测量的“方向优先”性根据散射粒子必须通过的最少条纹数Ncr,可以计算出可测速度向量的极限方向角,越小则测量的“死区”越大。
频移的第三个功能是消除测量的死区!8.2.3信号采集和处理>> 光学频移8.3.2 信噪比的影响因素8.3.1 多普勒电信号的形式双光束控制体中的光强分布8.3.1 多普勒电信号的形式8.3.1 多普勒电信号的形式信号幅值i a和基底信号的幅值i d比值,决定了测信号的信噪比。
8.3.1 多普勒电信号的形式低闪烁密度(上)和高闪烁密度(下)信号示踪粒子浓度适中示踪粒子浓度低8.3.1 多普勒电信号的形式当湍流度为10%时,要使平均速度具有1%的精度和95%的置信度,则有效采样点数为400;但要使湍流脉动量达到相同的测量精度,则有效的采样点需要达到20000。
示踪粒子浓度适中8.3.2信噪比的影响因素信噪比不同的多普勒信号8.3.2信噪比的影响因素散射光接收方向的影响双光束模式的散射光强度分布粒子尺寸和浓度的影响速度越高,信噪比越低?越高?激光功率和粒子速度的影响。