第17章 勾股定理
- 格式:docx
- 大小:28.49 KB
- 文档页数:4
勾股定理:勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
几何语言:在Rt△ABC中,若∠C=90°,则a2+b2=c2。
直角边:a、b斜边:c运算结果:写成最简二次根式的形式1能开方的必须开方2根号里不含分母,分母里不含根号勾股定理的证明:等面积法赵爽外弦图邹元治内弦图总统证法一副三角板勾股定理的应用1设未知数x2用x表示三角形中相关边3根据题意列方程直角边与斜边未定分类讨论1.若直角三角形的三边长分别为2,4,x,则x的值为()A.3B.25C.23D.25或23 x斜边x直角边美丽的勾股树1.如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B的面积分别为5、3,则最大正方形C的面积是()A.15B.13C.11D.82.有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.2022B.2021C.2020D.13.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是()A.16B.25C.144D.1694.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.两直角边的正多边形的面积和=斜边正多边形的面积5.如图,以直角三角形的三边为边,分别向直角三角形外部作等边三角形,三个等边三角形的面积分别为S1,S2,S3.则它们满足的数量关系为.尺规画实数:1.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=1;再以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,那么点P表示的数是()A.2.2B.5C.1+2D.62.如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.0和1之间B.1和2之间C.2和3之间D.3和4之间注意起点和方向3.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1−5B.1−5C.−5D.﹣1+5注意起点和方向4.尺规作图:在数轴上分别作出表示17,20,−41的点先把被开方数拆成两个完全平方数之和17=1+1620=4+1641=16+25确定两直角边连接斜边以o为圆心,斜边为半径画弧等面积法:求斜边高ch=ab斜边高:h=ab÷c2.已知:如图,△ABC中,AB=4,∠ABC=30°,∠ACB=45°,求△ABC 的面积.等腰直角三角形:�:�:�含30°角的直角三角形�:�:�方程的思想:设未知数,根据等量关系列方程1.如图,A,B,H是直线上的三个点,AC⊥l于点A,BD⊥l于点B,HC=HD,AB=5,AC=2,BD=3,求AH的长.3.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.1.如图,把两个边长为1的小正方形沿着对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形,由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为,;(2)请你参考以上方法:①把图3中5×1的长方形进行剪裁,并拼成一个大正方形,在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =.(注:小正方形边长都是1,拼接不重叠也无空隙)②在①的基础上,参考图2的画法,在数轴上用M表示数a,图中标出必要线段长.2.阅读下列材料并回答问题.画一个直角三角形,使它的两条直角边分别是3和4,则我们可以量得直角三角形的斜边长为5,并且发现32+42=52,事实上,在任何个直角三角形中,两条直角边的平方之和一定等于斜边的平方.如果直角三角形中两直角边长分别为a,b斜边长为c,则a2+b2=c2,这个结论就是著名的勾股定理.请利用这个结论完成下面的活动:(1)一个直角三角形的两条直角边分别为1,3,那么这个直角三角形的斜边长为.(2)一个直角三角形的两条边分别为2,3,那么这个直角三角形的另一边长为.(3)如图,在数轴上画一个直角三角形OBC,∠OCB=90°,且两条直角边OC和BC的长分别是2和1,设原点为O,以O为原点,斜边长OB为半径画圆交数轴于点A,则线段AC的长度是.勾股定理的证明:等面积法:整体求法=局部面积和1.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是()A.B.C.D.D完全平方公式勾股定理:勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
第17章《勾股定理》单元备课第十七章:勾股定理单元备课一、教材分析:新版教材在原有教材的基础上进行了修订,将“勾股定理”作为独立的一章,其主要内容包括勾股定理(直角三角形三边的关系)、勾股定理的逆定理(直角三角形的判定)、以及勾股定理及逆定理的应用。
勾股定理是直角三角形的一条非常重要的性质,也是几何学中重要的定理之一。
它从边的角度进一步刻画了直角三角形的特征。
通过对勾股定理的研究,学生将在原有的基础上对直角三角形有进一步的认识和理解。
通过探索勾股定理的活动,学生能够体验由特殊到一般的探索数学问题的方法,尝试用数形结合来解决数学问题的思想。
本章的主要内容包括勾股定理(直角三角形的三边关系)、勾股定理的逆定理(直角三角形的判定方法之一)以及勾股定理及勾股定理逆定理的应用。
本章内容的重点是勾股定理及勾股定理逆定理的应用。
勾股定理是解几何题中有关线段计算问题的重要依据,也是以后研究解直角三角形的主要依据之一。
本章的难点是勾股定理的证明。
课本通过构造图形,利用面积相等来证明,但证明思路的获得对学生来说可能较为困难,这涉及到了解决几何问题的方法之一:割补法。
二、教学目标:1)理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边。
2)能验证勾股定理。
3)会运用勾股定理的逆定理,判定直角三角形。
4)通过介绍古今中外对勾股定理的研究,激发学生的爱国热情。
5)能运用勾股定理及勾股定理的逆定理解决简单的实际问题。
三、教学中应注意的问题:1.让学生获得更多与勾股定理有关的知识背景,注重介绍数学文化。
2.让学生体验勾股定理的探索和运用过程。
3.注意引导学生体会数形结合的思想方法,培养应用意识。
4.适当总结与定理、逆定理有关的内容。
四、课时安排:17.1 勾股定理(4课时)17.2 勾股定理的逆定理(3课时)小结与复(1课时)。
第十七章—勾股定理一、勾股定理1. 概念:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a2+b 2=c 2.2. 公式变形: ①:a2=c 2-b 2,b 2=c 2-a 2②:c=22b a + ,a=22b c - ,b=22a c -勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题.b acbac cabcab a bccbaED CBA5.勾股定理的常见类型:(1)勾股定理在实际问题中的应用一般情况下,遇到高度、长度、距离、面积等实际问题时,可以构造直角三角形、运用勾股定理求解。
第十七章 勾股定理知识点回顾:(1)直角三角形斜边上的中线等于斜边的一半;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 知识点一: 勾股定理 1.勾股定理的定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2,即直角三角形中两直角边的平方和等于斜边的平方.(注意:前提条件是直角三角形!!!) 例题:1.在Rt △ABC 中, 90=∠C ,中AC=3,BC=4,则AB=( )A.5B.7C.12D.25 2.(常考题)在直角三角形ABC 中,斜边AB =1,222AC BC AB ++的值是( ) A .2 B .4 C .6 D .8 3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.25D.64 4.(易错题)若△ABC 中,AB =13,AC =15,高AD =12,则BC 的长是( )A.14B.4C.10或18D.14或4 5.(常考题)等边三角形的边长为2,则该三角形的面积为( )8.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( ) A .4cm B .34cm C . 6cm D . 36cm 9.在直角坐标系中,点P (2,3)到原点的距离是2.勾股定理的图形结合题(难点)例题:1.如图,在△ABC中,三边长a、b、c的大小关系是()3.(常考题,难)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5cm,则所有正方形A、B、C、D、E、F、G的面积之和为2cm.4.(必考题,难)如图,2002年8月在北京召开的国际数学家大会的会标,它是由四个相同的直角三角形与中间一个小正方形拼成的一个大正方形。
若大正方形边长是13cm,小正方形边长为7cm,则每个直角三角形较短的一条直角边的长是______cm.()A.169B.25C.19D.135.(常考题,难)如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=3,则图中阴影部分的面积为第1题第2题第3题第4题第5题6.(常考题)如图,数轴上点A表示的数是.7.8.(必考题)如图所示,正方形网格中的每个小正方形边长都是1,每个小格点的顶点叫格点,以格点作为顶点分别按下列要求画三角形.(1)使三角形为钝角三角形且面积为4.(在图①中画出一个即可) (2)使三角形的三边长分别为3,22,5;(在图②中画出一个即可)知识点二、勾股定理的逆定理 1.勾股定理的逆定理如果三角形的三边长a 、b 、c 满足22b a +=2c ,那么这个三角形是直角三角形。
初中数学第17章勾股定理 努力学习,改变自己,从easy 精英学习网开始第十七章 勾股定理17.1 勾股定理:a ²+b ²=c ²应用:①已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c ,b ,a )②已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
17.2 勾股定理的逆定理(1)逆定理:如果三角形的三边长a 、b 、c 满足,a ²+b ²=c ²,那这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(2)勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②常见勾股数,如3,4,5;6,8,10;5,12,13;7,24,25等(3)直角三角形的性质①直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90° ②在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°+∠C=90°⇒BC=21AB ③直角三角形斜边上的中线等于斜边的一半∠ACB=90°+D 为AB 的中点⇒CD=21AB=BD=AD (4)经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)(5)证明判断一个命题的正确性的推理过程叫做证明。
(6)证明的一般步骤①根据题意,画出图形。
②根据题设、结论、结合图形,写出已知、求证。
③经过分析,找出由已知推出求证的途径,写出证明过程。