当前位置:文档之家› 汽车用氧化锆式氧传感器应用现状与发展趋势

汽车用氧化锆式氧传感器应用现状与发展趋势

汽车用氧化锆式氧传感器应用现状与发展趋势
汽车用氧化锆式氧传感器应用现状与发展趋势

万方数据

万方数据

万方数据

万方数据

万方数据

汽车传感器的种类和作用

汽车传感器的种类和作用 汽车传感器把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。 车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。下面我们来认识一下汽车上的主要传感器。 空气流量传感器 空气流量传感器是将吸入的空气转换成电信号送至电控单元(ecu),作为决定喷油的基本信号之一。根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田previa旅行车)、卡门涡游式空气流量传感器(丰田凌志ls400轿车)、热线式空气流量传感器(日产千里马车用vg30e发动机和国产天津三峰客车tj6481aq4装用的沃尔沃b230f发动机)和热膜式空气流量传感器四种型式。前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。 进气压力传感器

进气压力传感器可以根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。国产奥迪100型轿车(v6发动机)、桑塔纳2000型轿车、北京切诺基(25l发动机)、丰田皇冠3.0轿车等均采用这种压力传感器。目前广泛采用的是半导体压敏电阻式进气压力传感器。 节气门位置传感器 节气门位置传感器安装在节气门上,用来检测节气门的开度。它通过杠杆机构与节气门联动,进而反映发动机的不同工况。此传感器可把发动机的不同工况检测后输入电控单元(ecu),从而控制不同的喷油量。它有三种型式:开关触点式节气门位置传感器(桑塔纳2000型轿车和天津三峰客车)、线性可变电阻式节气门位置传感器(北京切诺基)、综合型节气门位置传感器(国产奥迪100型v6发动机)。 曲轴位置传感器 也称曲轴转角传感器,是计算机控制的点火系统中最重要的传感器,其作用是检测上止点信号、曲轴转角信号和发动机转速信号,并将其输入计算机,从而使计算机能按气缸的点火顺序发出最佳点火时刻指令。曲轴位置传感器有三种型式:电磁脉冲式曲轴位置传感器、霍尔效应式曲轴位置传感器(桑塔纳2000型轿车和北京切诺基)、光电效应式曲轴位置传感器。曲轴位置传感器型式不同,其控制方式

氧化锆测量原理介绍

氧化锆变送器相关说明 1、氧化锆变送器测量原理 氧化锆传感器工作原理:honeywell公司的高精度氧化锆动态氧传感器(实物如图1所示),该传感器采用两个氧化锆盘,在其中间安置一个密封小室。加热到700°C的温度后,其中一个盘起到可逆氧气泵的作用,被用来依次充满和抽空小室,另一个盘用于测量氧分压差比率及产生相对应的传感电压。氧气泵使小室范围内达到规定最小和最大压力所花的时间与环境中的氧分压成正比关系,从而测量该时间即可得到环境中的氧分压。 图1 氧化锆动态氧传感器实物图 氧化锆变送器测量电路工作原理:电路原理框图如图2所示,由前置放大、电压比较、电子泵、MCU、电压输出及电源模块组成。传感器输出的电压信号经前置级放大后输入电压比较模块,通过它控制电子泵的翻转及检测氧化锆传感器内密闭小气室达到规定最小和最大压力所花的时间,该时间信号经MCU采集和处理后,通过DAC转换为与氧浓度成正比的0~4.096V直流电压信号。 图2 电路原理框图 变送器由氧化锆传感器、测量电路及开 关电源组成,如图3所示(由于氧化锆传感 器安装在气体测量室中,这里没有表示), 绿色盒中安装测量电路,灰色部分为开关电 源(提供电路工作需要的24VDC,及氧化 锆工作需要的5VDC加热电压)。 3、变送器在系统中的使用方法 供电:220V AC/50Hz(至开关电源) 变送器输出的电压信号采集:在现有 CEMS系统中,接口板专门为该电压信号的输入图3 变送器实物图

留有接口(J3600的9脚+及21脚-),将变送器的电压信号正确接入接口板,系统就可测量氧气浓度。 标定:由氧化锆的工作原理决定,为保证测量氧气浓度的正确性,需要对变送器进行标定,方法是在气体室已经加热到正常工作的120°C且氧化锆变送器通电时间超过10分钟后通空气,然后进行标定。 调零:无需进行调零操作。 4、变送器的连线 氧化锆传感器与测量电路的连线:请参照变送器上的连线图(如 图4所示),这里不做详细说明,特别指出:由于系统中氧化锆传 感器与测量电路间有一定距离,该距离的连线(红、蓝、黑三种颜 色的线)需采用屏蔽双绞线,并且屏蔽层两端良好接地。 氧化锆与开关电源间的连线:两根黄色线,至5VDC,需采用线 径至少为0.75mm2的导线(如果没有合适导线可以采用多根导线合 并的方法得到)。 测量电路与开关电源间的连线:请参照图4所示将测量电路的 电源输入端(7+、8-)及PE(5)正确接入开关电源的24VDC输出图4 变送器连线图和PE,导线线径至少为0.75mm2。 开关电源与系统220V AC主电间连接:请参照开关电源上的标示正确与主电源的L、N、PE连接,一般采用专用三芯电源线。 测量电路与OMA表间的连线:请参照图4所示的外部接线图将4接至接口板J3600的9脚,6接至接口板J3600的21脚。该段导线需尽量短,建议采用屏蔽双绞线,屏蔽层两端良好接地。

宽带氧传感器的工作原理和常见故障的检查方法

宽带氧传感器的工作原理和常见故障的检查方法 发布时间: 2010-4-29 15:52 | 编辑: 汽车乐https://www.doczj.com/doc/5711222800.html, | 查看: 1067次来源: 网络 随着汽车尾气排放限值要求的不断提高,传统的开关型氧传感器已不能满足需要,取而代之的是控制精度更高的线性宽带氧传感器(Universal Exhaust Gas Oxygen Sensor,简称UEGO)。氧传感器闭环控制调节发动机燃烧室内的混合汽,以实现最佳的三元催化转换器运行,从而满足排放限值的要求。为此,氧传感器闭环控制的任务是确保废气空燃比始终处于催化转换器的最佳工作点。氧传感器闭环控制只改变所要喷射的燃油质量、燃烧室内的空气质量,也就是说汽缸充气和点火正时均不受影响,因此氧传感器是用来帮助确定废气中氧含量而反映实际工况中的空燃比。控制单元内的氧传感器闭环控制必须通过所提供的信号来对混合汽的成分做出相应调整,控制过程很大程度上取决于氧传感器的属性。 宽带氧传感器能够提供准确的空燃比反馈信号给ECU,从而ECU精确地控制喷油时间,使汽缸内混合汽浓度始终保持理论空燃比值。宽带氧传感器的使用提高了ECU的控制精度,最大限度地发挥了三元催化器的作用,优化了发动机的性能,并可节省大约15%的燃油消耗,更加有效地降低了有害气体的排放。 宽带氧传感器通过检测发动机尾气排放中的氧含量,并向电子控制单元(ECU)输送相应的电压信号,反映空气燃油混合比的稀浓。ECU根据氧传感器传送的实际混合汽浓稀反馈信号而相应调节喷油脉宽,使发动机运行在最佳空燃比(λ=1)状态,从而为催化转换器的尾气处理创造理想的条件。如果混合汽太浓(λ<1),必须减少喷油量,如果混合汽太稀(λ>1),则要增加喷油量。 现代汽车发动机管理系统中,安装在催化转换器前的宽带氧传感器,称作控制氧传感器,安装在三元催化器的上游位置,监测尾气中氧的浓度,并将信息反馈给控制单元,用于调节喷油量,从而实现发动机的闭环控制,改善发动机的燃烧性能并减少有害气体的排放。根据OBD-Ⅱ规定,现代汽车必须对三元催化转换器效率进行持续监控,为此配有诊断氧传感器,安装在催化转换器的下游端。通过比较催化转换器上游和下游的传感器信号,可以确定催化转换器的效率。主要原因是由于控制氧传感器因老化,其向ECU输送的电压信号曲线会发生偏移,诊断氧传感器会检测控制氧传感器是否仍然处于最佳工作状态,然后ECU 就可计算出矫正偏移所需的补偿量。 由于老化而造成工作性能变差的氧传感器,也会影响燃油经济性的指标。老化的氧传感器提供给DME的混合汽浓度信号存在误差,将使DME控制单元在可燃混合汽形成的控制产生偏差,而造成燃油消耗的增加。表1是博世公司所做的氧传感器对燃油经济性影响的明细表。 一、宽带型氧传感器的分类及基本构造 根据氧传感器的制造材料不同,宽带型氧传感器可分为以ZrO2为基体的固化电解质型和利用氧化物半导体电阻变化型两大类;根据传感器的结构不同,宽带型氧传感又可分为电池型、临界电流型及泵电池型。 宽带型氧传感器的基本控制原理就是以普通氧化锆型氧传感器为基础扩展而来。氧化锆型氧传感器有一特性,即当氧离子移动时会产生电动势。反之,若将电动势加在氧化锆组件上,即会造成氧离子的移动。根据此原理即可由发动机控制单元控制所想要的比例值。 构成宽带型氧传感器的组件有两个部分:一部分为感应室,另一部分是泵氧元。 感应室的一面与大气接触,而另一面是测试腔,通过扩散孔与排气接触,与普通氧化锆传感器一样,由于感应室两侧的氧含量不同而产生一个电动势。一般的氧化锆传感器将

氧化锆式氧传感器的性能与应用

氧化锆式氧传感器的性能与应用 摘要:氧传感器安装在排气管上,将检测到的废气中氧浓度的电信号传递给ECU,ECU根据此信号对喷油和废气再循环量进行反馈控制,为尾气净化装置(如三元催化转换器、存储式NOx净化器等)提供良好的外部环境,从而降低尾气排放,以满足严格的排放法规。氧传感器性能的优劣对于尾气净化的效果起着关键作用。本文通过简述氧化锆式氧传感器的工作原理,重点论述了氧化锆式氧传感器的类型、性能特点、应用及发展情况,并阐述了其使用方法和注意事项。 关键词:氧化锆式氧传感器;性能;应用;发展 1 氧化锆式氧传感工作原理 1.1 氧传感器类型 根据检测电信号不同:可分为氧化锆式氧传感器和二氧化钛(Ti02)式氧传感器,前者为电压型,后者为电阻型。发动机电控系统常用氧化锆式氧传感器(下文氧传感器均为氧化锆式氧传感器)。 1.2 氧传感器的工作原理 当气缸内混合气空燃比较浓时,排放气体中的氧气比较少,大气中的氧通过二氧化锆管在两电极(通常为Pt电极)间通过氧的渗透产生较大的电压(1V)左右;反之,当空燃比较低时,排气管中氧气浓度较高,大气中的氧通过二氧化锆管在两电极(Pt电极)间氧通过氧的渗透产生较小的电压(0V)左右。 因此,氧传感器是一个反应排气管氧含量浓稀的一个开关,形象地称为是一个随时向ECU反馈空燃比信息的“通信员”。ECU则根据反馈来的氧传感器信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之,如信号反映较稀,则延长喷油时间。从而使混合气的空燃比始终保持在理论空燃比(14.7:1)附近,这就是氧传感器闭环控制或氧传感器反馈控制。 2 氧化锆式氧传感器的应用与发展 2.1 普通型氧化锆传感器 氧化锆式传感器的基本元件是氧化锆管。氧化锆管固定在带有安装螺纹的固定套内,在氧化锆管的内、外表面均覆盖着一薄层铂(Pt)作为电极,传感器内侧通大气,外侧直接与排气管中的废气接触。在氧化锆管外表面的铂层上,还覆盖着一层多孔的陶瓷涂层,并加有带槽的防护套管,用来防止废气对铂电极产生腐蚀;在传感器的线束连接器端有金属护套,其上设有小孔,以便使氧化锆管内侧通大气。二氧化锆管的外表面处于氧气浓度较低的汽车所排放的气体中,而管

汽车传感器类型及其工作原理

汽车传感器类型及其工作原理 汽车技术的发展,使得越来越多的元器件用到整个汽车系统的控制上面。 最常用的就是使用传感器来检测各种需要检测或者对汽车行驶、控制需要参考 的重要参数,并将这些信号转化成电信号等待再次处理。下面,小编来和大家 分享一些汽车传感器类型,并针对这些不同性能的传感器它的工作原理,来告 诉大家它在汽车中是用在什么地方,具体是怎么操作的,并且它在整个系统中 有什么样的作用。常用的汽车传感器类型、工作原理和使用方式(1) 里程表传感器在差速器或者半轴上面的传感器,来感觉转动的圈数,一般 用霍尔,光电两个方式来检测信号,其目的利用里程表记数可有效的分析判断 汽车的行驶速度和里程,因为半轴和车轮的角速度相等,已知轮胎的半径,直 接通过历程参数来计算。在传动轴上设计两个轴承,大大减轻了运行中的力距,减少了摩擦力,增强了使用寿命;由原来的动态检测信号改为齿轮运转式检测信号;由原来直插式垂直变速箱改为倒角式接口变速箱。里程表传感器插头一般是在变速箱上,有的打开发动机盖可以看到,有的要在地沟操作。 (2) 机油压力传感器是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。常用的有硅压阻式和硅电 容式,两者都是在硅片上生成的微机械电子传感器。一般情况上,我们通过机 油压力传感器来检测汽车的机油向内的汽油还有多少,并将检测到的信号转换 成我们可以理解的信号,提醒我们还有多少汽油,或者还可以走多远,甚至是 提醒汽车需要加汽油了。(3) 水温传感器它的内部是一个半导体热敏电阻,温度愈低,电阻愈大;反之电阻愈小,安装在发动机缸体或缸盖的水套上,与冷却水直接接触。从而侧得发动机冷却水的温度。电控单元根据这一变化测 得发动机冷却水的温度,温度愈低,电阻愈大;反之电阻愈小。电控单元根据这

氧化锆传感器的安装与标定

氧化锆传感器的安装与标定 1.氧化锆传感器的安装须知 1)传感器内部为陶瓷元件,容易断裂造成损坏。因此传感器须轻拿轻放,不能碰撞。 2)为有利于传感器的使用寿命,安装地点应选择被测气体温度接近传感器工作温度、无振动且方便维修的位置。 安装时传感器须慢慢的插入,一般先将传感器的1/3插至烟道里,10分钟后再插入1/3,再过10分钟后将传感器全部插入。 4)传感器上的法兰螺栓在安装时要均匀地拧紧。防止空气通过密封垫子漏入,造成测量时的误差。 2.氧化锆安装的相关知识 探头安装位置的选择,通常应选择在具备下列条件的地方: a、具有一定代表性的平均气样; b、安装点附近的炉墙必须无漏风; c、锅炉内无吹灰设备; d、被测气体(烟气)的压力变化不大; e、机械振动小; f、安装点处要有拆装传感器的空间位置; g、环境温度不超过探头接线盒允许温度,易于维修的地方。 事实证明,烟气流场的变化对气体在探头内扩散的影响很大而且不确定,影响测量结果。3.关于氧化锆探头标准气标定的操作! 在标定氧化锆探头,从标准气钢瓶通入标准气到氧化锆探头的时候,要注意流量太大会冲爆锆管,我们特地做了一个相关的装置,用来做标准气的压力和流量控制! ?入口压力:15Mpa ?稳压输出:0.15Mpa ?流量:40ml/分-400ml/分 ?外壳经过防腐处理 - N1 b- ?使用范围:用于氧化锆传感器的在线调试 ?优点:可控制调试时入口标准气的流量,避免因标准气流量过大,造成氧化锆管的损坏。 JYQ-300专用减压器使用说明 JYQ-300专用减压器示意图

3.1 图解说明 ①为标准气钢瓶接口 ②为标准气钢瓶压力指示 ③为专用稳压器(压力稳定在0.2MPa); ④为流量计调节阀 ⑤为气体流量指示(一般控制在250ml-300ml) ⑥为标准气气体流量出口 3.2 使用说明 1)将标准气钢瓶接入①(标准气钢瓶接口),然后将④(流量计调节阀)顺时针关闭,打开标准气钢瓶阀门。 2)逆时针缓缓打开④(流量计调节阀),使⑤ (气体流量指示)为250ml 3)将⑥(标准气气体流量出口)用皮管接入氧化锆传感器的“标准气入口”,切记在流量没有调整好之前,千万不要将皮管接入氧化锆传感器。(以防止因为流量过大,导致核心原件氧化锆管断裂,造成不必要的损失)。 4.氧化锆探头的标定程序及注意事项 1)切记应将标准气流量计流量调至200ml/分-300ml/分。流量不能大,否则会造成校对时的误差并对传感器造成损坏。 2)快速拧开传感器校对堵头,将标准气插上五分钟后,待数据稳定时,即校对完成。 3)去除标准气皮管,快速将堵头拧上(堵头拧下后,不能长时间放在空气中,因为空气温度低,传感器是在高温下工作,会吸入大量的空气,造成温差太大,传感器断裂)空气对流的方式只是简单比对热电偶准确度的一种方法。具体的修正一般通过标准气体标定进行,方法是将计量核定确认的标准气体通过标气口通入探头,测量此时输出氧电势及仪表显示氧浓度,仪表显示氧浓度应该与标准气体浓度相同,存在偏差则修正仪表线性参数;标准计量要求最少使用三种不同标准气体标定系统,这样经过三次标定重复修正好系统线性,保证系统正常工作。

氧传感器的检测修订稿

氧传感器的检测 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

氧传感器的检测 1、结构和工作原理 在使用三效催化转化器降低排放污染的发动机上,氧传感器是必不可少的。三效催化转化器安装在 三种主要的有害成分,但只在混合气的空燃比处于接排气管的中段,它能净化排气中CO、HC和NO x 近理论空燃比的一个窄小范围内,三效催化转化器才能有效地起到净化作用。故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。并将其转换成电压信号或电阻信号,反馈给ECU。ECU 控制空燃比收敛于理论值。 目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。 (1)氧化锆式氧传感器 氧化锆式氧传感器的基本元件是氧化锆陶瓷管(固体电解质),亦称锆管()。锆管固定在带有安装螺纹的固定套中,内外表面均覆盖着一层多孔性的铅膜,其内表面与大气接触,外表面与废气接触。氧传感器的接线端有一个金属护套,其上开有一个用于锆管内腔与大气相通的孔;电线将锆管内表面铂极经绝缘套从此接线端引出。 氧化锆在温度超过300℃后,才能进行正常工作。早期使用的氧传感器靠排气加热,这种传感器必须在发动机起动运转数分钟后才能开始工作,它只有一根接线与ECU相连()。现在,大部分汽车使用带加热器的氧传感器(),这种传感器内有一个电加热元件,可在发动机起动后的20-30s内迅速将氧传感器加热至工作温度。它有三根接线,一根接ECU,另外两根分别接地和电源。 锆管的陶瓷体是多孔的,渗入其中的氧气,在温度较高时发生电离。由于锆管内、外侧氧含量不一致,存在浓差,因而氧离子从大气侧向排气一侧扩散,从而使锆管成为一个微电池,在两铂极间产生电压()。当混合气的实际空燃比小于理论空燃比,即发动机以较浓的混合气运转时,排气中氧等较多。这些气体在锆管外表面的铅催化作用下与氧发生反应,将耗尽排气含量少,但CO、HC、H 2 中残余的氧,使锆管外表面氧气浓度变为零,这就使得锆管内、外侧氧浓差加大,两铅极间电压陡增。因此,锆管氧传感器产生的电压将在理论空燃比时发生突变:稀混合气时,输出电压几乎为零;浓混合气时,输出电压接近1V。 要准确地保持混合气浓度为理论空燃比是不可能的。实际上的反馈控制只能使混合气在理论空燃比附近一个狭小的范围内波动,故氧传感器的输出电压在之间不断变化(通常每10s内变化8次以上)。如果氧传感器输出电压变化过缓(每1Os少于8次)或电压保持不变(不论保持在高电位或低电位),则表明氧传感器有故障,需检修。 (2)氧化钛式氧传感器 氧化钛式氧传感器是利用二氧化钛材料的电阻值随排气中氧含量的变化而变化的特性制成的,故又称电阻型氧传感器。二氧化钛式氧传感器的外形和氧化锆式氧传感器相似,在传感器前端的护罩内是一个二氧化钛厚膜元件()。纯二氧化钛在常温下是一种高电阻的半导体,但表面一旦缺氧,其品格便出现缺陷,电阻随之减小。由于二氧化钛的电阻也随温度不同而变化,因此,在二氧化钛式

传感器在汽车中的应用

传感器在汽车中的应用 摘要: 随着电子技术的发展,现代汽车正朝着高档智能化、电子信息自动化的机电一体化产品方向发展。汽车传感器作为汽车电子控制系统的关键部件,是现代汽车发展的主导与核心。随着汽车工业与电子工业的不断发展,汽车传感器将成为汽车电子产品市场中最有需求力的产品。 关键词: 汽车传感器汽车电子控制系统 现代汽车正朝着高档智能化、电子信息自动化的机电一体化产品方向发展,汽车传感器作为汽车电子控制系统的关键部件,是现代汽车发展的主导与核心,尤其伴随着汽车电子技术的飞速发展,低成本、智能、集成多功能的微型新型传感器将逐步取代传统的传感器,成为现代“电子汽车”发展的助推剂。 汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,已在汽车设计与制造的发展中起主要角色作用。这一作用随着汽车功能,如稳定性控制、安全性控制和电子油门控制等技术领域研究内容的增多而愈来愈大。 目前,一般汽车装配有几十到近百个传感器,高级豪华汽车更是有大约几百乃至上千个传感器。而且随着汽车制造业的发展,一辆普通轿车安装的传感器数量和种类都将越来越繁多。这些形形色色的传感器坚守于汽车的各个关键部位,承担起汽车自身检测和诊断的重要责任,将汽车时时刻刻的温度、压力、速度及湿度等信息传达到汽车的神经中枢即中央控制系统中,从而将汽车故障消于未形,因此,有人形象地将传感器形容为汽车的敏感神经未梢。 当前,常用的汽车传感器主要表现在发动机控制系统、底盘控制系统、车身控制系统和导航系统中。它的应用大大提高了汽车电子化的程度,增加了汽车驾驶的安全系数。其作用就是对汽车温度、压力、位置、转速、加速度和振动等各种信息进行实时、准确的测量和控制。常用的有温度传感器、压力传感器、位置和转速传感器、加速度传感器、距离传感器、陀螺仪和车速传感器、方向盘转角传感器等。 一、汽车发动机控制用传感器 发动机的电子控制一直被认为是MEMS技术在汽车中的主要应用于领域之一。发动机控制系统用传感器是整个汽车传感器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供电子控制单元(ECU)对发动机工作状况进行精确控制,以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。由于其工作在发动机振动、汽油蒸气、污泥和泥水等恶劣环境中,因此它们耐恶劣环境技术指标要高于一般的传感器。对于它们的性能指标要求最关键的是测量精度与可靠性。

氧传感器原理与检测方法

《汽车微电脑控制系统与故障检测》王忠良人民邮电出版社 氧浓度传感器 氧浓度传感器(又称氧传感器)是发动机电子控制系统中一个重要的传感器,其作用就是把排气中氧的浓度转换为电压信号,微电脑根据氧浓度传感器输入的信号判断混合气的浓度,进而修正喷油量,最终将缸内混合气的浓度控制在理想空燃比14.7附近。 现代汽车为了降低发动机排气中的有害成分(CO、HC、NO X等)的含量,在排气管中安装了三元催化转换装置。三元催化转换装置内有三元催化剂(常用的是铂、钯、铑),三元催化剂能促使排气中的有害成分进行化学反应,可使CO氧化为CO2,使HC氧化为CO2和H2O,将NOx还原为N2。但是,只有当发动机在14.7空燃比附近的一个很小范围内运转时,三元催化剂才能同时促进氧化、还原反应,三元催化转换装置的转换效率才最高,排气中有害物质的含量才最低。因此,现代汽车中均安装了氧传感器。 氧传感器的数量因车而异,有的发动机只有一个氧传感器:有的双排气管发动机在左、右排气管上各安装一个氧传感器,这样该系统就有两个氧传感器,即左氧传感器和右氧传感器;也有的双排气管发动机在每个排气管的三元催化转换装置前、后各安装一个氧传感器(分别叫主、副氧传感器),这样该系统共有4个氧传感器,即左主氧传感器、左副氧传感器、右主氧传感器以及右副氧传感器。氧传感器安装在排气管中排气消音器的前面。 一、氧传感器的结构与工作原理 氧传感器根据内部敏感材料的不同分为氧化锆式(也称锆管式)和氧化钛式两种。 1.氧化锆式氧传感器 氧化锆式氧传感器是目前应用最多的氧传感器,它主要由锆管、电极等组成,如图1—42 图l—42 氧化锆式氧传感器的结构 氧化锆式氧传感器内部的敏感元件是二氧化锆(ZrO2)固体电解质。在二氧化锆固体电解质粉末中添加少量的添加剂并烧制成管状,便称为锆管。紧贴锆管内、外表面的是作为锆管内、外电极的铂膜,内、外电极通过电极引线与传感器的线束插接器相连。锆管的内电极与外界大气相通,外电极与排气管内的排气相通。为防止发动机排出的废气腐蚀外层的铂电极,在外层铂电极表面都覆盖着一层多孔性的陶瓷层。 作为锆管外电极的金属铂的另一个重要作用是催化作用,对排气中(尤其是外电极铂膜附近)的一氧化碳(CO)和氧气(O2)起催化作用,使其反应生成二氧化碳(CO2),其化学反应式为: 2CO+O2? ?→ ?催化剂2CO2 这种催化作用尽可能多地使浓混合气燃烧后排放废气中的低浓度氧气(O2)和高浓度一氧化碳(CO)发生化学反应(甚至可使氧气全部参加反应)。这样既减少了废气中一氧化碳

氧化锆氧传感器工作原理

第一部分氧化锆氧传感器工作原理 一、产品简介: 氧化锆氧传感器是利用氧化锆陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。 二、氧传感器工作原理: 氧传感器是利用稳定的二氧化锆陶瓷在650℃以上的环境中产生的氧离子导电特性而设计的。在一定的温度条件下,如果在二氧化锆块状陶瓷两侧的气体中分别存在着不同的氧分压(即氧浓度)时,二氧化锆陶瓷内部将产生一系列的反应,和氧离子的迁移。这时通过二氧化锆两侧的引出电极,可测到稳定的毫伏级信号,我们称之为氧电势。它服从能斯特(Nernst)方程: 式中E为氧传感器输出的氧电势(mv),Tk为炉内的绝对温度(K),P1和P2分别为二氧化锆两侧气体的氧分压。实际应用时,将二氧化锆的一侧通入已知氧浓度的气本(通常为空气),我们称之为参比气。另一侧则是被测气体,就是我们要检测的炉内的气氛,详见图1。氧传感器输出的信号就是氧电势信号,通过能斯特方程我们就可以得到被测炉气氛中的氧分压和氧电势的关系。参比气为空气时,可表示为: 式中E为氧传感器输出氧电势;Tk为炉内的绝对温度;P02为炉内的氧分压。 我们的氧传感器产品带有自加热装置,一般温度保证在700℃,这样TK数值基本是恒定的,从而通过上式可以直接测量出炉内氧分压浓度。工程应用中采用标准气体来标定氧传感器输出氧电势E和氧分压浓度PO2的对应关系,这种方法也是目前公认的最准确、最直接的标定方法。 第二部分HMP系列氧传感器 一.HMP氧传感器基本结构: HMP氧传感器的核心部件采用进口氧化锆氧传感器(详见图2),该氧化锆氧传感器自带智能加热装置,提供稳压恒定控制信号即可快速达到使用温度,并保证传感器在该恒定温度下连续、稳定工作。安装该探头需要调整引导板方向,尽量使引导板正对气流方向,这样才能形成对检测气氛的气体自导流。进口氧化锆氧传感器典型性能特性如下: 零点误差:£±0.2mv ;交流电阻(1500赫兹):(700℃)£100 千欧;(1100℃)£ 5 千欧。响应时间(700-1300℃):£1秒 二.HMP氧传感器采样、维护方式: HMP氧传感器采用气氛自导流方式,导入被检测气氛,考虑工程现场的环境因数,设计有吹扫清除通道,可方便地对采样引导管道进行吹扫工作,以避免炉内或管道内的灰尘、煤灰、油杂质等等堵塞采样管,请参考图3。 三.技术性能: 使用温度:室温~1100℃;氧电势显示范围:-50~1240mV; 氧电势输出精度:±0.5mV;响应时间:≤1秒;

氧传感器(2)

目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。 氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时地排除故障或更换。 氧传感器的常见故障 1.氧传感器中毒 氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。 另外,氧传感器发生硅中毒也是常有的事。一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。 2.积碳 由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不 能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。 3.氧传感器陶瓷碎裂 氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。 4.加热器电阻丝烧断

氧化锆氧传感器工作原理

氧化锆氧传感器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一部分氧化锆氧传感器工作原理 一、产品简介: 氧化锆氧传感器是利用氧化锆陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。 二、氧传感器工作原理: 氧传感器是利用稳定的二氧化锆陶瓷在650℃以上的环境中产生的氧离子导电特性而设计的。在一定的温度条件下,如果在二氧化锆块状陶瓷两侧的气体中分别存在着不同的氧分压(即氧浓度)时,二氧化锆陶瓷内部将产生一系列的反应,和氧离子的迁移。这时通过二氧化锆两侧的引出电极,可测到稳定的毫伏级信号,我们称之为氧电势。它服从能斯特(Nernst)方程: 式中E为氧传感器输出的氧电势(mv),Tk为炉内的绝对温度(K),P1和P2分别为二氧化锆两侧气体的氧分压。实际应用时,将二氧化锆的一侧通入已知氧浓度的气本(通常为空气),我们称之为参比气。另一侧则是被测气体,就是我们要检测的炉内的气氛,详见图1。氧传感器输出的信号就是氧电势信号,通过能斯特方程我们就可以得到被测炉气氛中的氧分压和氧电势的关系。参比气为空气时,可表示为: 式中E为氧传感器输出氧电势;Tk为炉内的绝对温度;P02为炉内的氧分压。我们的氧传感器产品带有自加热装置,一般温度保证在700℃,这样TK数值基本是恒定的,从而通过上式可以直接测量出炉内氧分压浓度。工程应用中采用标准气体来标定氧传感器输出氧电势E和氧分压浓度PO2的对应关系,这种方法也是目前公认的最准确、最直接的标定方法。 第二部分 HMP系列氧传感器 一.HMP氧传感器基本结构: HMP氧传感器的核心部件采用进口氧化锆氧传感器(详见图2),该氧化锆氧传感器自带智能加热装置,提供稳压恒定控制信号即可快速达到使用温度,并保证传感器在该恒定温度下连续、稳定工作。安装该探头需要调整引导板方向,尽量使引导板正对气流方向,这样才能形成对检测气氛的气体自导流。进口氧化锆氧传感器典型性能特性如下: 零点误差:£±0.2mv ;交流电阻(1500赫兹):(700℃)£100 千欧;(1100℃)£ 5 千欧。响应时间(700-1300℃):£1秒 二.HMP氧传感器采样、维护方式: HMP氧传感器采用气氛自导流方式,导入被检测气氛,考虑工程现场的环境因数,设计有吹扫清除通道,可方便地对采样引导管道进行吹扫工作,以避免炉内或管道内的灰尘、煤灰、油杂质等等堵塞采样管,请参考图3。

汽车用传感器试题库

一、名词解释(5个×6) 1、逆压电效应:指当在某些电介质的极化方向施加电场时,电介质就会在一定方向上产生机械变形或机应压力,电场撤去时,电介质变形随之消失的现象。 正压电效应:某些电介质在沿着一定方向受到外力而变形时,内部极化,同时在它的两个表面上会产生极性相反的电荷,外力去掉后,又恢复到不带电状态,外力方向改变,电荷极性随之改变的现象。 2、传感器的迟滞:指传感器在输入量增大和输入量减小行程间,输入-输出特性曲线不一致的程度。 3、传感器灵敏度:指传感器在稳态下,输出量变化值与输入量变化值的比值,K=dy/dx。 分辨力:指传感器能检测到输入量最小变化量的能力。 线性度:指传感器输入量与输出量之间的静态特性曲线偏离直线的程度。 传感器量程:传感器能够测量的上限值与下限值的差称为量程。 传感器的准确度:准确度常用最大引用误差来定义。 4、内光电效应:指在光线的作用下使物体的电阻率发生改变的光电效应。 外光电效应:指在光线的作用下使电子逸出物体表面的光电效应。 5、压阻效应:在一块半导体的某一轴向施加一定的应力时,其电阻率产生变化的现象。 6、霍耳效应:把霍尔元件至于磁感应强度为B的磁场中,磁场方向垂直于霍尔元件,当有电流I流过霍尔元件时,在垂直于电流和磁场的方向上产生感应电动势的现象。 7、差动电桥:菱形的四条边各接一个测量温度或应变力的电阻传感器,相邻桥臂传感器应变方向应相反,相对桥臂传感器应变方向应相同,组成一个电桥电路,用以消除电桥的相对非线性误差。 对称电桥:由四个测量温度或应变力的电阻传感器组成互相对称的电桥电路,四个电阻达到某一关系时,电桥的输出为零,称电桥平衡,否则就有电压或电流输出。 8、光电效应:当用光照射在某一物体上时,可以看做是物体受到一连串能量为E的光子轰击,组成这种物体的材料吸收了光子能量而发生相应电效应的现象。 9、热电效应:闭合回路中存在电动势并且有电流产生,电流的强弱与两个结点的温度有关。 10、压电效应:某些电介质,沿着一定方向对其施加外力而使它变形时,内部极化,相应地会在它的表面产生符号相反的电荷,外力去掉后,又重新恢复不带电状态的现象。 11、应变效应:导体或半导体材料在外力作用下产生机械形变,其电阻发生变化的现象。 12、电涡流效应:电涡流的产生必然要消耗一部分能量,从而使产生磁场的线圈阻抗发生变化。 13、磁阻效应:由载流子在磁场中受到洛伦兹力而产生的致使某些金属或半导体的电阻值变化的现象。 14、塞贝克效应:两种不同导电材料构成的闭合回路中,当两个接点温度不同,回路中产生的电势使热能转变为电能的一种现象。 15、莫尔条纹:两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹,这种光学现象就是莫尔条纹。 16、感应同步器:利用电磁原理将线位移和角位移转换成电信号的一种装置。 17爆震:混合气处在压缩过程中,火花塞还没有跳火时,高压混合气就达到了自燃温度,并开始猛烈燃烧的不正常燃烧现象。 18、点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度。 19、占空比:高电平在一个周期之内所占的时间比率。 20、传感器:能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置。 21、转换元件 22、敏感元件:指传感器中能直接感受被测量的变化,并转换为易于转换的非电量的元件。 23、热敏电阻:用半导体材料制成的敏感元件,大多为负温度系数,即阻值随温度增加而降低。 24、测量:是以确定被测量值为目的的一系列操作。 直接测量:指在使用仪表或传感器进行测量时,不需要经过任何运算就能直接从仪表或传感器上得出测量结果的方法。 间接测量:指用直接测量法测得与被测量有确切函数关系的一些物理量,然后通过计算求得被测量的方法。 25、检测:是利用传感器,将生产科研需要的电量和非电量信息转化成为易于测量、传输、显示和处理的电信号的过程。 26、测量方法:指针对不同测量任务进行具体分析以找出切实可行的办法。 27、测量误差:被测量的测量值与真值之间的差异。 绝对误差:指被测量的测量值与被测量的真值之间的差值。 满度相对误差:绝对误差与仪器满量程的百分比。 标称相对误差:绝对误差与被测量的测量值的百分比。

氧化锆传感器

氧化锆氧传感器原理及应用 作者:日期:2007-4-16 16:25:57原地址: 一、序言: 人们早就知道,某些固体氧化物、卤化物、硫化物等具有离子导电性能,其中最著名的是1989年Nernst发现的稳定氧化锆在高温下呈现的离子导电现象。在此后的一段时期内,尽管人们对这种具有离子导电性能的物质——固体电解质进行了种种研究,但始终进展不大。直到1957年,K.kiukkala和C.Wagner首次用固体电解质组装原电池并从理论上阐明其原理以后,这方面的研究和应用才得以迅速发展。在所有固体电解质,氧化锆是目前研究和开发应用得最普遍的一种。它不仅用来作高温化学平衡,热力学和动力学研究,而且已在高温技术,特别是高温测试技术上得到广泛应用。氧探头这种以氧化锆固体电解质为敏感元件,用以测定氧浓度的装置就是一个典型的例子。1961年,J.Weissbart和R.Ruka研制成功的第一个氧化锆浓差电池测氧仪。七十年代初出现商业用氧化锆氧探头以后,引起科学界和工业界的普遍重视,特别是西德、日本、美国等国都进行了深入的研究和产品开发工作。到七十年代中期,氧探头的理论和实践已趋成熟,开发出了多种结构形式的氧探头。 由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1-0.2秒),测量范围宽(从ppm到百分含量),使用温度高(600~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。 二、氧传感器测氧原理 氧探头是利用氧化锆陶瓷敏感元件来测量各类应用环境下的氧含量的,通过它以求实现工业加热炉燃烧过程自动控制,以及热处理可控气氛炉对零件的质量控制。下面介绍氧化锆陶瓷是如何来完成测氧功能的。 1.ZrOa锆头的导电机制 ZrO2是典型的离子晶体,ZrO2中添加的二价或三价立方对称氧化物,如CaO、MgO、Y2O3和其它三价稀土氧化物时,在适当的加热和冷却条件下可以使ZrO2在600℃以上时成为氧的快离子导体,人们称它为固体电解质。这种陶瓷材料对氧具有高度的敏感性,选择性亦十分好,用它作成的氧探头(又称氧传感器)广泛应用于工业炉和环境保护。ZrO2固体电解质是离子导电体,它是通过晶格内的氧离子空位来实现导电的,锆的导价金属氧化物的加入在ZrO2 晶格中产生了大量的氧离子空位(如图1所示)。每加入二个钇离子就建立一个氧离子空位,ZrO2的缺陷浓度主要决定于添加剂的加入量,而与温度和环境气氛无关。ZrO2的离子导电就是通过ZrO2内的氧离子的迁移来实现的。 2.氧传感器的测氧原理: 在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,在一定温度下,当电解质两侧氧浓度不同时,高浓度侧(II侧Pref)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧(I侧Po2)的Pt电极上放出电子,转化成氧分子,使该电极带负电。 这样在两个电极间便产生了一定的电动势,氧化锆电解质、Pt电极及两侧不同氧浓度的气体组成氧探头即所谓氧化锆浓差电池。这种电池电动势产生的原动力是两侧电极上氧的化学位差。 在氧探头中,高浓度侧气体用已知氧浓度(Pref)的气体作为参比气,如用空气,则Pref =20.6% 。将此值及(5)式中的常数项合并。则得参比气为空气的能斯特公式 E=0.0215Tln0.2095/PO2 (6) 可见,如能测出氧探头的输出电动势E和被测气体的绝对温度T,即可算出被测气体的氧分压(浓度)PO2 。 在实际应用中,通过检测气体的氧电势及温度,通过以能斯特公式为基础的数学模型,就可以推算出被测气体的氧含量(百分比)。这就是氧化锆氧探头的基本检测原理。

氧化锆传感器----测量原理的种类和异同

氧化锆传感器----测量原理的种类和异同 一.Lambda传感器或能斯特感应单元 测量原理:这些传感器原理是利用氧化锆在高温时释放氧离子的特性。混合气体的氧气浓度通过测量能斯特电压得出。能斯特电压取决于混合气体氧分压(P1),参考气体氧分压(Pref)和温度(K)。参考气体一般用普通大气。有些行业使用金属和金属氧化物的混合物作为氧气参考值。 这些传感器的用户有来自于锅炉或燃烧器及工业处理过程(制陶,玻璃,石化)等行业。 它们的优势是测量范围宽,可以用于恶劣的环境和高湿高温的场合。 劣势是它们工作时需要参考气体,需要严格的气密控制,致使价格非常昂贵(例如,yokogawa 一套需要四千到六千美金),而且只有在高浓度氧测量时才能保证精度。 附加信息:Lambda传感器有一款专用于汽车的测氧单元。它用来控制汽车催化剂转换的过程。虽然这款传感器也用于其它的场合,但是它的精度确实很差(5%-10%O2),精度差的主要原因是传感单元的结构问题。传感器里面的加热丝会造成传感单元的内外温差很大(大部分应用外部温度都比较低)。氧化锆/铂有一个高的热电压特性(0.5V/C)。温度造成的热电压与能斯特电压是同样的值;它们都依赖于氧压和温度。 二.扩散限制氧传感器 测量原理:扩散限制氧传感器原理是基于氧气对氧化锆的作用属性。当氧化锆从一个小的空间把氧分子泵走时,氧气会通过小孔或孔层扩散进入这个小空间,泵电流大小取决于温度,扩散孔径的大小和环境的氧气浓度。 这类传感器用户主要是测试测量设备行业,医疗行业和燃烧应用。 使用这类传感器的好处是成本低,体积小和功耗低,而且测量原理简单,也可以用来测量水蒸汽浓度。然而,这类传感器对压力变化和气体污染非常敏感(因为含有很多小孔和孔层)。 附加信息:日本公司Nippon利用此原理制造出汽车用的氧气传感器。像lambda传感器,该传感器包含一个具有传感功能的嵌环,加热元件在嵌环内部。氧气从加在陶瓷外部的多孔扩散板被泵入。泵电流值与氧气浓度成正比。这个传感器只能用于高浓氧测量(稀燃发动机或柴油发动机) 三.混合测量原理的氧气传感器(SST氧化锆传感器) 测量原理:这类传感器利用氧化锆的两个特性(泵特性和感应特性)。Pone氧化锆盘用来把氧气泵入内部气室;另外一个单元用来测量气室另一侧内外氧分压的差值,并检测预设的感应电压值。如果使用恒定的泵电流恒,到达预设的高电压值和低电压值的时间与环境氧分压成正比。

氧化锆氧传感器的原理及应用

氧化锆氧传感器的原理及应用 第一部分氧化锆氧传感器工作原理 一、产品简介: 氧化锆氧传感器是利用氧化锆陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。 二、氧传感器工作原理: 氧传感器是利用稳定的二氧化锆陶瓷在650℃以上的环境中产生的氧离子导电特性而设计的。在一定的温度条件下,如果在二氧化锆块状陶瓷两侧的气体中分别存在着不同的氧分压(即氧浓度)时,二氧化锆陶瓷内部将产生一系列的反应,和氧离子的迁移。这时通过二氧化锆两侧的引出电极,可测到稳定的毫伏级信号,我们称之为氧电势。它服从能斯特(Nernst)方程:式中E为氧传感器输出的氧电势(mv),Tk 为炉内的绝对温度(K),P1和P2分别为二氧化锆两侧气体的氧分压。实际应用时,将二氧化锆的一侧通入已知氧浓度的气本(通常为空气),我们称之为参比气。另一侧则是被测气体,就是我们要检测的炉内的气氛,详见图1。氧传感器输出的信号就是氧电势信号,通过能斯特方程我们就可以得到被测炉气氛中的氧分压和氧电势的关系。参比气为空气时,可表示为:式中E为氧传感器输出氧电势;Tk为炉内的绝对温度;P02为炉内的氧分压。我们的氧传感器产品带有自加热装置,一般温度保证在700℃,这样TK数值基本是恒定的,从而通过上式可以直接测量出炉内氧分压浓度。工程应用中采用标准气体来标定氧传感器输出氧电势E和氧分压浓度PO2的对应关系,这种方法也是目前公认的最准确、最直接的标定方法。 第二部分 HMP系列氧传感器 一.HMP氧传感器基本结构: HMP氧传感器的核心部件采用进口氧化锆氧传感器(详见图2),该氧化锆氧传感器自带智能加热装置,提供稳压恒定控制信号即可快速达到使用温度,并保证传感器在该恒定温度下连续、稳定工作。安装该探头需要调整引导板方向,尽量使引导板正对气流方向,这样才能形成对检测气氛的气体自导流。进口氧化锆氧传感器典型性能特性如下:零点误差:£±0.2mv ;交流电阻(1500赫兹):(700℃)£100 千欧;(1100℃)£ 5 千欧。响应时间(700-1300℃):£1秒 二.HMP氧传感器采样、维护方式: HMP氧传感器采用气氛自导流方式,导入被检测气氛,考虑工程现场的环境因数,设计有吹扫清除通道,可方便地对采样引导管道进行吹扫工作,以避免炉内或管道内的灰尘、煤灰、油杂质等等堵塞采样管,请参考图3。 三.技术性能: 使用温度:室温~1100℃;氧电势显示范围:-50~1240mV;氧电势输出精度:±0.5mV;响应时间:≤1秒;正常使用使用寿命:≥18个月。 第三部分氧传感器的安装 合理的安装是保证氧传感器可靠运行的关键,许多使用问题均由于氧传感器安装不当造成的,希望用户一定要特别注意这一点,安装氧传感器请尽量考虑氧传感器的安装要求: 一、采样测量点: 确定测量点是首要的工作。应遵循如下几项原则: (1)选择的测量点要求能正确反映所需要的炉内气氛,以保证氧传感器输出信号的真实性,尽量避开回风死角;

相关主题
文本预览
相关文档 最新文档