高一物理运动的描述知识点:指数函数例题
- 格式:docx
- 大小:12.77 KB
- 文档页数:2
高中数学必修1知识点总结—指数及指数函数1、 根式na (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)35325325n n n ⎧=⎪⎨-=-⎪⎩正数的次方根是正数如当是奇数时,负数的次方根是负数如20,n a n an ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根0的任何次方根都是0,记作0n2、nna的讨论 n nn a a =当是奇数时,;,0,0n n a a n a a a a ≥⎧==⎨-≤⎩当是偶数时, (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmna a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mmnnnaa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义.义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数. (3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)rsr saa aa r s R +⋅=>∈ ②()(0,,)r s rsa a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈一、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a ________=sraa _____)(=s r a ______)(=r ab )1,,0_______(>∈>=*n N n m a anm,________=n na 练习 计算下列各式的值:计算下列各式的值:(1))4()3)((636131212132b a b a b a ÷- (2)()322175.003129721687064.0+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---(3)421033)21(25.0)21()4(--⨯+-- (4)33)3(625π-+-2.已知31=+-x x ,则=+-22x x 已知23=a,513=b,则=-ba 23=____________. 3. 若21025x x =,则10x x-等于_________________【2.1.2】指数函数及其性质(4)指数函数)指数函数函数名称函数名称指数函数指数函数定义定义函数(0x y a a =>且1)a ≠叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R 值域值域(0,)+∞过定点过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对变化对 图象的影响图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.题型1、求函数经过的点 1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、函数y=4+a x -1的图象恒过定点P 的坐标是________________3.已知指数函数图像经过点)3,1(-p ,则=)3(f题型2、 图像问题1.下列说法中:下列说法中:①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a -x ;③函数y =(3)-x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴。
4.2指数函数考点一 指数函数的判断【例1-1】(2019·河北桥西.邢台一中高一月考)下列函数中指数函数的个数是( )①23x y =⋅ ②13x y += ③3xy = ④()21xy a =-(a 为常数,12a >,1a ≠) ⑤3y x = ⑥4xy =- ⑦()4xy =-A .1B .2C .3D .4【例1-2】(2019·河南中原.郑州一中高一开学考试)函数f (x )=(a 2﹣3a +3)a x 是指数函数,则a 的值为( ) A .1 B .3 C .2 D .1或3【一隅三反】1.(2019·山东高三学业考试)函数()2xy a a =-是指数函数,则( )A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠2.(2019·呼和浩特开来中学高一期中)若函数1()(3)2xf x a a =-⋅是指数函数,则1()2f 的值为( )A .2B .-2C .-D .3.(2019·辽宁葫芦岛.高一月考)下列函数不是指数函数的是( ) A .12x y +=B .3x y -=C .4x y =D .32x y =考点二 定义域和值域【例2-1】(2020·全国高一课时练习)求下列函数的定义域和值域:(1)142x y -=;(2)23y ⎛= ⎪⎝⎭(3)22312x x y --⎛⎫=⎪⎝⎭.【例2-2】(2018·湖南开福.长沙一中高一月考)若函数y =的值域为[0,+∞),则实数a 的取值范围是_____.【一隅三反】1.(2020·全国高一课时练习)求下列函数的定义域和值域; (1)12x y +=;(2)y =(3)y =2.(2020·全国高一课时练习)求下列函数的定义域与值域.(1)y =(2)1(0,1x x a y a a -=>+且1)a ≠(3)110.3;x y -=(4)y =3.(2020·河北新华.石家庄二中高二期末)若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为( )A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤⎥⎝⎦4.(2020·云南五华.昆明一中高三其他(理))设函数y =A ,函数12x y -=的值域为B ,则AB =( )A .()0,1B .(]0,1C .()1,1-D .[]1,1-5.(2019·湖南高一期中)若函数2411()3ax x f x -+⎛⎫= ⎪⎝⎭有最大值3,则实数a 的值为( )A .2-B .1-C .1D .2考点三 指数函数性质【例3】(1)(2020·贵溪市实验中学高二期末(文))若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3(2)(2019·湖南岳阳楼.岳阳一中高一期中)已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( ) A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)(3)(2019·湖北襄阳)如果1111222b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,那么( )A .a b a a a b <<B .a a b a b a <<C .b a a a a b <<D .b a a a b a <<【一隅三反】1.(2019·浙江南湖.嘉兴一中高一月考)函数2213x xy -+⎛⎫= ⎪⎝⎭为增函数的区间是( )A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞2.(2019·浙江柯城.衢州二中高三一模)已知定义在R 上的函数()||32x m f x -+=+m 为实数)为偶函数,记()0.2log 3a f =,()5log b f e =,()c f m π=+,则( )A .c b a <<B .c a b <<C .a c b <<D .a b c <<3.(2020·浙江高一课时练习)设0.914y =,0.4828y =, 1.5312y -⎛⎫= ⎪⎝⎭,则( )A .312y y y >>B .213y y y >>C .123y y y >>D .132y y y >>1.指数函数性质记忆口诀指数增减要看清,抓住底数不放松; 反正底数大于0,不等于1已表明; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(0,1)点. 2.比较幂值大小的三种类型及处理方法4.(2020·永安市第三中学高二月考)若关于x 的方程()94340xxa ++⋅+=有解,则实数a 的取值范围是( )A .(,8][0,)-∞-+∞B .(),4-∞-C .[8,4)--D .(,8]-∞-5(2020·上海高一课时练习)已知函数2221()2x x f x ++⎛⎫= ⎪⎝⎭,则该函数的单调递增区间是__________.6.(2020·上海普陀.曹杨二中高一期末)函数12x y =-的单调递增区间为________7.(2020·全国高一课时练习)比较下列各题中的两个值的大小. (1)0.10.8-,0.21.25;(2)1ππ-⎛⎫ ⎪⎝⎭,1;(3)30.2-,()0.23-.考点四 定点【例4】(2020·浙江高一课时练习)函数()-1=4+x f x a (0a >,且1a ≠)的图象过定点P ,则P 点的坐标为( ) A .(1,5) B .(1,4) C .(0,5)D .(0,4)【一隅三反】1.(2019·涡阳县第九中学高二期末)函数()10,1xy a a a =+>≠的图象必经过点( )A .(0,1)B .(1,1)C .()0,2D .(2,2)2.(2019·贵州省织金县第二中学高一期中)函数21()x f x a-=(0a >且1)a ≠过定点( ) A .(1,1) B .1(,0)2C .(1,0)D .1(,1)23.(2020·宁夏贺兰县景博中学高一月考)函数y=a x ﹣1+2(a >0且a≠1)图象一定过点( )A .(1,1)B .(1,3)C .(2,0)D .(4,0)考点五 图像【例5-1】(2020·广东顺德一中高一期中)函数1(0,1)xy a a a a=->≠的图像可能是( ). A . B .C .D .【例5-2】(2020·浙江高一课时练习)若函数(01,1)xy a a a m =>-≠+的图像在第一、三、四象限内,则( ) A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<【一隅三反】1.(2019·浙江高一期中)函数y x a =+与xy a =,其中0a >,且1a ≠,它们的大致图象在同一直角坐标系中有可能是 ( )A .B .C .D .2.(2020·全国高一课时练习)在如图所示的图象中,二次函数2y ax bx c =++与函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .3.(2020·上海高一课时练习)若函数2xy m =+的图像不经过第二象限,则m 的取值范围是( )A .m 1≥B .1m <C .1m >-D .1m ≤-4.(2020·内蒙古集宁一中高二期末(理))若直线2y a =与函数|1|(0,1)x y a a a =->≠的图象有两个大众点,则a的取值范围是___________4.2指数函数考点一 指数函数的判断【例1-1】(2019·河北桥西.邢台一中高一月考)下列函数中指数函数的个数是( )①23x y =⋅ ②13x y += ③3xy = ④()21xy a =-(a 为常数,12a >,1a ≠) ⑤3y x = ⑥4xy =- ⑦()4xy =-A .1B .2C .3D .4【参考答案】B【解析】对①:指数式的系数为2,不是1,故不是指数函数;对②:其指数为1x +,不是x ,故不是指数函数; 对③④:满足指数函数的定义,故都是指数函数; 对⑤:是幂函数,不是指数函数;对⑥:指数式的系数为-1,不是1,故不是指数函数;对⑦:指数的底数为-4,不满足底数大于零且不为1的要求,故不是; 综上,是指数函数的只有③④,故选:B.【例1-2】(2019·河南中原.郑州一中高一开学考试)函数f (x )=(a 2﹣3a +3)a x 是指数函数,则a 的值为( ) A .1B .3C .2D .1或3【参考答案】C【解析】因为函数f (x )=(a 2﹣3a +3)a x 是指数函数,故可得2331a a -+=解得1a =或2a =, 当1a =时,不是指数函数,舍去.故选:C.【一隅三反】1.(2019·山东高三学业考试)函数()2xy a a =-是指数函数,则( )A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠【参考答案】C【解析】因为函数()2xy a a =-是指数函数所以21a -=,0a >且1a ≠,解得3a =.故选:C.2.(2019·呼和浩特开来中学高一期中)若函数1()(3)2xf x a a =-⋅是指数函数,则1()2f 的值为( )A .2B .-2C.-D.【参考答案】D【解析】∵函数f (x )=(12a ﹣3)•a x 是指数函数,∴12a ﹣3=1,a >0,a ≠1,解得a =8, ∴f (x )=8x ,∴f (12)==,故选:D . 3.(2019·辽宁葫芦岛.高一月考)下列函数不是指数函数的是( ) A .12x y += B .3x y -= C .4x y = D .32x y =【参考答案】A【解析】指数函数是形如xy a =(0a >且1a ≠)的函数. 对于A :1222x x y +==⨯,系数不是1,所以不是指数函数;对于B :133xx y -⎛⎫== ⎪⎝⎭,符合指数函数的定义,所以是指数函数;对于C :4xy =,符合指数函数的定义,所以是指数函数;对于D :382x xy ==,符合指数函数的定义,所以是指数函数.故选:A.考点二 定义域和值域【例2-1】(2020·全国高一课时练习)求下列函数的定义域和值域: (1)142x y -=;(2)23y ⎛= ⎪⎝⎭(3)22312x x y --⎛⎫=⎪⎝⎭.【参考答案】(1)定义域{|4}x x ≠,值域为{|0y y >且1}y ≠; (2)定义域{|0}x x =,值域{|1}y y =;(3)定义域R ,值域(]0,16【解析】(1)要使函数式有意义,则40x -≠,解得4x ≠.所以函数142x y -=的定义域为{|4}x x ≠.因为104x ≠-,所以1421x -≠,即函数142x y -=的值域为{|01}y y y >≠,且. (2)要使函数式有意义,则||0x -,解得0x =,所以函数23y ⎛= ⎪⎝⎭{|0}x x =.因为0x =,所以022133⎛⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即函数23y ⎛= ⎪⎝⎭{|1}y y =.(3)函数的定义域为R .因为2223(1)44x x x --=--≥-,所以2234111622x x ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. 又223102x x --⎛⎫>⎪⎝⎭,所以函数22312x x y --⎛⎫= ⎪⎝⎭的值域为(]0,16.【例2-2】(2018·湖南开福.长沙一中高一月考)若函数y =的值域为[0,+∞),则实数a 的取值范围是_____. 【参考答案】(﹣∞,﹣2]【解析】设()421x x g x a =+⋅+,若函数y =的值域为[0,)+∞,则等价于[0,)+∞是()g x 值域的子集,2()421(2)21x x x x g x a a =+⋅+=+⋅+,设2x t =,则0t >,则2()1y h t t at ==++,(0)10h =>,∴当对称轴02at =-,即0a 时,不满足条件. 当02at =->,即0a <时,则判别式△240a =-,即022a a a <⎧⎨-⎩或,则2a -, 即实数a 的取值范围是(-∞,2]-.故参考答案为:(-∞,2]-【一隅三反】1.(2020·全国高一课时练习)求下列函数的定义域和值域; (1)12x y +=;(2)y =(3)y =【参考答案】(1)定义域为R ,值域为(0,)+∞;(2)(,0]-∞,[0,1);(3)[0,)+∞,[1,)+∞.【解析】(1)12x y +=的定义域为R ,值域为(0,)+∞.(2)由120x -≥知0x ,故y =(,0]-∞;由0121x -<知0121x -<,故y =[0,1).(3)y =[0,)+∞0x 知1x,故y =[1,)+∞.2.(2020·全国高一课时练习)求下列函数的定义域与值域.(1)y =(2)1(0,1x x a y a a -=>+且1)a ≠(3)110.3;x y -=(4)y =【参考答案】(1)定义域为[0,)+∞;值域为[0,1);(2)定义域为R ;值域为(-1,1);(3)定义域为{1}xx ≠∣;值域为{0y y >∣且1}y ≠;(4)定义域为15xx ⎧⎫≥⎨⎬⎩⎭∣;值域为{1}yy ≥∣. 【解析】(1)1102x⎛⎫-≥ ⎪⎝⎭,解得:0x ≥, ∴原函数的定义域为[0,)+∞,令11(0)2xt x ⎛⎫=-≥ ⎪⎝⎭,则01,01t ≤<∴≤∴原函数的值域为[0,1) (2)原函数的定义域为R.设x a t =,则(0,)t ∈+∞,11221111t t y t t t -+-===-+++, 0,11t t >∴+>,1201,2011t t -∴<<∴-<<++,21111t ∴-<-<+,即原函数的值域为(1,1)-. (3)由10x -≠得1x ≠,所以函数定义域为{|1}x x ≠,由101x ≠-得1y ≠, 所以函数值域为{|0y y >且1}y ≠.(4)由510x -≥得15x ≥,所以函数定义域为15x x ⎧⎫≥⎨⎬⎩⎭∣,0≥得1y ≥,所以函数值域为{1}yy ≥∣. 3.(2020·河北新华.石家庄二中高二期末)若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为( )A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤ ⎥⎝⎦【参考答案】B【解析】当1x <时,()1,212xf x ⎛⎫∈+∞⎛ ⎪⎝⎫= ⎪⎭⎭⎝ 当1≥x 时,()114,4xf x a a a ⎛⎤∈+⎛⎫=+ ⎪⎝⎭ ⎥⎝⎦ 函数()f x 的值域为(),+∞a 114212a a ⎧+≥⎪⎪∴⎨⎪≤⎪⎩,即11,42a ⎡⎤∈⎢⎥⎣⎦故选:B 4.(2020·云南五华.昆明一中高三其他(理))设函数y =A ,函数12x y -=的值域为B ,则AB =( )A .()0,1B .(]0,1C .()1,1-D .[]1,1-【参考答案】A【解析】函数定义域满足:210x ->,即11x -<<,所以{}11A x x =-<<,函数12x y -=的值域{}0B y y =>,所以()0,1AB =,故选:A.5.(2019·湖南高一期中)若函数2411()3ax x f x -+⎛⎫= ⎪⎝⎭有最大值3,则实数a 的值为( )A .2-B .1-C .1D .2【参考答案】D【解析】由于函数2411()3ax x f x -+⎛⎫= ⎪⎝⎭有最大值3,所以0a >,且当422x a a-=-=时,()f x 取得最大值为2224411412113333a a a aaf a ⎛⎫⋅-⋅+-+ ⎪-⎝⎭⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故4411,2,2a a a-===.故选:D 考点三 指数函数性质【例3】(1)(2020·贵溪市实验中学高二期末(文))若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3(2)(2019·湖南岳阳楼.岳阳一中高一期中)已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( ) A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)(3)(2019·湖北襄阳)如果1111222b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,那么( )A .a b a a a b <<B .a a b a b a <<C .b a a a a b <<D .b a a a b a <<【参考答案】(1)B (2)B(3)C【解析】(1)函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .(2)可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a-<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-.故选B.(3) 根据函数()1()2x f x =在R 是减函数,且1111222ba⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,所以10b a >>>,所以a a b a b a <<,故选C.【一隅三反】1.(2019·浙江南湖.嘉兴一中高一月考)函数2213x xy -+⎛⎫= ⎪⎝⎭为增函数的区间是( )A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞【参考答案】C【解析】∵13uy ⎛⎫= ⎪⎝⎭是减函数,222(1)1u x x x =-+=--+在(,1]-∞上递增,在[1,)+∞上递减,∴函数2213x xy -+⎛⎫= ⎪⎝⎭的增区间是[1,)+∞.故选:C .2.(2019·浙江柯城.衢州二中高三一模)已知定义在R 上的函数()||32x m f x -+=+m 为实数)为偶函数,记()0.2log 3a f =,()5log b f e =,()c f m π=+,则( )11.指数函数性质记忆口诀指数增减要看清,抓住底数不放松; 反正底数大于0,不等于1已表明; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(0,1)点. 2.比较幂值大小的三种类型及处理方法A .c b a <<B .c a b <<C .a c b <<D .a b c <<【参考答案】B【解析】()f x 为偶函数,()()f x f x ∴-=,||||3232x m x m --+-+∴+=+,||||x m x m ∴-+=+;0m ∴=;||()32x f x -∴=+;()f x ∴在[0,)+∞上单调递减,并且0.25(|log 3|)(log 3)a f f ==,5(log )b f e =,()()c f m f ππ=+=550log log 3e π<<<c a b ∴<<.故选:B .3.(2020·浙江高一课时练习)设0.914y =,0.4828y =, 1.5312y -⎛⎫= ⎪⎝⎭,则( )A .312y y y >>B .213y y y >>C .123y y y >>D .132y y y >>【参考答案】D【解析】 1.50.920.9 1.80.4830.481.44 1.35121422,22282,y y y -⨯⨯⎛⎫======⎝== ⎪⎭,因为函数2xy =在定义域上为单调递增函数,所以132y y y >>.故选:D .4.(2020·永安市第三中学高二月考)若关于x 的方程()94340xxa ++⋅+=有解,则实数a 的取值范围是( )A .(,8][0,)-∞-+∞B .(),4-∞-C .[8,4)--D .(,8]-∞-【参考答案】D【解析】由9(4)340x xa ++⋅+=,得443(4)0,(4)3433xxx x a a +++=∴-+=+≥(当且仅当32x =时等号成立),解得8a ≤-故选D5(2020·上海高一课时练习)已知函数2221()2x x f x ++⎛⎫= ⎪⎝⎭,则该函数的单调递增区间是__________.【参考答案】(,1]-∞-【解析】由题得函数的定义域为R . 设2122,()2uu x x v =++=,函数222,u x x =++在∞(-,-1]单调递减,在[1,)-+∞单调递增,函数1()2uv =在其定义域内单调递减,所以2221()2x x f x ++⎛⎫= ⎪⎝⎭在∞(-,-1]单调递增,在[1,)-+∞单调递减.故参考答案为:(,1]-∞-.6.(2020·上海普陀.曹杨二中高一期末)函数12x y =-的单调递增区间为________【参考答案】(,0]-∞【解析】函数12,010221,1x xxy x x ⎧->⎪=⎨⎛⎫-≤⎪ ⎪⎝⎭=⎩-, 根据指数函数单调性可得,函数在(,0]-∞单调递增,在0,单调递减,所以函数12xy =-的单调递增区间为(,0]-∞.故参考答案为:(,0]-∞ 7.(2020·全国高一课时练习)比较下列各题中的两个值的大小. (1)0.10.8-,0.21.25;(2)1ππ-⎛⎫ ⎪⎝⎭,1;(3)30.2-,()0.23-.【参考答案】(1)0.10.20.81.25-<(2)11ππ-⎛⎫> ⎪⎝⎭(3)()0.230.23->-【解析】(1)因为0.10.10.1450.854--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 0.20.251.254⎛⎫= ⎪⎝⎭, 又指数函数54xy ⎛⎫= ⎪⎝⎭为增函数,且0.10.2<,所以0.10.25544⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭,即0.10.20.8 1.25-<. (2)1ππ-⎛⎫ ⎪⎝⎭01πππ=>=,(3)30.2-00.21>=,()()10.25330-=-=<,所以()0.230.23->-.考点四 定点【例4】(2020·浙江高一课时练习)函数()-1=4+x f x a (0a >,且1a ≠)的图象过定点P ,则P 点的坐标为( ) A .(1,5) B .(1,4) C .(0,5)D .(0,4)【参考答案】A【解析】因为xy a =的图象恒过(0,1)点,则1x y a-=的图象恒过(1,1)点,所以()-1=4+x f x a恒过定点()1,5P .故选A .【一隅三反】1.(2019·涡阳县第九中学高二期末)函数()10,1xy a a a =+>≠的图象必经过点( )A .(0,1)B .(1,1)C .()0,2D .(2,2)【参考答案】C【解析】函数x y a =的图象过点(0,1),而函数1x y a =+的图象是把函数x y a =的图象向上平移1个单位,∴函数1x y a =+的图象必经过的点(0,2).故选:C .2.(2019·贵州省织金县第二中学高一期中)函数21()x f x a-=(0a >且1)a ≠过定点( ) A .(1,1) B .1(,0)2C .(1,0)D .1(,1)2【参考答案】D【解析】令12102x x -=⇒=,所以函数21()x f x a -=(0a >且1)a ≠过定点1(,1)2. 3.(2020·宁夏贺兰县景博中学高一月考)函数y=a x ﹣1+2(a >0且a≠1)图象一定过点( )A .(1,1)B .(1,3)C .(2,0)D .(4,0)【参考答案】B 由x ﹣1=0,解得x=1,此时y=1+2=3,即函数的图象过定点(1,3),故选B考点五 图像【例5-1】(2020·广东顺德一中高一期中)函数1(0,1)xy a a a a=->≠的图像可能是( ). A . B .C .D .【参考答案】D 【解析】∵0a >,∴10a>,∴函数x y a =需向下平移1a 个单位,不过(0,1)点,所以排除A,当1a >时,∴101a <<,所以排除B,当01a <<时,∴11a>,所以排除C,故选D. 【例5-2】(2020·浙江高一课时练习)若函数(01,1)xy a a a m =>-≠+的图像在第一、三、四象限内,则( ) A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<【参考答案】B【解析】因为函数xy a =的图像在第一、二象限内,所以欲使其图像在第三、四象限内,必须将xy a =向下移动,因为当01a <<时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限, 所以只有当1a >时,图像向下移动才可能经过第一、三、四象限,故1a >,因为图像向下移动小于一个单位时,图像经过第一、二、三象限,而向下移动一个单位时,图像恰好经过原点和第一、三象限,所以欲使图像经过第一、三、四象限,则必须向下平移超过一个单位, 故11m -<-,0m <,故选:B.【一隅三反】1.(2019·浙江高一期中)函数y x a =+与xy a =,其中0a >,且1a ≠,它们的大致图象在同一直角坐标系中有可能是 ( )A .B .C .D .【参考答案】D【解析】因为函数y x a =+单调递增,所以排除AC 选项;当1a >时,y x a =+与y 轴交点纵坐标大于1,函数xy a =单调递增,B 选项错误;当01a <<时,y x a =+与y 轴交点纵坐标大于0小于1,函数xy a =单调递减;D 选项正确.故选:D2.(2020·全国高一课时练习)在如图所示的图象中,二次函数2y ax bx c =++与函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .【参考答案】A【解析】根据选项中二次函数图象,可知0c ,根据选项中指数函数的图象,可知01b a <<,所以1022b a-<-<, 所以二次函数2y ax bx c =++的对称轴在y 轴左侧,且1,022b x a ⎛⎫=-∈- ⎪⎝⎭, 所以可排除B 、C 、D,只有A 符合题意.故选:A.3.(2020·上海高一课时练习)若函数2xy m =+的图像不经过第二象限,则m 的取值范围是( )A .m 1≥B .1m <C .1m >-D .1m ≤-【参考答案】D【解析】指数函数2x y =过点0,1,则函数2xy m =+过点()0,1m +,若图像不经过第二象限,则10m +≤,即1m ≤-,故选:D4.(2020·内蒙古集宁一中高二期末(理))若直线2y a =与函数|1|(0,1)x y a a a =->≠的图象有两个大众点,则a 的取值范围是___________【参考答案】102⎛⎫ ⎪⎝⎭,【解析】当01,1a a <<>时,做出|1|xy a =-图象,如下图所示,直线2y a =与函数|1|(0,1)x y a a a =->≠的图象有两个大众点时,1021,02a a <<<<. 故参考答案为:102⎛⎫ ⎪⎝⎭,知识改变命运。
高一物理运动的描述知识点总结图物理运动是研究物体运动规律和特性的一门学科。
在高一物理学习中,我们掌握了一些物理运动的描述知识点,下面我将通过总结图的形式来概括这些知识点。
1. 一维运动描述知识点总结图(图中包含了以下知识点)1.1 位移- 定义:位移是指物体在某一段时间内从初始位置到最终位置的变化量。
- 公式:Δs = s₂ - s₁- 单位:米(m)1.2 速度- 定义:速度是指物体在单位时间内运动的位移。
- 公式:v = Δs / Δt- 单位:米每秒(m/s)1.3 加速度- 定义:加速度是指物体在单位时间内速度的改变量。
- 公式:a = Δv / Δt- 单位:米每秒平方(m/s²)2. 二维运动描述知识点总结图(图中包含了以下知识点)2.1 位矢和位矢差- 定义:位矢是指物体的位置相对于参考点的矢量表示。
位矢差是指物体从一个位置到另一个位置的位矢的差值。
- 表示:位矢用粗体字母r表示,位矢差用Δr表示。
2.2 速度矢量和速度矢量差- 定义:速度矢量是指物体在某一时刻的位矢的导数。
速度矢量差是指物体在两个时刻的速度矢量的差值。
- 表示:速度矢量用粗体字母v表示,速度矢量差用Δv表示。
2.3 加速度矢量和加速度矢量差- 定义:加速度矢量是指物体在某一时刻的速度矢量的导数。
加速度矢量差是指物体在两个时刻的加速度矢量的差值。
- 表示:加速度矢量用粗体字母a表示,加速度矢量差用Δa表示。
3. 直线运动和曲线运动描述知识点总结图(图中包含了以下知识点)3.1 直线运动的速度和加速度- 定义:直线运动是指物体沿着一条直线轨迹运动的情况。
直线运动的速度是物体在直线轨迹上的位移与时间的比值。
直线运动的加速度是物体的速度变化率。
- 公式:v = Δs / Δt, a = Δv / Δt3.2 曲线运动的切线速度和切线加速度- 定义:曲线运动是指物体沿着一条曲线轨迹运动的情况。
曲线运动的切线速度是物体在某一时刻沿着曲线轨迹的切线方向的速度。
教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。
第一节:指数函数1、定义:形如 (a >0,a ≠1)的函数叫指数函数其中a 为常量2、性质:(1)图像都经过点(0,1) (2)函数的定义域是R ,值域是 (3)当 ,函数在 内是增函数 当 函数在 内是减函数注意:为什么要规定底数大于0且不等于1呢?3、指数模型:函数模型 叫做指数模型其中(c>0,a>0且a≠1)(1) 当a>1时,叫做指数增长模型; (2) 当0<a <1时,叫做指数衰减模型.注意:(1)指数函数 的底 的取值对函数图像; 及函数单调性的影响;4、指数的运算法则:(1)mn m n aa a +⋅=(m 、n 都是正整数); (2)()m n mna a =(m 、n 都是正整数) (3)()nn na b a b ⋅=, (4)mm n n a a a-=(m 、n 都是正整数,a ≠0)(5) ()nn na ab b =(m 、n 都是正整数,b ≠0)x y a =R +1a >R 01a <<R x y a =a (1)0,0__________;x a x a =>如果当时,0恒等于0x x a ≤当时,_________.没有意义11(2)0,(4),,42x a y x <=-=如果比如这时对于等值时相应的函数值不存在.(3)1,11x a y ===如果是一个常量,无研究的必要.xca y =5、根式的运算性质:① 当n为奇数时, 当n 为偶数时, ② 当n 为任意正整数时, 6、正数的正分数指数幂的意义: (a >0, m , n ∈N*, 且n >1). 注意:(1)分数指数幂是根式的另一种表示形式;(2)根式与分数指数幂可以进行互化.对正数的负分数指数幂和0的分数指数幂的规定: (1) (a >0, m , n ∈N*, 且n >1).(2) 0的正分数指数幂等于0; (3) 0的负分数指数幂无意义. 7、指数函数图像特征:;a a n n =⎩⎨⎧<-≥==).0()0(||a a a a a a n n .)(a a n n=n m nm a a =nm nma a 1=-(对根式的计算)例1、(1)(2)(3)(4)(ba>)(跟踪训练)(1)(2)2(3)55)a-(b-(4)22)3(π(多项根式的计算)例2、(1)(2)324-(跟踪训练)(2)53+(求变量的范围)例3、1,求的取值范围。
课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
⼈教A版必修1指数函数及其性质知识点总结与例题讲解指数函数及其性质知识点总结本节知识点(1)指数函数的概念(2)指数函数的图象和性质(3)指数函数的定义域和值域(4)指数函数的单调性及其应⽤(5)指数函数的图象变换知识点⼀指数函数的概念⼀般地,函数xa y =(0>a 且1≠a )叫做指数函数,其中x 是⾃变量,函数的定义域是R . 1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,xa ⽆意义;若0值,xa ⽆意义,如函数()xy 2-=,当 41,21=x 时,函数⽆意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上⾯的原因,在指数函数的定义中,规定0>a 且1≠a .上⾯的定义,是形式定义. 2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数⼤于0时,指数已经由整数指数推⼴到了实数指数,所以在指数函数的定义⾥⾯,⾃变量的取值范围是全体实数,即函数的定义域为R . 3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有⾮常明显的特征,如下: (1)指数中只有⼀个⾃变量x ,⽽不是含⾃变量的多项式; (2)xa 的系数必须为1,不能是其它的数字,也不能含有⾃变量; (3)底数a 必须满⾜0>a 且1≠a 的⼀个常数.根据上⾯的三个特征,可以判断⼀个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.例1. 已知函数()()x a a x f ?-=32是指数函数,求a 的值. 分析:本题考查指数函数的定义,指数函数的定义有三个特征: (1)指数的位置只有⼀个⾃变量,但不是含⾃变量的多项式; (2)底数是⼀个⼤于0且不等于1的常数;(3)x a 的系数必须为1.解:∵函数()()x a a x f ?-=32是指数函数∴??≠>=-10132a a a ,解之得:2=a . 例2. 已知指数函数()()32--+=a a a y x 的图象过点()4,2,则=a _________.解:由题意可得:()()≠>=--10032a a a a ,解之得:2=a 或3=a .∵函数的图象经过点()4,2 ∴2=a .例3. 若指数函数()x f 的图象经过点()9,2,求()x f 的解析式及()1-f 的值. 解:设函数()x a x f =.∵其图象经过点()9,2,∴2239==a ,∴3=a . ∴()x f 的解析式为()x x f 3=. ∴()31311==--f . 例4. 函数()x a a a y 442+-=是指数函数,则a 的值是【】(A )4 (B )1或3 (C )3 (D )1解:由题意可得:??≠>=+-101442a a a a ,解之得:3=a .∴x y 3=.选择【 C 】.例5. 若函数()xa y 12-=(x 是⾃变量)是指数函数,则a 的取值范围是_________.解:∵函数()xa y 12-=是指数函数∴≠->-112012a a ,解之得:21>a 且1≠a .∴a 的取值范围是?≠>121a a a 且.例6. 若函数()xa a y 32-=是指数函数,求实数a 的取值范围.解:∵函数()xa a y 32-=是指数函数∴≠->-130322a a a a ,解之得:±≠<>213303a a a 或. ∴实数a 的取值范围是?±≠<>213303a a a a 且或.知识点⼆指数函数的图象和性质⼀般地,指数函数xa y =(0>a 且1≠a )的图象和性质如下表所⽰:指数函数函数值的特点:(1)当10<<a 时,若0<x="" ,则恒有1="" bdsfid="213">y ;若0>x ,则恒有10<a 时,若0x ,则恒有1>y . 1. 指数函数图象的画法。
学科辅导教案―指数函数教学目的1指数函数的概念2 指数函数的图象及性质 重点难点1指数函数的图象及性质 2指数函数的实际应用教学内容1、定义:函数)10(≠>=a a a y x,且叫做指数函数,其中x 是自变量,它的定义域为R .判断一个函数是否为指数函数的依据:是否为形如)10(≠>=a a a y x,且的函数,其中,系数为1;底数a 满足a>1且a ≠0;指数是x ,而不是x 的函数.[例]下列函数中,是指数函数的是____________________.(1)xy 4=;(2)4x y =;(3)xy 4-=;(4)xx y =;(5))1,21()12(≠>-=a a a y x且;(6)x y )2(=;(7)34+=x y ;(8)14+=xy .[巩固]函数xa a a x f )77()(2+-=是指数函数,求实数a 的值.画出函数y =x)21(、y =x )31(、y =x 2、y =x3的函数图象并总结.1、指数函数)10(≠>=a a a y x,且的图象和性质:知识模块1 指数函数知识模块2 指数函数的图象和性质精典例题透析图象1y=a x (0<a <1)yxO1y=a x (a >1)yxO定义域 R 值域(0,+∞)性质(1)过定点(0,1),即x =0时,y =1(2)在R 上是减函数 (2)在R 上是增函数 (3)x>0时,0<y<1x<0时,y>1(3)x>0时,y>1x<0时,0<y<1(4)对于同一个a ,xa y =与xay -=的图象关于y 轴对称(5)a 接近于0,x y a =越靠近y 轴(5)a 越大,x y a =越靠近y 轴[例1] 已知指数函数)10()(≠>=a a a x f x,且的图象过点(3,27),求f(0),f(1) ,f(-3)的值.[巩固] )10()(1≠>=+a a ax f x ,且比过定点________.[例2]求下列函数的定义域与值域: (1)xy 12=;(2)xy -=3)21(;(3)91312-=-x y[巩固]已知函数34)(,1)(2-+-=-=x x x g e x f x,若有f(a)=g(b),则b 的取值范围是______________.[例3]下图是指数函数:精典例题透析(1)7.08.03,3;(2)ππe,3;(3)3.37.299.0,01.1.[巩固]设4.06.04.04.0,4.0,6.0===cba,则a,b,c的大小关系是__________.1、指数型函数的图象平移:xay=b x ay+=xay=b x ay-=xay=bay x+=xay=bay x-=2、关于指数函数图象的平移和过定点指数函数)1(≠>=aaay x,且的图象过定点(0,1),由函数图像平移知识可知,函数)1(≠>+=+aakay h x,且的图象是由函数)1(≠>=aaay x,且的图象向左(h>0)或向右(h<0)平移|h|个单位长度,再向上(k>0)或向下(k<0)平移|k|个单位长度,所以,函数)1(≠>+=+aakay h x,且的图象恒过定点(-h,k+1).3、指数函数图象的对称变换(1)函数x ay=和xay-=的图象关于y轴对称;(2)函数x ay=和x ay-=的图象关于x轴对称;(3)函数x ay=和xay--=的图象关于原点对称;[例1]函数b x axf-=)(的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b>0B. a>1,b<0C. 0<a<1,b>0D. 0<a<1,b<0[巩固1]函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数baxg x+=)(的大致图像是()[巩固2]若函数)1,0(1≠>-+=aabay x的图象经过第二、三、四象限,则a,b的取值范围分别是________________. [例2] 函数)1,0(12≠>+=-aaay x的图象必过定点_____________.知识模块3 指数函数的图象平移向左平移b(b>0)个单位向右平移b(b>0)个单位向上平移b(b>0)个单位向下平移b(b>0)个单位精典例题透析。
指数函数指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()xf c 的大小关系是_____.分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内.解:∵(1)(1)f x f x +=-,∴函数()f x 的对称轴是1x =.故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x xf f >.综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例3 求函数y = 解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞.令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤.∴011t -<≤,即01y <≤. ∴函数的值域是[)01,. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.4.最值问题例4 函数221(01)x x y aa a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=.解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤, ∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭, 解得13a =或15a =-(舍去),∴a 的值是3或13. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.5.解指数方程例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程的解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.6.图象变换及应用问题例6 为了得到函数935x y =⨯+的图象,可以把函数3x y =的图象( ).A .向左平移9个单位长度,再向上平移5个单位长度B .向右平移9个单位长度,再向下平移5个单位长度C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象的平移规律进行判断. 解:∵293535x x y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+的图象,故选(C ). 评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数的大小:(1)若,比较 与 ; (2)若,比较 与 ; (3)若,比较 与 ; (4)若,且 ,比较a 与b ; (5)若 ,且 ,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有.因若 ,则 .又 ,故 ,这样 .又因 ,故 .从而 ,这与已知矛盾. (5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故.从而 ,这与已知 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2曲线分别是指数函数 , 和 的图象,则 与1的大小关系是 ( ).(分析:首先可以根据指数函数单调性,确定 ,在 轴右侧令,对应的函数值由小到大依次为 ,故应选 . 小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.求最值3 求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x 的定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1, ∴y =231-x 的值域为{y |y>0且y ≠1}.(2)y =4x +2x+1+1的定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1的值域为{y |y>1}.4 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x 的最大值和最小值解:设t=3x ,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
高一物理运动的描述知识点|指数函数例题
1、参考系:描述一个物体的运动时,选来作为标准的的另外的
物体。
运动是绝对的,静止是相对的。
一个物体是运动的还是静止的,都是相对于参考系在而言的。
参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。
选择不同的物体作为参考系,可能得出不同的结论,但选择
时要使运动的描述尽量的简单。
通常以地面为参考系。
2、质点:
①定义:用来代替物体的有质量的点。
质点是一种理想化的模型,是科学的抽象。
②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。
且物体能否看成质点,要具体问题
具体分析。
[关键一点]
(1)不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问
题的影响可以忽略不计时,物体可视为质点.
(2)质点并不是质量很小的点,要区别于几何学中的“点”.
3、时间和时刻:
时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段
线段来表示,它与过程量相对应。
4、位移和路程:
位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;
路程是质点运动轨迹的长度,是标量。
5、速度:
用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为v=Δx/Δt,方向与位移的方向相同。
平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。
瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量,其定义式为。
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
易错现象
1、忽略位移、速度、加速度的矢量性,只考虑大小,不注意方向。
2、错误理解平均速度,随意使用。
3、混淆速度、速度的增量和加速度之间的关系。