函数极限单侧极限的单调有界定理(老黄学高数第99讲)
- 格式:ppt
- 大小:476.50 KB
- 文档页数:9
考研数学单侧极限和夹逼定理的知识点考研数学单侧极限和夹逼定理的知识点1为什么会有单侧极限这种极限计算方法,是因为在x→∞,x→a包括x→+∞和x→-∞,x→a+和x→a-,而不同的趋近,极限趋近值也不相同,因此需要分别计算左右极限,根据极限的充要条件来判断极限是否存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢?第一:e∞,arctan∞,因为x趋近于+∞,e∞→+∞,arctan∞→π/2,x趋近于-∞,e∞→0,arctan∞→-π/2;第二:绝对值;第三:分段函数在分段点处的极限。
有个这几条我们就可以在计算极限时知道什么情况下分左右极限计算,什么时候正常计算。
夹逼定理分为函数极限的夹逼定理和数列极限的夹逼定理。
要明确夹逼定理是将极限计算出来的方法,而不是用来判断极限是不是存在,以数列极限为例,即n→∞,yn→?,若存在n>0,当n>n时,找到xn,zn,且xn→a,zn→b,a≠b,则不能说明yn极限不存在,函数极限也是一样的。
这一点一定要注意,防止理解偏差。
单调有界收敛定理主要应用是解决数列极限计算问题,一般情况下,题目的类型是固定的,例如:已知x1=a,xn=f(xn-1),n=1,2,.....,求数列{xn}的极限。
当看到这种类型的题目,我们要先知道可以应用于单调有界收敛定理来证明,也就是要证明两点,第一:证明数列有界;第二:证明数列单调。
综合以上两点就可以依据该定理证明数列极限存在,再将xn=f(xn-1)两边同时取极限,即可以得到数列极限的值。
上述几种方法原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,拓宽自己的解题能力。
很多同学都会有这样的感觉,为什么我就是想不到这样解题呢?像这样的'问题在现阶段出现是正常的,因为我们要通过复习来解决问题,所以我们只要认真对待就可以了,首先接受这种方法,然后理解这种方法,最后看看这个解题思路跟题目中的哪个条件是紧密联系在一起的,弄清楚并记住,下次如果做题时遇到了这个条件,我们是不是就可以尝试的做做,时间久了自然而然的就有了自己的解题思路。
1.4.1 x 趋于无穷时的函数极限从前面关于数学分析产生的背景可以看到,为了从近似值得到精确值,还需要一种新的方法,这个方法就是极限方法,极限概念是数学分析有别于初等数学的重要标志,极限方法是数学分析最重要的研究方法,这一讲将讨论函数极限的基本概念.函数极限概念有以下几类:一、x 趋于 时的函数极限二、x 趋于 时的函数极限三、单侧极限0x.sin时的变化趋势当观察函数∞→xxx一、自变量趋向无穷大时函数的极限.sin时的变化趋势当观察函数∞→xxx一、自变量趋向无穷大时函数的极限.sin时的变化趋势当观察函数∞→xxx一、自变量趋向无穷大时函数的极限.sin时的变化趋势当观察函数∞→xxx一、自变量趋向无穷大时函数的极限.sin时的变化趋势当观察函数∞→xxx一、自变量趋向无穷大时函数的极限.sin时的变化趋势当观察函数∞→xxx一、自变量趋向无穷大时函数的极限x 趋于例如 函数arctan ,y x 当时,∞+xyπ210203040O 0.51无限接近x arctan π2一、x 趋于∞时的函数极限设函数定义在)(x f [)∞+,a A)(x f xy O 为极限.+∞ 当 x 趋于 时以A 也无限地接近A ,我们就称无限远离原点时,函数f (x )上,当 x 沿着 x 轴的正向记为lim ()x f x A →+∞=)(x f上述给出的极限定义是描述性的,如何用数学的语言刻画极限定义?由定义lim ()x f x A →+∞=当 x 沿着 x 轴的正向无限远离原点时,函数f (x )无限地接近A.只要 x 充分大就有函数f (x )无限地接近A.lim ()x f x A →+∞=当 x 沿着 x 轴的正向无限远离原点时,函数f (x )无限地接近A.只要 x 充分大就有函数f (x )无限地接近A.当时,有()f x A ε-<x M>0,M ∃>0,ε∀>记为或者lim ()x f x A →+∞=).()(+∞→→x A x f 定数, 若对于任意正数 存在正数使得,0>ε,)(a M ≥,)(ε<-A x f A x x f 时以趋于当∞+)(则称函数.为极限,时M x >当定义1[),f a +∞设为定义在上的一个函数. A 为④()A f x A εε有-<<+lim ()x f x A →+∞=的几何意义③x M >使当时x A ε-A ε+①任意给定ε>M ②存在M a >x AyO alim ()x f x A →+∞=当时,有问题:1.定义中的有何作用?2.定义中的M 存在性与哪些因素有关?一旦存在,M 唯一吗?()f x A ε-<x M>0,M ∃>0,ε∀>0,ε∀>所以(由定义1),例1 证明.01lim =+∞→xx 任给取证,0>ε,1ε=M ,时当M x >,10)(ε<=-x x f .01lim =+∞→x x例2.2arctan lim π=+∞→x x 证明证任给),2(0πεε<>.所以(由定义1)πlim a rcta n .2x x →+∞=时,当M x >严格增,因为x arctan ππ()arctan 22f x x -=-ππ().22εε=--=tan()2取M πε=-arctan 2Mπ<-,)(ε<-A x f 定义2(],,)(上定义在设b x f ∞-.是一个常数A ,0>ε,0>M 存在若对于任意记为A x x f 时以当-∞→)(,为极限则称A x f x =∞-→)(lim 或).()(-∞→→x A x f ()当时x M b <-<为极限,时以当则称A x x f ∞→)(记为,)(ε<-A x f 定义3,)()(内的某个邻域定义在设∞∞U x f 存在 当,0>M ,0>ε.为一个常数若对于任意时x M >A x f x =∞→)(lim 或).()(∞→→x A x f A证 对于任意正数),10(<<εεln x M ε<-=当时所以例3求证lim e 0.xx →-∞=.e 0e ε<=-x x .0e lim =-∞→xx =-ln ,M ε取例4求证.011lim 2=+∞→xx 22110,1x xε-<<+所以证 对于任意正数 ε , 可取.011lim 2=+∞→xx ,1M =>,x M 当时有从定义1、2 、3 能否得到下面的结论?若能,如何证明?.)(lim )(lim A x f x f x x ==∞+→∞-→∞定义在的一个邻域内,则)(x f 由这个结论讨论A x f x =∞→)(lim 的充要条件是:的存在性limarctan x x →∞02.1.2趋于时的函数极限定义x xlim ()x f x A →∞=前面几讲,我们给出了极限:lim (),x f x A →+∞=lim (),x f x A →-∞=的定义.自然的问题:当自变量趋于定点时的极限 如何定义?在函数极限中还需要考虑在一点处的极限, ,0()(0),0x x f x a a x ≠⎧=≠⎨=⎩ax y O一、 趋于 时的函数极限x 0x 如设函数 f (x ) 在点 x 0 的某空心邻域 内有定义. 满足:)(0x U当无限接近于 时, f (x ) 无限接近于常数 A .)(0为极限时以当A x x x f →记为则称0lim ()x x f x A→=或者.)()(0x x A x f →→x 0x,)(ε<-A x f 时,有00x x δ<-<)(0为极限.则称xf→x时以当Ax平面上以 y =A 为中心线, 宽为 的窄带, ε2可以找到,0>δ使得曲线段),(),(0δx U x x f y ∈= 函数极限的几何意义如图, 0,ε>任给对于坐标落在窄带内.ε+=A y A y =ε-=A y O xyδ-0x 0x δ+0x故只要所以,)21(00202x x x x x -+≤-.2100x x x +<-ε2 0xxxx =→.lim20例2求证:0(1)lim sin sin ;x x x x →=注 在例1中, 我们将所考虑的式子适当放大, 不是“最佳”的, 但这不影响我们解题的有效性. 其目的就是为了更简洁地求出 δ , 或许所求出的 δ00(2)lim cos cos .x x x x →=故πsin tan0.2 x x x x⎛⎫<<<<⎪⎝⎭00sin sin 2cossin22x x x x x x +--=0,x x ε≤-<.sin sin lim 00x x x x =→同理可证:.cos cos lim 00x x x x =→所以在上面例题中,需要注意思考以下问题:的存在性与哪些因素有关? 换句话说, 1. 对于δ对于固定的,ε不同的方法是否会得出不同的δ ? 对于求出的不同的δ ,是否有必要区分哪一个更好?数是否都可以充当这个角色?3. 正数ε是任意的,一旦给出,它就是确定的常数., 那么比它更小的正是不惟一的, 一旦求出了 δδ.2有时为了方便,需要让 ε 小于某个正数,这样做是否合理?是否也能满足要求?一旦对这样的 ε 能找到相应的 δ , 那么对更大的 ε , 这个 δ第二单元 函数极限2.1.3 函数极限的性质.)(000x x x x 趋向于的右侧又可以从>,时在考虑)(lim 0x f x x →x 既可以从 x 0)(0x x <的左侧处只能考虑单侧极限.2()11f x x x =-=±在⎪⎩⎪⎨⎧<=>-=000,1,0,1sgn x x x x||,f x A ε-<()则称 A 为函数 f 当 为了方便起见,当记作有时记时,有时的左(右)00x x x x -+→→()定义1 00()(,)(,)f x U x U x ηη-+()设在有定义, A 为常数. 若对于任意正数ε ,,)(存在正数ηδδ<0+0lim lim ()().()x x x x f f x A x A -→→==0000()x x x x δδ<-<<-<00(0)lim ().x x f x f x -→-=极限,00(0)lim (),x x f x f x +→+=由定义 1,不难得到下列结论:.)(lim )(lim 00A x f x f x x x x ==-+→→:)(lim 0的充要条件是A x f x x =→在前面的讨论中引进的六种类型的函数 函数极限的性质质与证明,只要相应作一些修改即可.证明这些性质,至于其它类型的性极限,它们都有哪些性质呢?这里仅以六种极限中的某一种,0lim ()x x f x A →=为例如以定理2.1.1 ( 唯一性 )证 不妨设 以及A x f x x =→)(lim 0.)(lim 0B x f x x =→由极限的定义,对于任意的正数,,1δε存在正数)(lim 0x f x x →存在, 则此极限唯一.若0lim ()x x f x A →=的基本性质二、2,δfx-B≤xfABA.-|)(||)(|-+|ε<|由ε的任意性,推得A = B.这就证明了极限是唯一的.定理 2.1.2(局部有界性) 证时,当存在取δδε<-<>=||0,0,10x x .1|)(|<-A x f .1|||)(|+<A x f 由此得,)(lim 0A x f x x =→若上在)()(0x U x f ,)(0x U 则存在有界.这就证明了 在某个空心邻域 上有界.),(0δx U )(x f ε+=A y A y =ε-=A y Ox y δ-0x 0x δ+0x的结论矛盾吗?定理2.1.3(局部保号性).|)(|ε<-A x f 有时,当存在δδ<-<>||0,00x x 证 不妨设 则存在使得对一切有若0lim ()()或x x f x A r r →=><0(), x U x ∈,,取A r A r ε>=-0(), U x ()(()).或f x r f x r ><().f x A r ε>-=由此证得定理 2.1.4(保不等式性) )(lim )(lim 00x g x f x x x x →→与设则内有且在某邻域都存在,)()()(,0x g x f x U ≤ ).(lim )(lim 00x g x f x x x x →→≤证 若时, 有由局部保号性,存在正数00||,当x x δ<-<取,:满足r A r B >>0,δ>00lim ()lim (),x x x x f x A g x B →→=>=()();f x r g x >>。