中心对称图形的定义 常见图形有哪些
- 格式:docx
- 大小:35.49 KB
- 文档页数:1
中心对称和中心对称图形关键信息项:1、中心对称和中心对称图形的定义2、中心对称和中心对称图形的性质3、中心对称和中心对称图形的判定方法4、常见的中心对称图形举例5、中心对称和中心对称图形在实际生活中的应用11 中心对称的定义在平面内,如果把一个图形绕着某个点旋转 180°后,能与另一个图形重合,那么就说这两个图形关于这个点成中心对称,这个点叫做它们的对称中心。
111 中心对称图形的定义如果一个图形绕着一个点旋转 180°后,能够与自身重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
12 中心对称的性质121 中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分。
122 中心对称的两个图形是全等图形。
13 中心对称图形的性质131 对称中心平分中心对称图形内通过该点的任意直线。
132 中心对称图形上每一对对称点所连成的线段都被对称中心平分。
14 中心对称的判定方法141 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
142 如果两个图形的对应点到某一点的距离相等,并且对应点的连线都经过该点且被该点平分,那么这两个图形关于该点成中心对称。
15 中心对称图形的判定方法151 如果一个图形绕着某一点旋转 180°后能与自身重合,那么这个图形就是中心对称图形。
152 如果一个图形上的每一对对应点所连成的线段都被某一点平分,那么这个图形就是中心对称图形。
16 常见的中心对称图形举例161 平行四边形:包括矩形、菱形、正方形等。
162 圆形:绕圆心旋转 180°后能与原来的图形重合。
163 正六边形:旋转 180°后能与原图形重合。
17 中心对称和中心对称图形在实际生活中的应用171 在建筑设计中,许多建筑的结构和布局采用了中心对称的形式,以达到美观和平衡的效果。
172 在图案设计中,中心对称图形常常被运用,创造出富有对称美感的作品。
什么是中心对称图形中心对称:在平面内,把一个图形绕着某个点旋转 180° ,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称 (Central of symmetrygraph),这个点叫做它的 对称中心(Center of symmetry ),旋转180°后重合的两个点叫做 对 称点(corresponding points )。
理解中心对称的定义要抓住以下三个要素: (1 )有一个对称中心 一一点; (2 )图形绕中心旋转 180° ; (3)旋转后两图形重合. 中心对称的性质:连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分 中心对称图形:在平面内,把一个图形绕着某个点旋转 180。
,如果旋转后的图形能与原来的图形重合,那么这个图形叫做 中心对称图形,这个点叫做它的 对称中心.旋转180°后重合的两个点叫做对应点(corresp onding poi nts)。
① 对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分 (对称点在中心对称图形中)。
② 成中心对称的两个图形全等。
③ 中心对称图形上每一对对称点所连成的线段都被对称中心平分。
区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图 形。
中心对称图形常见图形常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。
正偶边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。
反比例函数的图像双曲线是以原点为对称中心的中心对称图形什么是轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。
中心对称与中心对称图形知识点复习:必备的初三上册数学学好知识就需要平时的积累。
知识积累越多,掌握越熟练,查字典数学网编辑了中心对称与中心对称图形知识点复习:必备的初三上册数学,欢迎参考!1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
3.中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
三、轴对称与中心对称的区别与联系:轴对称中心对称有一条对称轴——直线有一个对称中心——点图形沿对称轴对折(翻折180o)后重合图形绕对称中心旋转180 o后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分四、几种常见的轴对称图形和中心对称图形:轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
五、坐标系中的轴对称变换与中心对称变换:点P(x,y)关于x轴对称的点P1的坐标为(x,-y),关于y轴对称的点P2的坐标为(-x,y)。
16章轴对称图形和中心对称图形轴对称1.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。
2.如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。
(对于一个图形来说)3.把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。
这条直线就是对称轴。
两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。
(对于两个图形来说)4.轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。
中心对称5.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
6.于中心对称的两个图形是全等形。
7.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
8.关于中心对称的两个图形,对应线段平行(或者在同一直线上)垂直平分线9.经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
垂直平分线,简称“中垂线”。
10.垂直平分线垂直且平分其所在线段。
11.垂直平分线上任意一点,到线段两端点的距离相等。
12.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
13.角平分线上的点到这个角的两边的距离相等。
14.到角的两边距离相等的点在这个角的角平分线上。
1st17章特殊三角形等腰三角形及等边三角形1.有两边相等的三角形是等腰三角形。
2.等腰三角形的两个底角相等(简写成“等边对等角”)。
等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3.三边都相等的等腰三角形是等边三角形。
4.等边三角形的三个角都相等,并且每个角都为60°,5.如果一个三角形有两个角相等,那么这个三角形是等腰三角形。
中心对称图形知识点总结和重难点精析中心对称图形是一种常见的几何形态,拥有独特的性质和作图方法。
本文将介绍中心对称图形的定义、性质、作图方法和应用,并针对重难点进行精析,帮助同学们更好地理解和掌握这一知识内容。
一、中心对称图形定义中心对称图形是指在平面内,把一个图形绕着一个定点旋转180度,能与自身重合的图形。
这个定点称为对称中心。
中心对称图形包括旋转对称图形和镜面对称图形,它们都是中心对称图形的特殊情况。
二、中心对称图形的性质中心对称图形的对称中心是对称点连线的中点。
中心对称图形对应的两个部分到对称中心的距离相等。
中心对称图形上对应点的连线经过对称中心,且被对称中心平分。
三、中心对称图形的作图方法直接作图法:对于一些比较简单的中心对称图形,我们可以直接根据定义,通过观察和推理得到其对称中心和对称点,从而完成作图。
代数法:对于一些比较复杂的中心对称图形,我们可以运用代数的相关知识,如坐标轴的变换等,来计算出对称点的坐标,从而完成作图。
几何法:对于一些特殊的中心对称图形,我们可以运用几何的相关知识,如全等三角形、平行四边形等,通过构造和计算得到对称点或对称中心,从而完成作图。
四、中心对称图形的应用中心对称图形在生活中的应用非常广泛,如机械设计、建筑结构、艺术设计和商标设计等。
例如,在机械设计中,一些齿轮和涡轮的形状是中心对称图形,因为这样的设计可以保证它们在运转过程中平稳、顺畅;在建筑结构中,许多建筑的平面图是中心对称图形,因为这样的设计可以增强建筑物的稳定性和美观性;在艺术设计,例如商标设计中,一些商标的图案是中心对称图形,因为这样的设计可以增强商标的辨识度和美观性。
五、重难点精析确定对称中心:确定一个中心对称图形的对称中心是作图的关键。
同学们需要学会观察和分析图形中隐藏的对称特征,如特殊点、平行线等,从而确定对称中心。
作图方法选择:对于不同复杂程度的中心对称图形,需要灵活选择作图方法。
直接作图法适用于简单图形,代数法和几何法适用于复杂图形。
什么叫中心对称和中心对称图形?中心对称和中心对称图形,这也是两个有联系的概念。
中心对称是指:对于两个几何图形,如果连结它们的对应点之间的线段的中点都和某一定点重合,那么这两个图形就叫中心对称,这一定点,叫做对称中心。
中心对称图形是指:如果绕着一个定点旋转180°后,两个图形中的每一个能够与另一个原来的位置互相重合,那么,这个图形叫做以这个定点为对称中心的中心对称图形。
如图:图中的三角形A'B'C'绕着定点O旋转180°后,与三角形ABC的原来位置互相重合,因此,三角形 ABC与三角形 A'B'C'是以 O点为对称中心的中心对称图形。
除此之外,如果一个图形绕着某一点旋转180°后,能够和原来图形本身位置重合,就称这个图形为中心对称图形。
这一点叫做对称中心。
以平行四边形为例:图中的四边形ABCD是平行四边形,绕着对角线交点O旋转180°后,能够和原来图形位置重合,因此,平行四边形是以对角线交点O为对称中心的中心对称图形。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
很多同学在刚学习几何的时候对几何定义都有一种学起来无从下手的而感觉,那么中心对称指的是什么?
中心对称图形
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形等。
中心对称的性质
1、对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分。
2、成中心对称的两个图形全等。
3、成中心对称的两个图形上每一对对称点所连成的线段都被对称中心平分。
中心对称和轴对称的区别
一、性质不同
中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合;
轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合。
二、定理不同
对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分。
成中心对称的两个图形上每一对对称点所连成的线段都被对称中心平分。
如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。
如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
以上就是中心对称图形的相关信息,希望对大家有所帮助。