当前位置:文档之家› 点集拓扑练习题

点集拓扑练习题

点集拓扑练习题
点集拓扑练习题

点集拓扑练习题

一、选择题(每题2分,共20分)

1.已知集合{}X a b c d =,,,,下列集族中,( )是X 的拓扑. A {{}{b c}}T X a b φ=,,,,, B {{}{b c}{c d}}T X a φ=,,,,,, C {{}{a b c}}T X a b φ=,,,,,, D {{}{b c d}}T X a b φ=,,,,,,

2.已知集合{}X a b c d =,,,,拓扑{{}}T X a c φ=,,,,{}A a c =,,则A =( )

A φ

B X

C {c}a ,

D {c d}a ,,

3.已知集合{}X a b c d e =,,,,,拓扑{{}{b},{}}T X a a a b c d φ=,,,,,,,,{}A a b c =,,,则o A =( )

A φ

B {}a

C {}a ,b

D {}a b c ,,

4.已知集合{}X a b c d =,,,,拓扑{{}{b }}T X a c d φ=,,,,,,则X 的既开又闭的非空真子集的个数为( )个.

A 1

B 2

C 3

D 4

5.设X 是一个拓扑空间,A B ,是X 的子集,则下列关系中不正确的是( ) A ()()()d A B d A d B = B A B A B =

C ()()()d A B d A d B =

D A A =

6.已知{}X a b c =,,上的拓扑T {{}}X a b φ=,,,,则点a 的邻域个数( )

A 1

B 2

C 3

D 4

7.在实数空间中,有理数集Q 的闭包Q 是( )

A φ

B Q

C R Q -

D R

8.拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为与它同胚的任何一个拓扑空间所具有,则称这个性质是一个 ( )

A 拓扑不变性质

B 在连续映射下保持不变的性质

C 可商性质

D 可积性质

9.设12X X ,是连通空间,则积空间12X X ?是( )

A 离散空间

B 不连通空间

C 平庸空间

D 连通空间

10.整数集Z 是实数空间R 的一个 ( )

A 不连通子集

B 连通子集

C 开集

D 以上均不对

二、填空题(每题4分,共20分)

1.已知集合{}X a b c d =,,,,{{b c}{c}{d}}a B =,,,,,则X 的以B 为基的拓扑为=T _______________________________.

2.已知集合{}X a b c d =,,,,{{}{b c}{c d}}S a =,,,,,则X 的以S 为子基的拓扑为=T ________________________________.

3.已知集合{}X a b c d e =,,,,,拓扑{{}{b }{}T X a a c d e φ=,,,,,,,,{}Y a b c d =,,,,则Y 的相对拓扑|Y T =________________________________.

4.设X Y ,是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的像集()f U 是Y 中的一个闭集,则称映射f 是一个___________.

5.若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个_____________.

三、解答题(共20分)

设集合{}X a b c d =,,,,拓扑{{}{,}}T X a a b φ=,,,,{}A a b c =,,,求集合A 的内部,边界,闭包.

四、证明题(每小题20分,共40分)

1.设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射,证明:()f X 是Y 的一个连通子集.

2.设X 是一个1T 空间,证明:X 的每一个单点集是闭集.

点集拓扑学

点集拓扑学 注明:这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。 点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后的那些不变性和不变量,比如联通性,可数性,分离性等。其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。这种弹性变形指的是拓扑学中的同柸,相近点变相近点的连续概念。拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。 集合概念的发展历程: 集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识在现实中得到了广泛的运用。 集合的定义: ① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。 ② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来构成一个群体称为集合,这种对象可能是独立的个体或者群体,也可能对象之间本身就有包涵关系的集合但不相同或相等,当我们把所有对象集中在一起称为全集或者幂集族。全集的一部分称为子集,幂集的一部分称为子集族。集合一般用大写字母表示,其中元素用小写。 集合的表示方式: 1枚举法 一般在大括号里罗列出集合的元素,如下: {}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,, c b a 2文字语言表述法 用文字语言来表达构成集合的要求: 某个班级的全体男生,一盒象棋,一箱牛奶等。 3图示法 4数学关系描述法或者数学语言描述法 用数学关系式来抽象表达构成集合的要求,我们平时研究的最多的也就是这种表达方法: (){}(){}x P X x x x P X x ,∈∈或者 对集合的描述必须合理,要不然会出现悖论比如:理发师只给不给自己理发的人理发,这种表述就不合理,导致理发师傅是给自己理发还是不给自己理发都是矛盾,这句话应该理解为理发师只给除自己以外不给自己理发的人理发。 又比如:

《点集拓扑学》复习题

《点集拓扑》复习题 一、概念叙述 1、拓扑空间 2、邻域、邻域系 3、集合A 的凝聚点 4、闭包 5、基 子基 6、子空间 7、(有限)积空间 8、隔离子集 9、连通集 10、连通集 11、连通分支 12、局部连通空间 13、1A 空间 14、2A 空间 15、可分空间 16、Lindeloff 空间 17、i T 空间(1,2,3,4i =) 18、正则空间 19、正规空间 20、紧致空间 21、可数紧空间 22、列紧空间 23、序列紧空间 24、局部紧空间 二、判断题 1、有限集不可能有聚点 ( ) 2、拓扑空间X 的子集A 是闭集的充要条件是A A = ( ) 3、如果A B ?≠?,则A B A B ?=? ( ) 4、设Y 是拓扑空间X 的子空间,A 是Y 的子集,则A 在Y 中的导集是A 在X 中的导集与Y 的交。 ( ) 5、若:f X Y →是同胚映射,则()f X Y = ( ) 6、离散空间中任意子集的导集都是空集 ( ) 7、拓扑空间中每个连通分支都是既开集又是闭集 ( ) 8、度量空间必是2A 空间 ( ) 9、在l R 中,(],a b 是开集 ( ) 10、映射:f X Y →是连续映射的?若拓扑空间X中序列{}i x 收敛于 x X ∈,则扑拓空间Y中相应序列(){}i f x 收敛于()f x ( ) 11、设X为拓扑空间,C为连通分支,Y是X的一个连通子集,则Y C ? ( ) 12、2A 空间必为可分空间 ( ) 13、正则且正规空间必为0T 空间 ( ) 14、紧致空间的闭子集必为它的紧致子集 ( ) 15、设X是一个拓扑空间,A X ?,则点x 是集合A的一个凝聚点 ?在{}A x -中有一个序列收敛于x ( ) 16、度量空间也是拓扑空间 ( ) 17、如果一个空间中有每个单点集都是闭集,那么这个空间必是离散空间 ( ) 18、拓扑空间X 是一个连通空间当且仅当X 中不存在既开又闭的非空真子集. ( ) 19、若拓扑空间中的子集A 是连通集,则它的闭包A 也是一个连通集。

点集拓扑学练习题第二章答案

练习(第二章)参考答案: 一.判断题(每小题2分) 1.集合X 的一个拓扑有不只一个基,一个基也可以生成若干个拓扑( × ) 2.拓扑空间中任两点的距离是无意义的.( √ ) 3.实数集合中的开集,只能是开区间,或若干个开区间的并.( × ) 4.T 1、T 2是X 的两个拓扑,则T 1UT 2是一个拓扑.( × ) 5.平庸空间中任一个序列均收敛,且收敛于任一个点。( √ ) 6.从(X ,T 1)到(X ,T 2)的恒同映射必是连续的。( × ) 7.从离散空间到拓扑空间的任何映射都是连续映射( √ ) 8.设12, T T 是集合X 的两个拓扑,则12 T T ?不一定是集合X 的拓扑( × ) 9.从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( √ ) 10.设A 为离散拓扑空间X 的任意子集,则()d A φ= ( √ ) 11.设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( × ) 12.设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( √ ) 二.填空题:(每空格3分) 1、X=Z +,T={Z 1,Z 2,…Z n …},其中 Z n ={n,n+1,n+2,…}, 则包含3的所有开集为 321,,Z Z Z 包含3的所有闭集为 ,...,,,/ 6/5/41Z Z Z Z 包含3的所有邻域为 3321}1{,,,Z Z Z Z ? 设A={1,2,3,4,5} 则A 的导集为{1,2,3,4} ,A 的闭包为{1,2,3,4,5}

2、设X 为度量空间,x ∈X,则d ({x})=? 3、在实数空间R 中,有理数集Q 的导集是____ R ____. 4、)(A d x ∈当且仅当对于x 的每一邻域U 有 ; 答案: ({})U A x φ?-≠ 5、设A 是有限补空间X 中的一个无限子集,则()d A = ; A = ; 答案:X ;X 6、设A 是可数补空间X 中的一个不可数子集,则()d A = ; A = ; 答案:X ;X 7、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ; 答案:{2} 三、单项选择题(每题2分) 1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T ③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③ 2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( ) ①φ ② X ③ {}b ④ {,,}b c d 答案:④ 3、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( ) ①φ ② X ③ {,}a b ④ {,,}b c d 答案:②

点集拓扑学教学大纲

《点集拓扑学》教学大纲 一、课程的教学目的和任务 本课程为数学系师范成人专升本选修课程,课程内容为点集拓扑学的一些基本概念、基本理论和基本方法。通过本课程的学习要求学生在掌握基本内容和基本方法的前提下,能以一般的观点总结和提高在一、二年级所学过的课程中有关的概念、理论和方法,进一步培养和提高学生的抽象思维和逻辑推理能力,同时,为进一步学习拓扑学、几何学、泛函和微分方程等课程提供所需用的最基础的知识。本课程总课时为72学时,习题课及机动课时约占总课时的四分之一。由于点集拓扑学是一门理论性强且较为抽象的课程,同时作为几何学的一个分支它的许多概念又有直观的几何背景,因此在教学中特别要注意概念的引入、具体例子和反例的选配,以便更好地阐明各个基本概念的含义从而使学生能准确把握各个基本概念,同时搞清这些例子和反例也是加深理解抽象概念的重要途径之一。带*号的内容可根据学生实际情况自由舍取。 二、课程内容及学时分配建议 第一章集合论的基本知识*12学时这部分内容是研究后续内容的一个知识平台,应该熟练掌握。如果学生对集合论内容熟悉且知识够用可采用复习方式,否则应采用讲授方式。 1.集合的基本概念及运算(包括集族的概念和运算) 2.关系、等价关系和映射 3.可数集与不可数集、基数 4.选择公理* 第二章拓扑空间和连续映射20学时这一部分重点在于建立拓扑结构,理解拓扑空间的概念,掌握拓扑空间的基本性质,为进一步学习拓扑性质打好基础。在教学中应多给一些具体的例子从具体到抽象并通过度量空间的模形来突破抽象空间建立的难点。 1. 度量空间 (1)度量空间的定义和例子 (2)连续函数的ε-δ定义与开集的刻划

解三角形经典练习题集锦

解三角形 一、选择题 1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,222_________。 3.在△ABC 中,若====a C B b 则,135,30,200_________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题 在△ABC 中,设,3,2π= -=+C A b c a 求B sin 的值。

拓扑学Topology

Topology {}4. (a) If is a family of topologies on X, show that is a topology on X. Is a topology on X? a a a 燎 攘 13. Show that X is Hausdorff if and only if the diagonal = {x x x X }is closed in X X. 次 00011. Let F : X Y Z. W e say that F is contin uous in each variable separately if for each y in Y , the m ap h : X Z defined by h (x) = F(x y ) is continuous, and for each x in X , the m ap k : Y Z defined by 串 ?0 k(y) = F(x y) is continuous. Show that if F is continuous, then F is continuous in each variable separately. ′ 2. Show that x in the dictionary order topology is metrizable. 2. (a) Let p : X Y be a continuous m ap. Show that if there is a continuous m ap f : Y X such that p of cquals the identity m ap of Y , then p is a quotient m ap.(b) If A X , a retraction of X onto A i ??ìs a continuous m ap r : X A such that r(a) = a for each a A. Show that a retraction is a quotient m ap. ?? 113. Let : be projection on the first coordinate. Let A be the subspace of consisting of all points x y for w hich either x 0 or y = 0 (or both); let q : A be obtained by restricting p p 串创 ? . Show that q is a quotient m ap that is neither open nor closed. 2 4. (a) Define an equivalence relation on the plane X = as follows: * 2 2 Let X be the corresponding quotient space. It is homeomorphic to a familiar space; what is it? [Hint: Set g(x y) = x + y .] ′ (b) Repeat (a) for the equivalence relation 5. Let p : X Y be an open map. Show that if A is open in X , then the map q : A p(A) obtained by restricting p is an open map. ??

点集拓扑学考试题目及答案

下为点集拓扑学考试的辨析题和证明题,解答是本人自己写的,可能有错误或者不足,希望对大家的考试有帮助。 二、辨析题(每题5分,共25分,正确的说明理由,错误的给出反例) 1、拓扑空间中有限集没有聚点。 答:这个说法是错误的。 反例:{}c b a X ,,= ,规定拓扑 {}{}a X ,,φτ=,则当{}a A =时,b 和c 都是A 的聚点。因为b 和c 的领域只有X 一个,它包含a ,a 不是A 的聚点,因为{}φ=a A \。 2、欧式直线1E 是紧致空间。 答:这个说法是错误的。 反例:对1E 而言,有开覆盖(){}+∈-=Z n n n |,μ,而对于该开覆盖没有有限子覆盖。 3、如果乘积空间Y X ?道路连通,则X 和Y 都是道路

连通空间。 答:这个说法是正确的。 证明:对于投射有()X Y X P =?1,()Y Y X P =?2,由投射是连续的,又知Y X ?是道路连通,从而像也是道路连通空间,所以X 和Y 都是道路连通空间。 4、单位闭区间I 与1S 不同胚。 答:这个说法是正确的。 下面用反证法证明,反设I 与1S 同胚,则 ? ???????? ??→????????????21\21\2:21\2|1f S f 也是同胚映射,??????21\I 不连通,则 ? ?????21\1S 不连通,故矛盾,所以单位闭区间I 与1S 不同胚。 5、紧致性具有可遗传性质。 答:这个说法是错误的。 反例 :[]1,0紧致但()1,0不紧致。 三、证明题(每题10分,共50分)

1、规定[)111,0\:E E f →为()???≥-<=110,x x x x x f ,证明f 是连续映射,但不是同胚映射。 证明:由于f 限制在()0,∞-与()+∞,1上连续,由粘接引 理,f 连续。但1-f 不连续,如()0,∞-是[)1,0\1E 的闭集, 但()()()()()()()0,0,0,11∞-=∞-=∞---f f 不是1E 的闭集,所以f 不是同胚映射。 2、证明:Hausdorff 空间的子空间也是Hausdorff 空间。 证明:设X 是Hausdorff 空间,Y 是X 的任一子空间,需证Y 是Hausdorff 空间。Y y x ∈?,,由X 是Hausdorff 空间,所以存在y x ,在X 的开邻域U 、V 使得φ=?V U ,Y U ?是x 在Y 中开邻域,Y V ?是y 在Y 中开邻域,()()φ=??=???Y V U Y V Y U ,故Y 是Hausdorff 空间。 3、证明:从紧致空间到Hausdorff 空间的连续双射是同胚。

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

较为全面的解三角形专题高考题附答案

.. 这是经过我整理的一些解三角形的题目,部分题目没有答案,自己去问老师同学,针 对高考数学第一道大题,一定不要失分。——(下载之后删掉我) 1、在b 、c ,向量m2sinB,3, 2 B nB ,且m//n 。 cos2,2cos1 2 (I )求锐角B 的大小;(II )如果b2,求ABC 的面积S ABC 的最大值。 (1)解:m ∥n2sinB(2cos2 B -1)=-3cos2B 2 2sinBcosB =-3cos2Btan2B =-3??4分 2π π ∵0<2B <π,∴2B = 3,∴锐角B = 3 ??2分 (2)由tan2B =-3B = 5π π 或 36 π ①当B = 3 时,已知b =2,由余弦定理,得: 4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立)??3分 1 2 ∵△ABC 的面积S △ABC = acsinB = 3 ac ≤3 4 ∴△ABC 的面积最大值为3??1分 5π ②当B =时,已知b =2,由余弦定理,得: 6 4=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) ∴ac ≤4(2-3)??1分 1 2 1 acsinB =ac ≤2-3 4

∵△ABC的面积S△ABC= 2-3??1分∴△ABC的面积最大值为

.. 5、在△ABC中,角A,B,C的对边分别 为a,b,c,且bcosC3acosBccosB. (I)求cosB的值;(II)若BABC2,且b22,求a和c b的值. 解:(I)由正弦定理得a2RsinA,b2RsinB,c2RsinC, 则 2RsinBcosC6RsinAcosB2RsinCcosB, 故sinBcosC3sinAcosBsinCcosB, 可得sinBcosCsinCcosB3sinAcosB, 即sin(BC)3sinAcosB, 可得sinA3sinAcosB.sinA0, 又 因此cosB 1 3 . ????6分 (II)解:由BABC2,可得acosB2,又cosB 1 3 ,故ac 6, 2 由b 2 a 2 c2accosB, 2 可得a 2 c 12, 2 所以(ac)0,ac, 即所以a=c=6 6、在ABC中,cos 5 A, 5 cos 10 B. 10 (Ⅰ)求角C;(Ⅱ)设A B2,求ABC的面积 . cosA 5 5 , cos B 10 10 ,得 A、B0, 2 (Ⅰ)解:由,所以 23 sinA,sinB. 510 ??3分 cosCcos[(A B)]cos(AB)cosAcosBsinAsinB 因为 2 2 ?6分 C. 且0C故 4

江苏省泰州市高二上学期语文期末考试试卷

江苏省泰州市高二上学期语文期末考试试卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共1题;共6分) 1. (6分) (2019高一上·玉林期末) 阅读下面的文字,完成下面小题。 “文章合为时而著,诗歌合为事而作”,如何给高考作文命题,________。有人反对作文题太贴近现实,也有人认为作文题还是应该多接接地气,接洽时代风采,两种观点都有可取之处。很显然,无论怎么出题,都不难达成这样的基本共识:读死书、死读书。“两耳不闻窗外事,一心只读圣贤书”的________观念该改变了,不能让考生缺席于这个时代的进程,不能让考生拘泥于个人情感中不能自拔。通过作文题呼唤考生的身份意识,引导他们关注时代潮流,并热切参与其中,这应是高考作文的“附加”功能所决定的。事实上,这一代年轻人是有抱负的,更有社会责任,也更有资格享有出彩人生。究其因,他们处于一个更多元的新时代,他们将遇到一个更好的自己。如果说作文题只是________,那么步入大学或踏入社会之后,更应该身体力行地融入时代征程之中,走好属于自己的长征路。置身________的新时代,只要不负所托,不辱使命,把个体理想与时代需要相契合,()。从这个意义上说,青年人需要写好高考作文,更要写好人生大作文。 (1)依次填入文中横线上的词语,全部恰当的一项是() A . 各执已见不合情理坐而论道推陈出新 B . 见仁见智不合时宜坐而论道日新月异 C . 见仁见智不合情理坐面空谈推陈出新 D . 各执已见不合时宜坐而空谈日新月异 (2)下列在文中括号内补写的语句,最恰当的一项是() A . 才能更好地实现人生价值,也为时代进步贡献应有的公民责任。 B . 才能为时代进步贡献应有的公民责任,也能更好地实现人生价值。 C . 就能更好地实现人生价值,也为时代进步贡献应有的公民责任。 D . 就能为时代进步贡献应有的公民责任,也能更好地实现人生价值。 (3)文中画横线的部分有语病,下列修改最恰当的一项是()

点集拓扑学(1)

点集拓扑学~非同凡响畅想系列 注明:(拓扑学的语言表达准确性很重要),这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。 点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后研究的那些不变性和不变量,比如连通性,可数性,分离性等。其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。这些都和弹性变形下的拓扑不变性有关,这种弹性变形指的是拓扑学中的同柸关系,相近点变相近点的连续概念。拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。 第一节:关系与映射 集合概念的发展历程: 集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识和总结,在现实中得到了广泛的运用。 集合的定义: ① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。 ② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来作为一个群体来研究,这个群体称为集合,这种对象可能是独立的个体,或一个抽象的概念,或者群体,也可能对象之间本身就有包涵关系的集合但不完全相同,也可能是没有包涵关系的子集,当我们把所有对象集中在一起称为全集或者幂集族。全集的一部分称为子集,幂集的一部分称为子集族。集合一般用大写字母代表,其中元素用小写代表。 集合的表示方式: 1枚举法 一般在大括号里罗列出集合的元素,如下: {}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,,Λc b a 2文字语言表述法 用文字语言来表达构成集合的要求: 某个班级的全体男生,一盒象棋,一箱牛奶等。 3图示法 4数学关系描述法或者数学语言描述法 用数学关系式来抽象表达构成集合的要求,或者用数学表达方式来抽象的替代构成集合的要求,为了便于数学分析与研究我们一般用这种数学表达方式来抽象的描述集合,如下: (){}(){}x P X x x x P X x ,∈∈或者

《点集拓扑学》第5章 §5.2 可分空间

§5.2可分空间 本节重点: 掌握可分空间的定义及可分空间与第二可数性公理空间的关系,与度量空间的关系; 掌握稠密子集的定义及性质. 定义5.2.l 设X是一个拓扑空间,D X.如果D的闭包等于整个拓扑空间X,即=X,则称D是X的一个稠密子集. 以下定理从一个侧面说明了讨论拓扑空间中的稠密子集的意义. 定理5.2.1 设X是一个拓扑空间,D是X中的一个稠密子集.又设f,g:X→Y都是连续映射.如果,则f=g(本定理说明两个映射只须在稠密子集上相等,就一定在整个空间相等) 证明设.如果f≠g,则存在x∈X使得 f(x)≠g(x).令:ε=|f(x)-g(x)|, 则ε>0.令 =(f(x)-ε/2,f(x)+ε/2) =(g(x)-ε/2,g(x)+ε/2) 则根据映射f和g的连续性可知都是x的邻域,从而U =也是x的一个邻域.由于子集D是稠密的,所以U∩D≠.对于任意一个y∈U∩D,我们有, f(y)=g(y)∈,矛盾. 我们也希望讨论有着较少“点数”稠密子集的拓扑空间,例如具有有限稠密点集的拓扑空间.但这类拓扑空间比较简单,大部分我们感兴趣的拓扑空间都不是这种情形,讨论起来意思不大.例如一个度量空间如果有一个有限的稠密子集的话,那么这个空间一定就是一个离散空间.相反,后继的讨论表明,许多重要的拓扑空间都有可数稠密子集.

定义5.2.2 设X是一个拓扑空间.如果X中有一个可数稠密子集,则称X是一个可分空间. 定理5.2.2 每一个满足第二可数性公理的空间都是可分空间. 证明设X是一个满足第二可数性公理的空间,B是它的一个可数基.在B中的每一个 非空元素B中任意取定一个点∈B.令 D={|B∈B,B≠} 这是一个可数集.由于X中的每一个非空开集都能够表示为B中若干个元素(其中当然至少会有一个不是空集)之并,因此这个非空开集一定与D有非空的交,所以可数集D是X的一个稠密子集. 包含着不可数多个点的离散空间一定不是可分的.这是因为在这样一个拓扑空间中,任何一个可数子集的闭包都等于它的自身而不可能等于整个空间. 可分性不是一个可遗传的性质,也就是说一个可分空间可能有子空间不是可分的.例子见后面的例5.2.1.然而由于满足第二可数性公理是一个可遗传的性质,因此根据定理5.2.2我们立即得到: 推论5.2.3 满足第二可数性公理的空间的每一个子空间都是可分空间. 特别,n维欧氏空间中的每一个子空间(包括它自己)都是可分空间. 例5.2.1 设(X,T)是一个拓扑空间,∞是任何一个不属于X的元素(例如我们可以取∞=X).令X*=X∪{∞}和T*={A∪{∞}|A∈T}∪{}.容易验证(请读者自己证明)(X*,T*)是一个拓扑空间. 我们依次给出以下三个论断: (1)(X*,T*)是可分空间.这是因为∞属于(X*,T*)中的每一个非空开集,所以单点集{∞}是(X*,T*)中的一个稠密子集. (2)(X*,T *)满足第二可数性公理当且仅当(X,T)满足第二可数性公理. 事实上,B是(X,T)的基当且仅当B*={B∪{∞}|B∈B}是(X*,T*)的一个基,而B 与B*有相同的基数则是显然的. (3)(X,T)是(X*,T*)的一个子空间.因为T*T.

解三角形大题及答案

1。(2013大纲)设得内角得对边分别为,、 (I )求 (II)若,求、 2.(2013四川)在中,角得对边分别为,且、 (Ⅰ)求得值; (Ⅱ)若,,求向量在方向上得投影、 3.(2013山东)设△得内角所对得边分别为,且,,、 (Ⅰ)求得值; (Ⅱ)求得值、 4。(2013湖北)在 ABC ?中,角A ,B ,C 对应得边分别就是a ,b ,c 、已知 ()cos23cos 1A B C -+=、 (I)求角A 得大小; (II)若ABC ?得面积53S =,5b =,求sin sin B C 得值、 5.(2013新课标)△在内角得对边分别为,已知、 (Ⅰ)求; (Ⅱ)若,求△面积得最大值、 6.(2013新课标1)如图,在△ABC 中,∠ABC=90°,AB=错误!,BC=1,P为△A BC 内一点, ∠BPC=90° (1)若PB =错误!,求PA;(2)若∠APB=150°,求tan ∠PBA [ 7.(2013江西)在△ABC 中,角A,B ,C 所对得边分别为a ,b,c,已知cosC+(conA — sinA)cosB=0、 (1)?求角B 得大小;(2)若a+c=1,求b 得取值范围 33。(2013大纲)设得内角得对边分别为,、 (I )求 (II )若,求、 【答案】

?4.(2013年高考四川卷(理))在中,角得对边分别为,且、 (Ⅰ)求得值; (Ⅱ)若,,求向量在方向上得投影、 【答案】解:由,得?, 即, 则,即?由,得,?由正弦定理,有,所以,、 由题知,则,故、 根据余弦定理,有,?解得或(舍去)、?故向量在方向上得投影为 35。(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设△得内角所对得边分别为,且,,、 (Ⅰ)求得值; (Ⅱ)求得值、 【答案】解:(Ⅰ)由余弦定理,得, 又,,,所以,解得,、 (Ⅱ)在△中,,?由正弦定理得 ,?因为,所以为锐角,所以?因此 、 36.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数得最小正周期为、 (Ⅰ)求得值; (Ⅱ)讨论在区间上得单调性、 【答案】解:(Ⅰ) 2)4 2sin(2)12cos 2(sin 2)cos (sin cos 22++ =++=+?π ωωωωωωx x x x x x ?、 所以?(Ⅱ);解得,令时,当8 242]4,4[)42(]2 ,0[π ππππππ π ==++∈+ ∈x x x x 所以 37.(2013年普通高等学校招生统一考试福建数学(理)试题(纯W OR D版))已知函数得周 期为,图像得一个对称中心为,将函数图像上得所有点得横坐标伸长为原来得2倍(纵坐标不 变),在将所得图像向右平移个单位长度后得到函数得图像、 (1)求函数与得解析式;

点集拓扑学练习题及答案

点集拓扑学练习题 一、单项选择题(每题1分) 1、已知X {a,b,c,d,e},下列集族中,( )是X上的拓扑? ① T {X, ,{a},{ a,b},{ a,c,e}} ② T {X, ,{ a,b, c},{ a,b,d},{ a,b, c,e}} ③ T {X, ,{a},{a,b}} ④ T {X, ,{a},{ b},{ c},{ d},{ e}} 答案:③ 2、设X {a,b,c},下列集族中,( )是X上的拓扑? ①T {X, ,{a},{ a,b},{ c}} ②T {X, ,{a},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 3 、 已知X {a,b,c,d},下列集族中,' ( )是X上的拓扑? ①T {X, ,{a},{ a, b},{ a,c,d}} ②T {X, ,{a,b,c},{ a,b, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{b}} 答案:① 4、设X {a, b, c},下列集族中,()是X上的拓扑. ①T {X, ,{b},{ c},{ a,b}} ②T {X, ,{a},{ b},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 5、已 知 汨X {a,b,c,d},下列集 :族中, (( )是X上的拓扑? ①T {X, ,{a,b},{ a,c,d}} ②T {X, ,{a,b},{ a,c, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{ c},{ a,c}} 答案:④ 6、设X {a, b, c},下列集族 中 ,( )是X上的拓扑? ①T {X, ,{a},{ b},{ b,c}} ②T {X, ,{a,b},{ b, c}} ③T {X, ,{a},{a,c}} ④T {X, ,{a},{b},{c}} 答案:③ 7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=() ①?②X ③{b} ④{b, c, d} 答案:④

解三角形练习题(含答案)

一、选择题 1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为() A、正三角形 B、直角三角形 C、等腰三角形或直角三角形 D、等腰直角三角形 2、已知中,,,则角等于 A . B . C . D . 3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是() A.(2,+∞) B.(0,2) C.(2,) D.() 4、,则△ABC的面积等于 A . B . C .或 D .或 5、在中,,则角C的大小为 A.300 B.450 C.600 D.1200 6、的三个内角、、所对边长分别为、、,设向量 ,,若,则角的大小为 () A . B . C . D . 7、若ΔABC的内角A、B、C所对的边a、b、c 满足,则ab的值为() A . B . C.1 D . 8、在中,若,且,则是( ) A.等边三角形 B.等腰三角形,但不是等边三角形 C.等腰直角三角形 D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则 = A . B . C . D . 10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ). A.等边三角形 B.直角三角形 C.锐角三角形 D.钝角三角形 11、在△中,,,,则此三角形的最大边长为() A. B. C. D. 12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c 2b2)tanB=ac,则角B=() A . B . C .或 D .或 13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则 () A . B . C . D . 14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为() A、1 B、2 C、3 D、0 15、在钝角中,a,b,c分别是角A,B,C 的对边,若,则最大边c的取值范围是 ( ) ( A . B . C . D . 16、(2012年高考(上海理))在中,若,则的形状是() A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定. 17、在△ABC中,a=15,b=10, ∠A=,则() A . B . C . D .

点集拓扑讲义期末复习题

一、证明下列是否为拓扑 1、Tf={U包含于X|X-U有限}∪{空集} 满足①全集、空集包含于Tf ②任意A、B∈Tf 若A、B中有一个为空集,A∩B=空集∈T。若不是,(A∩B)′=A′∪ B′,A∪B∈T ③设T1∈T,令T2=T1-{空集}。显然有∪A∈T1(A)=∪A∈T2(A).如果T2=空集,则∪A ∈T1(A)=∪A∈T2(A)=空集∈T。设T2≠空集。任取A0∈T2.这时(∪A∈T1(A))′=(∪A∈T2(A))′=∪A∈T2(A′)∈A0′是X的一个有限子集,所以∪A∈T1(A) ∈T。所以为拓扑。 2、Tc={U包含于X|X-U可数}∪{空集} 3、T∞={U包含于X|X-U无限}∪{空集}∪{X} 二、计算实值标准拓扑R子空间Y=(0,1],子集(0.1/2)=A。求A在Y、R中的闭包、内 部。 Y中:闭包(0,1/2].内部(0,1/2) R中:闭包[0,1/2].内部(0,1/2) 三、A包含于Y,Y包含于X,为闭子空间。若A包含于Y则A为X中闭集。 Y包含于X闭,所以存在X中闭集B使得A=Y∩B(子空间闭集定义),所以Y包含于X 闭,所以A为X中闭集。 四、设A、B、Aa包含于X,证明:1、A包含于B=A的闭包包含于B的闭包。2、A∪B= A∪B。 3、∪Aa包含∪Aa。 1、 五、X、Y有子集A包含于X,B包含于Y,则A*B=A*B

六、R:K={1/n|n∈R+}求在T1、T2、T3、T4、T5中的闭包。 f(A)。4、任意B包含于Y,f-1(B)包含f-1(B)。5、任意B包含于Y,f-1(B°) 包含于(f-1(B))°证明1~5等价。 八、连续的满的闭映射为商映射。

点集拓扑学拓扑知识点

(点集拓扑学拓扑)知识点

————————————————————————————————作者:————————————————————————————————日期:

第4章 连通性重要知识点 本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉 及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. §4.1 连通空间 本节重点: 掌握连通与不连通的定义. 掌握如何证明一个集合的连通与否? 掌握连通性的拓扑不变性、有限可积性、可商性。 我们先通过直观的方式考察一个例子.在实数空间R 中的两个区间(0,l )和[1,2), 尽管它们互不相交,但它们的并(0,1)U [l ,2)=(0,2)却是一个“整体”;而另外两 个区间(0,1)和(1,2),它们的并(0,1)U (1,2)是明显的两个“部分”.产生上述 不同情形的原因在于,对于前一种情形,区间(0,l )有一个凝聚点1在[1,2)中;而对 于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用 术语来区别这两种情形. 定义4.1.1设A 和B 是拓扑空间X 中的两个子集.如果 ?=???)()(A B B A 则称子集A 和B 是隔离的. 明显地,定义中的条件等价于?=?B A 和 ?=?A B 同时成立,也就是说,A 与B 无交并且其中的任何一个不包含另一个的任何凝聚点. 应用这一术语我们就可以说,在实数空间R 中,子集(0,1)和(1,2)是隔离的, 而子集(0,l )和[1,2) 不是隔离的. 又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个 无交的子集都是隔离的. 定义4.1.2 设X 是一个拓扑空间.如果X 中有两个非空的隔离子集A 和B 使得X=A ∪B ,则称X 是一个不连通空间;否则,则称X 是一个连通空间. 显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4.1.1设X 是一个拓扑空间.则下列条件等价: (l )X 是一个不连通空间; (2)X 中存在着两个非空的闭子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (3) X 中存在着两个非空的开子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (4)X 中存在着一个既开又闭的非空真子集. 证明(l )蕴涵(2): 设(1)成立.令A 和B 是X 中的两个非空的隔离子集使得 A ∪ B =X ,显然 A ∩B=?,并且这时我们有 B B B A B B A B X B B =???=??=?=)()()( 因此B 是X 中的一个闭子集;同理A 也是一个X 中的一个闭子集.这证明了集合A 和B 满足条件(2)中的要求. (2)蕴涵(3).如果X 的子集A 和B 满足条件(2)中的要求,所以A 、B 为闭集, 则由于这时有A =B /和B=A ',因此A 、B 也是开集,所以A 和B 也满足条件(3)中的要

解三角形练习题及答案

第一章 解三角形 一、选择题 1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150° 2.在△ABC 中,下列等式正确的是( ). A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin B C .a ∶b =sin B ∶sin A D .a sin A =b sin B 3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2 C .1∶4∶9 D .1∶2∶3 4.在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ). A .25 B .5 C .25或5 D .10或5 5.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形 C .不可求出 D .有三种以上情形 6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7.在△ABC 中,若b =3,c =3,∠B =30°,则a =( ). A .3 B .23 C .3或23 D .2 8.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为 2 3 ,那么b =( ). A . 2 3 1+ B .1+3 C . 2 3 2+ D .2+3 9.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好3km ,那么x 的值是( ).

相关主题
文本预览
相关文档 最新文档