2019-2020学年高一数学 正弦函数图像1导学案.doc
- 格式:doc
- 大小:253.00 KB
- 文档页数:4
1.5函数y =学习目标:A sin(x +) 的图象(1)1.熟练运用“五点法”做函数y=A sin(x +)的图像,理解图像特征,依据图像正确求出解析式.2.掌握振幅变换,相位变换,周期变换,能熟练地把y=A sin(x +)的图像.学习过程:一、情景引入y = sin x 的图像变换为正弦函数y = sin x 是最基本、最简单的三角函数,在物理中,简谐运动中的单摆对平衡位置的位移y 与时间x 的关系等都是形如y=A sin(x +)的函数,我们需要了解它与函数y=sin x的内在联系.、、A是影响函数图像形态的重要参数,对此,我们分别进行探究.二、自我探究1.函数y = sin(x +) ,x ∈R (其中≠ 0 )的图象,可以看作是正弦曲线上所有的点(当>0 时)或(当<0 时)平行移动个单位长度而得到.2.函数y = sin x, x ∈R (其中>0 且≠ 1 )的图象,可以看作是把正弦曲线上所有点的横坐标(当>1 时)或(当 0<<1 时)到原来的倍(纵坐标不变)而得到.3.函数y =A sin x, x ∈R( A >0 且A ≠1)的图象,可以看作是把正弦曲线上所有点的纵坐标(当A>1 时)或(当0<A<1)到原来的A 倍(横坐标不变)而得到的,函数y=Asinx 的值域为.最大值为,最小值为.三、展示点拨例1.画出函数(1) y = 2 s in x ,x ∈R(2) y =12sin x , x ∈R分析:“五点法”,先画[0,2]的简图。
小结 1:1.y=Asinx,x∈R(A>0 且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸sin x长或缩短到原来的 A 倍得到的 2. 它的值域最大值是 , 最小值是3. 若 A <0 可先作 y =-Asinx 的图象 ,再以 x 轴为对称轴翻折 A 称为振幅,这一变换称为振幅变换例 2. 画出函数 (1) y = sin 2x , 2) y = 12x ∈ R 的简图.小结 2:(周期变化,这是由的变化引起的)1、 函数 y =sin x , x ∈R (>0 且≠1)的图象,可看作把正弦曲线上所有点的横坐标缩或伸 1长到原来的 倍(纵坐标不变)2、函数 y =sin x , x ∈R (>0 且≠1)的周期是3、若<0 则可用诱导公式将符号“提出”再作图 决定了函数的周期,这一变换称为周期变换例 3 画出函数 y =sin (x + ),x ∈Ry =sin (x - ),x ∈R 的简图34小结 3:1、函数 y =sin (x + ),x ∈R 的图象可看作把正弦曲线上所有的点向左平行移动3 3个单位长度而得到2、一般地,函数 y =sin (x +),x ∈R (其中≠0)的图象,可以看作把正弦曲线上所有点向左(当>0 时)或向右(当<0 时)平行移动|| 个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)y =sin (x +)与 y =sinx 的图象只是在平面直角坐标系中的相对位))置不一样,这一变换称为相位变换.1例 4 指出如何由 y =sinx 经过变换得出 y = sin(2x + 2 ) + 2, x ∈ R 4函数的图象:四、反馈检测1 判断正误①y =A sin x 的最大值是 A ,最小值是-A . ()2②y =A sin x 的周期是( )③y =-3sin4x 的振幅是 3,最大值为 3,最小值是-3 ()2 下列变换中,正确的是( )A 将 y =sin2x 图象上的横坐标变为原来的 2 倍(纵坐标不变)即可得到 y =sin x 的图象 1B 将 y =sin2x 图象上的横坐标变为原来的 倍(纵坐标不变)即可得到 y =sin x 的图象21C 将 y =-sin2x 图象上的横坐标变为原来的 倍,纵坐标变为原来的相反数,即得到 y =2sin x 的图象1D 将 y =-3sin2x 图象上的横坐标缩小一倍,纵坐标扩大到原来的 倍,且变为相反数,3即得到 y =sin x 的图象13. 最大值为 ,周期为22,初相是的函数表达式可能是( )3 6 A. y = 1 sin( x + B y = 2 sin( x- 2 3 6 2 6 C y = 1 sin(3x + D y = 1sin(3x - 2 6 2 64. 得到 y = sin(3x - ) 的图象,只要将y = sin 3x 的图象( )4A. 向左平移 个单位 B 向右平移 个单位4 4C .向左平移个单位 D 向右平移个单位12125 函数 y =sin (-2x )的单调减区间是()) )3 3A.[ + 2k , + 2k ], k ∈ Z C.[+ 2k ,3+ 2k ], k ∈ Z2B.[ + 2k , 2 23+ 2k ], k ∈ Z 4D.[- 4+ k , 4+ k], k ∈ Z6..作出下列函数在长度为一个周期的闭区间上的简图(要求用直尺和铅笔规范作图)3 1(1)y = sinx(2)y =sin 3x (3)y =2sin x232 2 7. 将 y = sin 2x 的图象向平移个单位,可得 y = sin 2x - 2 的图象,所得函数周期为33值域为 8. 将 y =sinx 图象上各点的纵坐标变为原来的 且将各点的横坐标变为原来的1可得 y =3sin x 的图象.319 用图象变换的方法在同一坐标系内由 y =sin x 的图象画出函数 y = sin(3x-)的图象2 510. 已知 y = a sinx + b 的最大值为 ,最小值为-21,求 a , b 的值2五、盘点归纳。
§1.4.1 《正弦函、余弦函数的图像》导学案【学习目标】1.利用单位圆中的三角函数线作出,sin x y =的图象,明确图象的形状 2.理解作正弦函数图象的方法;并掌握会用五点法作正余弦函数简图。
【重点】“五点法”画长度为一个周期的闭区间上的正弦函数图象。
【难点】运用几何法画正弦函数图象。
【使用方法与学法指导】1.用15分钟左右的时间,阅读探究课本的基础知识,从中了解精确的正弦函数图像的画法过程,通过自主高效的预习,提升自己的阅读理解能力。
2.结合课本的基础知识和例题,完成预习案。
3.将预习中不能解决的问题标出来,并写到后面的“我的疑惑”处。
【预习案】一.复习回顾:1.正、余弦函数定义: 。
2.三角函数的定义及实质?三角函数线的作法和作用?二、预习新知:五点作图法中:1.正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是: 、 、 、 、 。
2.作cos y x=在[0,2]π上的图象时,五个关键点是 、 、 、 、 ,步骤:______________,_______________,____________________ 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容【探究案】探究点一:几何作图法1.创设情境:问题1:怎么在图像中使用三角函数线表示x ∈[0,2π]的三角函数值?问题2:已知了y=sinx ,x ∈[0,2π]的图像,怎么画出y=sinx,x ∈R 的三角函数图像? 探究点二:平移法问题1:回忆三角函数的诱导公式:sin (2π+α)= x ∈R oxy 11-问题2:如何得到y=cosx ,x ∈R 的图象? 【小结】y=f (x )=sinx 向左平移2π个单位得到y=f (x+2π)=sin = 探究点三:五点作图法描出五个关键点,并用光滑的曲线连接起来,称为“五点法”作图。
问题1:画x ∈[0,2π]的正弦函数图象时,关键的五个点是: 、 、 、 、 问题2:如何快速做出余弦函数图像? xcosx【小结】“五点法”作图可步骤: (x ∈(0,2π))关键点是:当x= 、 、 、 、【当堂检测】例1:画出下列函数的简图:y =1+sinx ,x ∈(0,2π)x sinx1+sinx例2:画出下列函数的简图:y=-cosx ,x∈〔0,2π〕【课后练习与提高】1.画出下列函数的简图:(1) y=sinx-1; (2)y=1-sinx2.用五点法作sinx,2y x∈〔0,2π〕的图象。
高一数学正弦型函数的性质与图像导学案班级:姓名: 使用日期:【课堂探究】一.【素养培育】知识点一正弦型函数y=A sin(ωx+φ),A>0,ω>0中参数的物理意义知识点二φ,ω,A对函数y=A sin(ωx+φ)的图象的影响(1)φ对y=sin(x+φ),x∈R的图象的影响函数y=sin(x+φ)(φ≠0)的图象可以看作是把正弦曲线y=sin x图象上所有的点向(当φ>0时)或向(当φ<0时)平行移动|φ|个单位长度而得到的.(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响函数y=sin(ωx+φ)的图象,可以看作是把y=sin(x+φ)图象上所有点的横坐标(当ω>1时)或(当0<ω<1时)到原来的倍(纵坐标不变)而得到的.(3)A(A>0)对y=A sin(ωx+φ)的图象的影响函数y=A sin(ωx+φ)的图象,可以看作是把y=sin(ωx+φ)图象上所有点的纵坐标(当A>1时)或(当0<A<1时)到原来的倍(横坐标不变)而得到的,函数y=A sin x的值域为,最大值为,最小值为.知识点三由函数y=sin x的图象变换得到函数y=A sin(ωx+φ)的图象的步骤知识点四函数y=A sin(ωx+φ),A>0,ω>0的性质二.【素养提升】例1 把函数y =f (x )的图象上的各点向右平移π6个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23倍,所得图象的解析式是y =2sin ⎝⎛⎭⎫12x +π3,求f (x )的解析式.跟踪训练1 把函数y =sin x (x ∈R )的图象上所有的点向左平移π3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到的图象所表示的函数是________例2 利用五点法作出函数y =3sin ⎝⎛⎭⎫12x -π3在(1)一个周期内的草图.(2)在x ∈[]-22ππ,上的草图.例3 如图是函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象,求A ,ω,φ的值,并确定其函数解析式.跟踪训练3 函数y =A sin(ωx +φ)的部分图象如图所示,则其函数解析式________例4 已知函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象过点P ⎝⎛⎭⎫π12,0,图象上与P 点最近的一个最高点的坐标为⎝⎛⎭⎫π3,5.(1)求函数解析式; (2)指出函数的增区间; (3)求使y ≤0的x 的取值范围.跟踪训练4 设函数f (x )=sin(2x +φ)(-π<φ<0),函数y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ的值; (2)求函数y =f (x )的单调区间及最值.【课堂评价】三、【课堂小结】1、本节课学了哪些知识内容?2、本节课用了哪些方法思想?四、【课堂达标】1.下列表示函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图正确的是( )2.函数y =2sin ⎝⎛⎭⎫12x +π3在一个周期内的三个“零点”的横坐标可能是( ) A .-π3,5π3,11π3 B .-2π3,4π3,10π3 C .-π6,11π6,23π6 D .-π3,2π3,5π33函数y =sin ⎝⎛⎭⎫5x -π2的图象向右平移π4个单位长度,再把所得图象上各点的横坐标缩短为原来的12,所得图象的函数解析式为____________.4.若函数f (x )=3sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6等于________ 5.把函数y =2sin ⎝⎛⎭⎫x +2π3的图象向左平移m 个单位,所得的图象关于y 轴对称,则m 的最小正值是________.6.关于f (x )=4sin ⎝⎛⎭⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍;②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )图象关于⎝⎛⎭⎫-π6,0对称; ④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为________.。
正弦函数、余弦函数的图象(1)教学目标:1.理解并掌握作正弦函数图象的方法;2.熟练掌握用五点法作正弦函数简图的方法;牢记五个点的坐标;教学重点难点:用单位圆中的正弦线作正弦函数的图象.学法指导:1、先自习教材,自主完成学案2、加★号的平行班班学生不做教学过程:一、知识回顾:正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM r x ==αcos 二、新课:探究一:正弦函数y=sinx x ∈[0,2π]的图象是什么样子的?作图工具:单位圆中的正弦线、余弦线作图方法:为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.作图步骤:第一步:列表首先在单位圆中画出每个角对应的正弦线.第二步:描点.把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线得到正弦函数y = sinx ,x ∈[0,2π]的图象.自己动手画一个x 0 2π π 32π 2π sinx作图:探究二:你能根据诱导公式一以正弦函数x ∈[0,2π]的图象为基础,作出正弦函数y = sinx ,x ∈R 的图象吗?分析:想一想: 如何才能得到y = sinx ,x ∈R 的图象呢?利用我们作出的y=sinx ,x ∈[0,2π]的图象,把图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y = sinx ,x ∈R 的图象,叫做正弦曲线.探究三:观察正弦函数y = sinx ,x ∈[0,2π]图象想一想决定图象形状的关键点有哪些?正弦函数y = sinx ,x ∈[0,2π]的图象中,五个关键点是:( , ) ( , ) ( , ) ( , ) ( , ) 作图说明:作简图时只需要先描出这五个关键点再根据正弦曲线的变化趋势用光滑的曲线连接起来既可三、试一试看:作出函数y = - sinx ,x ∈ [ 0 ,2π]的简图作出函数y = 1+ sinx ,x ∈ [ 0 ,2π] 的简图:五个关键点的坐标是:( , ) ( , ) ( , ) ( , ) ( , )知识小结:1、要得到形如y=-f ( x )的函数图象只需将y= f ( x )的图象2、要得到形如y= f ( x ) + a 的函数图象只需将y= f ( x )的图象当堂作业作出下列函数的简图(1) y = 1-sin x,x ∈[ 0 ,2π],(2)y = 3sina x∈[0,2π],★★★(3)y = | sinx | x∈[0,2π],★★★(4)y = sin|x| x∈[-2π,2π]学后反思:。
正弦、余弦函数的图象(1)教学目的:知识目标:(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状;(2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象; (3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神; 教学重点:用单位圆中的正弦线作正弦函数的图象; 教学难点:作余弦函数的图象,周期性; 授课类型:新授课教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2.正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离r (02222>+=+=y x yx r )则比值ry叫做α的正弦 记作: r y =αsin比值r x叫做α的余弦 记作: rx =αcos3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象用几何法作余弦函数的图象,可以用“反射法”将角x 的余弦线“竖立”[把坐标轴向下平移,过1O 作与x 轴的正半轴成4π角的直线,又过余弦线1O A 的终点A 作x 轴的垂线,它与前面所作的直线交于A ′,那么1O A 与AA ′长度相等且方向同时为正,我们就把余弦线1O A “竖立”起来成为AA ′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x 轴上相应的点x 重合,则终点就是余弦函数图象上的点.]也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O 1M 按逆时针方向旋转2π到O 1M 1位置,则O 1M 1与O 1M 长度相等,方向相同.)根据诱导公式cos sin()2x x π=+,还可以把正弦函数x=sin x 的图象向左平移2π单位即得余弦函数y=cosx 的图象. (课件第三页“平移曲线” )正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0)余弦函数y=cosx x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.优点是方便,缺点是精确度不高,熟练后尚可以 3、讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2) y=|sinx |, (3)y=sin |x | 例2 用五点法作函数2cos(),[0,2]3y x x ππ=+∈的简图.例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x 的集合:1(1)sin ;2x ≥ 15(2)cos ,(0).22x x π≤<<三、巩固与练习四、小 结:本节课学习了以下内容:1.正弦、余弦曲线 几何画法和五点法 2.注意与诱导公式,三角函数线的知识的联系 五、课后作业:作业:补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx 的图象 2.分别在[-4π,4π]内作出y=sinx 和y=cosx 的图象 3.用五点法作出y=cosx,x ∈[0,2π]的图象六、板书设计:4-1.4.1正弦、余弦函数的图象(2)1、 教学目标:2、 使学生学会用“五点(画图)法”作正弦函数、余弦函数的图象。
1. 4.1 正弦函数、余弦函数的图象班级 姓名【教学目标】1、通过本节学习,理解正弦函数、余弦函数图象的画法.2、通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.【教学重点】正弦函数、余弦函数的图象.【教学难点】将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.【教学过程】一、预习提案 (阅读教材第30—33页内容,完成以下问题:)1、借助单位圆中的正弦线在下图中画出正弦函数y=sinx, x ∈[0,2π]的图象。
说明:使用三角函数线作图象时,将单位圆分的份数越多,图象越准确。
在作函数图象时,自变量要采用弧度制,确保图象规范。
3、 观察图象(正弦曲线),说明正弦函数图象的特点:①由于正弦函数y=sinx 中的x 可以取一切实数,所以正弦函数图象向两侧 。
②正弦函数y=sinx 图象总在直线 和 之间运动。
4、观察正弦函数y=sinx, x ∈[0,2π]的图象,找到起关键作用的五个点:, , , ,②函数y=sin (x+2π)的图象相对于正弦函数y=sinx 的图象是如何变化的?③由诱导公式知:sin (x+2π)= ,所以函数y=sin (x+2π)= ④请画出y=cosx 的图象(余弦曲线), , , ,二、新课讲解例1、用“五点作图法”作出y=x sin , x ∈[0,2π]的图象;并通过猜想画出y=x sin 在整个定义域内的图象。
练习:用“五点作图法”作出y=x cos , x ∈[0,2π]的图象;并通过猜想画出y=x cos 在整个定义域内的图象。
例2、用“五点作图法”作出下列函数的简图;(1)y=1+sinx, x ∈[0,2π];(2)y=2cos(2x-3π)练习:用“五点作图法”作出下列函数的简图;(1)y=-cosx, x ∈[0,2π];(2)y=2sin(x-3π)+1三、课堂小结 1、 会用“五点法”作图熟练地画出一些较简单的函数图象.2、关键点是指图象的最高点,最低点及与x 轴的交点。
第五章 三角函数5.4.1 正弦函数、余弦函数的图象【学习要求】1.了解正弦函数图象的正弦线画法,掌握正弦函数图象的几何特征;2.掌握五点法,并能熟练画一些简单函数的图象. 【教学过程】 一、情境引入1.终边相同角的诱导公式:sin(2)k απ+= ()k Z ∈.2.周期函数:当函数对于自变量的一切值每增加或减少一个定值(定值可以有很多个),函数值就重复出现时,这个函数就叫做周期函数.一般地,对于函数f (x ),如果存在非零常数T ,使得定义域内的“每一个x 值”,都有f (x+T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做f (x )的周期.3.正弦函数的周期是: ;最小正周期是: .二、知识整理用描点法作出正弦函数在最小正周期上的图象sin ,[0,2]y x x π=∈,(2)描点连线(3)因为终边相同的角的三角函数值相同,所以sin y x =在……,[4,2]ππ--, [2,0]π-,[0,2]π,[2,4]ππ,……的图象与sin y x =,[0,2]x π∈的图象相同.方法小结:(1)用“五点法”作正弦函数的图象; (2)“五点法”作图的关键点.x 0 2π π32π 2πy1-1三、典例选讲例1.作下列函数的简图(1)1sin ,[0,2]y x x π=+∈; (2)sin 2,[0,]y x x π=∈;(3)5sin(),[,]333y x x πππ=+∈-; (4)53sin(2),[,]366y x x πππ=+∈- .思考:几何法(利用三角函数线画正弦函数图象)四、小结提升通过这节课的学习①你经历了什么样的过程?②你获得了什么样的知识、技能、方法?③你感受最深的是什么?五、练习巩固1.1sin y x =+,x ∈[0,2π]的图象与直线y =1.5的交点个数为 .2.在[0,2π]内4sin y x =的单调增区间为 ;单调减区间为 .3.用五点法分别作下列函数在[2,2]ππ-上的图象:(1) sin y x =-; (2) sin 2y x =-.4.把第3题所作的图象和sin y x =,[2,2]x ππ∈-的图象进行比较,说明这些图象与sin y x =,[2,2]x ππ∈-的图象的位置关系.5.画出下列函数的图象(1) sin()y x =-,[0,2];x π∈ (2) sin()4y x π=-,9[,]44x ππ∈(3)12sin()26y x π=-, 13[,]33x ππ∈ (4)sin(2)14y x π=+-, 7[,]88x ππ∈-。
1.4.1 正弦函数、余弦函数的图象学习目标 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.知识点一 正弦函数、余弦函数的概念思考 从对应的角度如何理解正弦函数、余弦函数的概念?答案 实数集与角的集合之间可以建立一一对应关系,而一个确定的角又对应着唯一确定的正弦(或余弦)值.这样,任意给定一个实数x ,有唯一确定的值sin x (或cos x )与之对应.由这个对应法则所确定的函数y =sin x (或y =cos x )叫做正弦函数(或余弦函数),其定义域是R .知识点二 几何法作正弦函数、余弦函数的图象思考1 课本上是利用什么来比较精确的画出正弦函数的图象的?其基本步骤是什么? 答案 利用正弦线,这种作图方法称为“几何法”,其基本步骤如下:①作出单位圆:作直角坐标系,并在直角坐标系中y 轴左侧的x 轴上取一点O 1,作出以O 1为圆心的单位圆;②等分单位圆,作正弦线:从⊙O 1与x 轴的交点A 起,把⊙O 1分成12等份.过⊙O 1上各分点作x 轴的垂线,得到对应于0,π6,π3,π2,…,2π等角的正弦线;③找横坐标:把x 轴上从0到2π这一段分成12等份;④找纵坐标:把角x 的正弦线向右平移,使它的起点与x 轴上对应的点x 重合,从而得到12条正弦线的12个终点;⑤连线:用光滑的曲线将12个终点依次从左至右连接起来,即得到函数y =sin x ,x ∈[0,2π]的图象,如图.因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π),k ∈Z 且k ≠0的图象与函数y =sin x ,x ∈[0,2π)的图象的形状完全一致.于是只要将函数y =sinx ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x ,x ∈R 的图象,如图.思考2 如何由正弦函数的图象通过图形变换得到余弦函数的图象?答案 把y =sin x ,x ∈R 的图象向左平移π2个单位长度,即可得到y =cos x ,x ∈R 的图象.梳理 正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线. 知识点三 “五点法”作正弦函数、余弦函数的图象 思考1 描点法作函数图象有哪几个步骤? 答案 列表、描点、连线.思考2 “五点法”作正弦函数、余弦函数在x ∈[0,2π]上的图象时是哪五个点? 答案梳理 “五点法”作正弦函数y =sin x 、余弦函数y =cos x ,x ∈[0,2π]图象的步骤: (1)列表(2)描点画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0); 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). (3)用光滑曲线顺次连接这五个点,得到正弦曲线、余弦曲线的简图.类型一 “五点法”作图的应用例1 利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解 (1)取值列表:描点连线,如图所示.反思与感悟 作正弦曲线要理解几何法作图,掌握五点法作图.“五点”即y =sin x 或y =cos x 的图象在[0,2π]内的最高点、最低点和与x 轴的交点.“五点法”是作简图的常用方法.跟踪训练1 用“五点法”作出函数y =1-cos x (0≤x ≤2π)的简图. 解 列表如下:描点并用光滑的曲线连接起来,如图.类型二 利用正弦、余弦函数的图象求定义域 例2 求函数f (x )=lg sin x +16-x 2的定义域.解 由题意,得x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0,即⎩⎪⎨⎪⎧sin x >0,-4≤x ≤4,作出y =sin x 的图象,如图所示.结合图象可得x ∈[-4,-π)∪(0,π).反思与感悟 一些三角函数的定义域可以借助函数图象直观地观察得到,同时要注意区间端点的取舍.跟踪训练2 求函数y =log 21sin x-1的定义域. 解 为使函数有意义,需满足⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0,即0<sin x ≤12.由正弦函数的图象或单位圆(如图所示),可得函数的定义域为{x |2k π<x ≤2k π+π6或2k π+5π6≤x <2k π+π,k ∈Z }.类型三 与正弦、余弦函数有关的函数零点问题 命题角度1 零点个数问题例3 在同一坐标系中,作函数y =sin x 和y =lg x 的图象,根据图象判断出方程sin x =lg x 的解的个数.解 建立平面直角坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再向右连续平移2π个单位,得到y =sin x 的图象.描出点(1,0),(10,1),并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.反思与感悟 三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.跟踪训练3 方程x 2-cos x =0的实数解的个数是 . 答案 2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象可知,原方程有两个实数解.命题角度2 参数范围问题例4 方程sin(x +π3)=m2在[0,π]上有两实根,求实数m 的取值范围及两实根之和.解 作出y 1=sin(x +π3),y 2=m2的图象如图,由图象可知,要使y 1=sin(x +π3),y 2=m 2在区间[0,π]上有两个不同的交点,应满足32≤m2<1,即3≤m <2.设方程的两实根分别为x 1,x 2,则由图象可知x 1与x 2关于x =π6对称,于是x 1+x 2=2×π6,所以x 1+x 2=π3.反思与感悟 准确作出函数图象是解决此类问题的关键,同时应抓住“临界”情况进行分析. 跟踪训练4 若函数f (x )=sin x -2m -1,x ∈[0,2π]有两个零点,求m 的取值范围. 解 由题意可知,sin x -2m -1=0在[0,2π]上有2个根,即sin x =2m +1有两个根, 可转化为y =sin x 与y =2m +1两函数的图象有2个交点. 由y =sin x 图象可知, -1<2m +1<1,且2m +1≠0, 解得-1<m <0,且m ≠-12.∴m ∈(-1,-12)∪(-12,0).1.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是( ) A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4πD.0,π6,π3,π2,2π3答案 B解析 “五点法”作图是当2x =0,π2,π,3π2,2π时的x 的值,此时x =0,π4,π2,3π4,π,故选B.2.下列图象中,y =-sin x 在[0,2π]上的图象是( )答案 D解析 由y =sin x 在[0,2π]上的图象作关于x 轴的对称图形,应为D 项. 3.函数y =cos x ,x ∈[0,2π]的图象与直线y =-12的交点有 个.答案 2解析 作y =cos x ,x ∈[0,2π]的图象及直线y =-12(图略),可知两函数图象有2个交点.4.函数y =2sin x -1的定义域为 . 答案 [π6+2k π,5π6+2k π],k ∈Z解析 由题意知,自变量x 应满足2sin x -1≥0, 即sin x ≥12.由y =sin x 在[0,2π]的图象,可知π6≤x ≤5π6,所以y =2sin x -1的定义域为⎣⎢⎡⎦⎥⎤π6+2k π,5π6+2k π,k ∈Z .5.请用“五点法”画出函数y =12sin ⎝ ⎛⎭⎪⎫2x -π6的图象.解 令X =2x -π6,则x 变化时,y 的值如下表:描点画图:将函数在⎣⎢⎡⎦⎥⎤π12,13π12上的图象向左、向右平移即得y =12sin ⎝⎛⎭⎪⎫2x -π6的图象.1.对“五点法”画正弦函数图象的理解(1)与前面学习函数图象的画法类似,在用描点法探究函数图象特征的前提下,若要求精度不高,只要描出函数图象的“关键点”,就可以根据函数图象的变化趋势画出函数图象的草图. (2)正弦型函数图象的关键点是函数图象中最高点、最低点以及与x 轴的交点. 2.作函数y =a sin x +b 的图象的步骤:3.用“五点法”画的正弦型函数在一个周期[0,2π]内的图象,如果要画出在其他区间上的图象,可依据图象的变化趋势和周期性画出.课时作业一、选择题1.对于正弦函数y =sin x 的图象,下列说法错误的是( ) A.向左右无限伸展B.与y =cos x 的图象形状相同,只是位置不同C.与x 轴有无数个交点D.关于y 轴对称答案 D解析 由正弦曲线知,A ,B ,C 均正确,D 不正确.2.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎪⎫π6,12B.⎝ ⎛⎭⎪⎫π2,1 C.(π,0) D.(2π,0)答案 A 解析 易知⎝⎛⎭⎪⎫π6,12不是关键点.3.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则将f (x )的图象( )A.与g (x )的图象相同B.与g (x )的图象关于y 轴对称C.向左平移π2个单位,得g (x )的图象D.向右平移π2个单位,得g (x )的图象答案 D解析 f (x )=sin ⎝⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2=cos ⎝⎛⎭⎪⎫π2-x =sin x , f (x )的图象向右平移π2个单位得到g (x )的图象.4.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )答案 D5.方程sin x =x10的根的个数是( )A.7B.8C.9D.10 答案 A解析 在同一坐标系内画出y =x10和y =sin x 的图象如图所示.根据图象可知方程有7个根.6.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )答案 D解析 由题意得y =⎩⎪⎨⎪⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.显然只有D 合适.7.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( ) A.4 B.8 C.2π D.4π 答案 D解析 作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形为如图所示的阴影部分.利用图象的对称性可知,该阴影部分的面积等于矩形OABC 的面积,又∵OA =2,OC =2π, ∴S 阴影部分=S 矩形OABC =2×2π=4π. 二、填空题8.函数f (x )=lg cos x +25-x 2的定义域为 . 答案 ⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,5 解析 由题意,得x 满足不等式组⎩⎪⎨⎪⎧cos x >0,25-x 2≥0,即⎩⎪⎨⎪⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得x ∈⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,5. 9.函数y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2= . 答案 3π 解析 如图所示,x 1+x 2=2×3π2=3π. 10.函数f (x )=⎩⎪⎨⎪⎧sin x ,x ≥0,x +2,x <0,则不等式f (x )>12的解集是 .答案 {x |-32<x <0或π6+2k π<x <5π6+2k π,k ∈N }解析 在同一平面直角坐标系中画出函数f (x )和y =12的图象(图略),由图易得-32<x <0或π6+2k π<x <5π6+2k π,k ∈N . 11.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为 .答案 ⎣⎢⎡⎦⎥⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象,如图所示.观察图象知x ∈⎣⎢⎡⎦⎥⎤π4,5π4.三、解答题12.用“五点法”画出函数y =12+sin x ,x ∈[0,2π]的简图.解 (1)取值列表如下:(2)描点、连线,如图所示.13.利用正弦曲线,求满足12<sin x ≤32的x 的集合.解 首先作出y =sin x 在[0,2π]上的图象,如图所示,作直线y =12,根据特殊角的正弦值,可知该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π6和5π6; 作直线y =32,该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π3和2π3. 观察图象可知,在[0,2π]上,当π6<x ≤π3或2π3≤x <5π6时,不等式12<sin x ≤32成立. 所以12<sin x ≤32的解集为{x |π6+2k π<x ≤π3+2k π或2π3+2k π≤x <5π6+2k π,k ∈Z }.四、探究与拓展14.已知函数y =2sin x (π2≤x ≤5π2)的图象与直线y =2围成一个封闭的平面图形,那么此封闭图形的面积为( ) A.4 B.8 C.4π D.2π答案 C解析 数形结合,如图所示.y =2sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,5π2的图象与直线y =2围成的封闭平面图形的面积相当于由x =π2,x =5π2,y =0,y =2围成的矩形面积,即S =⎝ ⎛⎭⎪⎫5π2-π2×2=4π.15.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据图象可得k 的取值范围是(1,3).。
【课题】 5.4.1正弦函数、余弦函数的图像【教材分析】本节内容选自《普通高中课程标准实验教科书数学必修第一册(人教版A 版)》第五章《三角函数》第四节“三角函数的图像与性质”的第一课时“正弦函数、余弦函数的图像”。
本节主要内容是正弦函数和余弦函数的图象画法,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等。
此前已学习三角函数的概念和诱导公式。
在此基础上学习正弦函数和余弦函数的图像画法,为后续研究正弦函数和余弦函数的性质、正切函数的图象与性质、函数y=Asin(ωx+φ)的图象的研究打好基础,起到了承上启下的作用,因此,本节的学习有着极其重要的地位。
【学情分析】◆ 从学生的知识层面上:1、学习过任意角三角函数的定义,三角函数的诱导公式等知识。
2、已学习用描点法绘制函数图像。
本节课主要学习几何法,利用三角函数定义绘制函数图象是第一次。
◆ 从学生的能力层面上:1、拥有基础的绘制函数图象的经验。
2、具备通过图形平移变换作图的能力和数形结合思想。
【教学目标】 课标要求:1、利用三角函数的概念画x y sin =,x y cos =的图像。
2、掌握“五点法”画x y sin =、x y cos =的图像的步骤和方法;利用“五点法”作简单的正弦、余弦曲线。
3、理解x y sin =与x y cos =的图像之间的联系。
素养要求通过利用三角函数概念和“五点法”作x y sin =与x y cos =的图像,提升学生的数学抽象、逻辑推理和直观想象能力。
【教学重点】理解“几何法”画正弦函数图像;掌握“五点法”画正弦函数和余弦函数的简图。
【教学难点】利用正弦函数概念作图以及正弦函数和余弦函数的图像变换。
【教学策略方法】学生为主体,教师为主导。
采用问题引导探究式教学和小组合作式学习法。
【教学设备及工具】几何画板、Geogebra 软件、坐标纸、课件、多媒体、翻页笔。
教学过程设计教学环节教学内容设计意图(一)创设情景引入课题师:同学们前几天我在网络上看到一则动画,很好看,你们想看吗?请观察物理实验“简谐运动”。
11.3.1正弦函数的图象和性质(1)【学习目标】1. 会用单位圆中的正弦线画正弦函数的图象;2. 会用五点法画函数y = sinx ,x ∈[0,2π]的图象。
【重点】用五点法绘制正弦函数图象。
【难点】运用几何法画正弦函数图象。
】1.正弦函数:___________________________。
2.x y sin =的图象叫做__________________。
3.作图几何法的作图步骤:(1)x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆; (2)从圆与 x 轴交点 A 起把圆分成 12 等份;(3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π、 、2π的正弦线;(4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份;(5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合;(6)用光滑曲线把这些正弦线的终点连结起来。
五点法:在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就得到这个函数的简图。
我们称这种方法为“五点法”,这五个关键点是:___________________________,描出这五个点后,函数y=sinx ,x ∈[0,2π]的图象的形状就基本上确定了。
4.性质:例1.用“五点法”作函数y 1sin x,x [0,2]=+∈π的简图。
(1)列表(2)描点作图思考:如何得到y= -sinx ,y=sin x-4π(),y=sin x+2π()的图象? [变式1]用“五点法”作函数y=3sin 2x+3π()的简图21、用五点法作2sin 2y x =的图象,首先应描的五点的横坐标可以是( )A.30,,,,222ππππ B. 30,,,,424ππππC. 0,,2,3,4ππππD.20,,,,6323ππππ2、1sin ,2.1sin ,5.1sin 的大小关系是( ) A .5.1sin 2.1sin 1sin B .2.1sin 5.1sin 1sin C .1sin 2.1sin 5.1sin D.5.1sin 1sin 2.1sin3、函数y =|sin x |的最小正周期是( )A .2πB .πC .2πD .4π4、函数y =x sin x 的部分图象是()*5、已知函数5y=2sin x,x ,22ππ⎡⎤∈⎢⎥⎣⎦的图象与直线y =2围成一个封闭的平面图形,那么此封闭图形的面积是( )A .4B .8C .4πD .2π *6、方程5cos x-=lg x 2π()的解的个数是( ) A .1 B .2 C .3 D .4 *7、y=sinx-sin x 的值域是( )A .[]-1,0B .[]0,1C .[]-1,1D .[]-2,08、在[0,2π]上sin x ≥12的x 的取值范围是( )A .⎣⎢⎡⎦⎥⎤0,π6B .⎣⎢⎡⎦⎥⎤π6,5π6C .⎣⎢⎡⎦⎥⎤π6,23πD .⎣⎢⎡⎦⎥⎤56π,π 9、若aa x --=432sin ,那么a 的取值范围是( ) A .[)+∞,4B .(]1,-∞-C .(]⎪⎭⎫⎢⎣⎡+∞-∞-,371,D .⎥⎦⎤⎢⎣⎡-37,110、函数⎥⎦⎤⎢⎣⎡-∈=32,6,sin ππx x y 的值域是( ) A .[]1,1- B .⎥⎦⎤⎢⎣⎡-1,21 C .⎥⎦⎤⎢⎣⎡-23,21 D .⎥⎦⎤⎢⎣⎡23,2111求下列函数的定义域:225sin x x y -+=12、求下列函数的值域:⎥⎦⎤⎢⎣⎡∈+-=43,3,1sin sin 2ππx x x y。
1.4.1 正弦函数、余弦函数的图象[教材研读]预习课本P30~33,思考以下问题1.观察教材P31图1.4-3,你认为正弦曲线是如何画出来的?2.在作正弦函数的图象时,应抓住哪些关键点?3.作余弦函数的图象时,应抓住哪些关键点?[要点梳理]1.正弦曲线正弦函数y=sin x,x∈R的图象叫正弦曲线.2.正弦函数图象的画法(1)几何法①利用正弦线画出y=sin x,x∈[0,2π]的图象;②将图象向左、向右平行移动(每次2π个单位长度). (2)五点法①画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0),用光滑的曲线连接;②将所得图象向左、向右平行移动(每次2π个单位长度). 3.余弦曲线余弦函数y =cos x ,x ∈R 的图象叫余弦曲线.4.余弦函数图象的画法(1)要得到y =cos x 的图象,只需把y =sin x 的图象向左平移π2个单位长度即可,这是由于cos x =sin ⎝⎛⎭⎪⎫x +π2.(2)用“五点法”:画余弦曲线y =cos x 在[0,2π]上的图象时,所取的五个关键点分别为(0,1), ⎛⎭⎪⎫π2,0,(π,-1), ⎛⎭⎪⎫3π2,0,(2π,1),再用光滑的曲线连接.[自我诊断]判断(正确的打“√”,错误的打“×”)1.函数y =cos x 的图象与y 轴只有一个交点.( ) 2.将余弦曲线向右平移π2个单位就得到正弦曲线.( )3.函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,5π2的图象与函数y =cos x ,x ∈[0,2π]的图象的形状完全一致.( )[答案] 1.√ 2.√ 3.√题型一用“五点法”作简图思考:“五点法”中“五点”指什么?提示:“五点法”作图中的“五点”是指函数的最高点、最低点以及图象与坐标轴的交点.这是作正弦函数、余弦函数图象最常用的方法.用“五点法”作出下列函数的简图.(1)y=sin x-1,x∈[0,2π];(2)y=2+cos x,x∈[0,2π].[思路导引] 利用“五点法”作函数简图时,应先列表,再描点,再连线.[解](1)列表:(2)列表:用五点法画函数y =A sin x +b (A ≠0)或y =A cos x +b (A ≠0)在[0,2π]上的简图的步骤如下(1)列表:(2)描点:在平面直角坐标系中描出下列五个点:(0,y ),⎝ ⎛⎭⎪⎫2,y ,(π,y ),⎝ ⎛⎭⎪⎫3π2,y ,(2π,y ),这里的y 是通过函数式计算得到的.(3)连线:用光滑的曲线将描出的五个点连接起来,不要用线段进行连接.【温馨提示】 作图时自变量要用弧度制,这样自变量与函数值均为实数,在x 轴,y轴上统一单位,作出的图象正规,便于使用.[跟踪训练]用“五点法”作出函数y =2-sin x ,x ∈[0,2π]的图象. [解] 列表如下:题型二 正、余弦函数图象的简单应用 思考:求角sin x >a (或cos x >a )的方法有哪些? 提示:①函数图象法;②三角函数线法.利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合. (1)sin x ≥12;(2)cos x ≤12.[思路导引] 先在[0,2π]上找到使等式成立的关键点,再依据图象或三角函数线找到不等式的解.[解] 解法一:函数图象法(1)作出正弦函数y =sin x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为⎣⎢⎡⎦⎥⎤π6+2k π,5π6+2k π,k ∈Z .(2)作出余弦函数y =cos x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为⎣⎢⎡⎦⎥⎤π3+2k π,5π3+2k π,k ∈Z .解法二:三角函数线法(1)作直线y =12交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π6≤α≤2k π+56π,k ∈Z. (2)作直线x =12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π3≤α≤2k π+5π3,k ∈Z.用三角函数图象解三角不等式的步骤(1)作出相应的正弦函数或余弦函数在[0,2π]上的图象(也可以是[-π,π]上的图象); (2)在[0,2π]上或([-π,π]上)写出适合三角不等式的解集; (3)根据公式一写出定义域内的解集.[跟踪训练]利用正弦曲线,求满足12<sin x ≤32的x 的集合.[解] 先作出y =sin x 在[0,2π]上的图象,如图所示,作直线y =12,根据特殊角的正弦值,可知该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π6和5π6;作直线y =32,该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π3和2π3. 观察图象可知,在[0,2π]上,当π6<x ≤π3,或2π3≤x <5π6时,不等式12<sin x ≤32成立.所以12<sin x ≤32的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π<x ≤π3+2k π,或2π3+2k π≤x <5π6+2k π,k ∈Z. 课堂归纳小结1.本节课的重点是“五点法”作正弦函数和余弦函数的图象,难点是图象的应用. 2.本节课重点掌握正、余弦函数的两个问题 (1)用“五点法”作简图,见典例1; (2)正、余弦函数图象的简单应用,见典例2. 3.本节课要牢记正、余弦函数图象中五点的确定y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象上的关键五点分为两类:①图象与x 轴的交点;②图象上的最高点和最低点.其中,y =sin x ,x ∈[0,2π]与x 轴有三个交点:(0,0),(π,0),(2π,0),图象上有一个最高点⎝ ⎛⎭⎪⎫π2,1,一个最低点⎝ ⎛⎭⎪⎫3π2,-1;y =cos x ,x ∈[0,2π]与x 轴有两个交点:⎝ ⎛⎭⎪⎫π2,0,⎝ ⎛⎭⎪⎫3π2,0,图象上有两个最高点:(0,1),(2π,1),一个最低点(π,-1).1.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )[解析] 将x =-π2代入y =-sin x 中,得y =-sin ⎝ ⎛⎭⎪⎫-π2=sin π2=1. 故排除A 、B 、C ,故选D. [答案] D2.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴B .y 轴C .直线y =xD .直线x =π2[解析] 观察正弦函数图象,可得直线x =π2为其一条对称轴.[答案] D3.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( )A.⎝⎛⎭⎪⎫π6,12B.⎝⎛⎭⎪⎫π2,1C .(π,0)D .(2π,0)[解析] 五个关键点为(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0),故选A. [答案] A4.函数y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=________.[解析] 方法一:y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点坐标为⎝ ⎛⎭⎪⎫7π6,-12和⎝⎛⎭⎪⎫11π6,-12,故x 1+x 2=7π6+11π6=18π6=3π.方法二:∵A 、B 两点关于x =3π2对称,∴x 1+x 2=2×3π2=3π.[答案] 3π5.不等式cos x <0,x ∈[0,2π]的解集为________.[解析] 由y =cos x ,x ∈[0,2π]的图象知cos x <0的解为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π2<x <3π2. [答案] ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π2<x <3π2。
1.3 三角函数的图象与性质 1.3.1 正弦函数的图象与性质 第1课时 正弦函数的图象与性质1.能正确使用“五点法”、“几何法”作出正弦函数的图象.(难点)2.理解正弦函数的性质,会求正弦函数的最小正周期、奇偶性、单调区间及最值.(重点)[基础·初探]教材整理1 正弦函数的图象阅读教材P 37~P 38“例1”以上部分,完成下列问题.1.利用正弦线可以作出y =sin x ,x ∈[0,2π]的图象,要想得到y =sin x (x ∈R )的图象,只需将y =sin x ,x ∈[0,2π]的图象沿x 轴平移±2π,±4π…即可,此时的图象叫做正弦曲线.2.“五点法”作y =sin x ,x ∈[0,2π]的图象时,所取的五点分别是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1和(2π,0).判断(正确的打“√”,错误的打“×”) (1)正弦函数的图象向左右是无限伸展的.( )(2)正弦函数y =sin x 的图象在x ∈[2k π,2k π+2π],(k ∈Z )上的图象形状相同,只是位置不同.( )(3)正弦函数y =sin x (x ∈R )的图象关于x 轴对称.( ) (4)正弦函数y =sin x (x ∈R )的图象关于原点成中心对称.( )【解析】由正弦曲线的定义可知只有(3)错误.【答案】(1)√(2)√(3)×(4)√教材整理2正弦函数的性质阅读教材P39~P40“例2”以上部分,完成下列问题.1.函数的周期性(1)周期函数:对于函数f (x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f (x+T)=f (x),那么函数f (x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:对于一个周期函数f (x),如果在它的所有周期中存在一个最小的正数,那么这个最小正数就叫做它的最小正周期.2.正弦函数的性质函数y=sin x定义域(-∞,+∞)值域[-1,1]奇偶性奇函数周期性最小正周期:2π单调性在⎣⎢⎡⎦⎥⎤2kπ-π2,2kπ+π2(k∈Z)上递增;在⎣⎢⎡⎦⎥⎤2kπ+π2,2kπ+32π(k∈Z)上递减最值x=2kπ+π2,(k∈Z)时,y最大值=1;x=2kπ-π2(k∈Z)时,y最小值=-1函数y=sin x的一条对称轴是()A.x=π2 B.x=π4C.x=0D.x=π【解析】y=sin x的对称轴是x=kπ+π2(k∈Z),∴应选A.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________解惑:_________________________________________________________ 疑问2:_________________________________________________________ 解惑:_________________________________________________________ 疑问3:_________________________________________________________ 解惑:_________________________________________________________ 疑问4:_________________________________________________________解惑:_________________________________________________________[小组合作型]五点法作函数的图象作函数y=sin x,x∈[0,2π]与函数y=-1+sin x,x∈[0,2π]的简图,并研究它们之间的关系.【导学号:72010021】【精彩点拨】可以用“五点法”原理在同一坐标系中作出两函数的图象,然后比较它们的关系.【自主解答】按五个关键点列表:x 0π2π3π22πsin x 010-10-1+sin x -10-1-2-1由图象可以发现,把y=sin x,x∈[0,2π]的图象向下平移1个单位长度即可得y=-1+sin x,x∈[0,2π]的图象.1.五点法作图,要抓住五个关键点,使函数式中的x 依次取0,π2,π,32π,2π,然后解出相应的y 值,再描点,连线得出图象.2.y =sin x ±b 的图象可以由y =sin x 的图象上、下平移获得. [再练一题]1.作出函数y =1+sin x (x ∈[0,2π])的简图. 【解】 列表:x 0 π2 π 32π 2π y1211描点连线:求三角函数的周期求下列函数的最小正周期.(1)y =sin 12x ; (2)y =2sin ⎝ ⎛⎭⎪⎫x 3-π6.【精彩点拨】 求周期的方法可以用诱导公式sin(x +2k π)=sin x 得到. 【自主解答】 (1)如果令u =12x ,则sin 12x =sin u 是周期函数,且最小正周期为2π.∴sin ⎝ ⎛⎭⎪⎫12x +2π=sin 12x ,即sin ⎣⎢⎡⎦⎥⎤12(x +4π)=sin 12x .∴y =sin 12x 的最小正周期是4π. (2)∵2sin ⎝ ⎛⎭⎪⎫x 3-π6+2π=2sin ⎝ ⎛⎭⎪⎫x 3-π6,即2sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π6=2sin ⎝ ⎛⎭⎪⎫x 3-π6,∴y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的最小正周期是6π.用定义求周期时应注意,从等式f (x +T )=f (x )来看,应强调是自变量x 本身加的常数才是周期,如:f (2x +T )=f (2x ),T 不是周期,要写成f (2x +T )=f ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +T 2=f (2x ),T 2是f (x )的周期.[再练一题]2.求下列函数的周期: (1)y =sin ⎝ ⎛⎭⎪⎫2x +π3;(2)y =|sin x |.【解】 (1)∵sin ⎝ ⎛⎭⎪⎫2x +π3=sin ⎝ ⎛⎭⎪⎫2x +π3+2π,即sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π+π3=sin ⎝ ⎛⎭⎪⎫2x +π3,∴y =sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期是π.(2)令f (x )=|sin x |,则f (k π+x )=|sin(k π+x )|=|±sin x |=|sin x |=f (x )(k ∈Z 且k ≠0).∴k π是函数f (x )的周期,则最小正周期为π.正弦函数的单调性及应用已知函数f (x )=sin x -1.(1)写出f (x )的单调区间;(2)求f (x )的最大值和最小值及取得最值时x 的集合; (3)比较f ⎝ ⎛⎭⎪⎫-π18与f ⎝ ⎛⎭⎪⎫-π12的大小. 【精彩点拨】 结合正弦函数的单调性及单调区间求解即可.【自主解答】 (1)∵函数f (x )=sin x -1与g (x )=sin x 的单调区间相同, ∴f (x )=sin x -1的增区间为 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ), 减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+32π(k ∈Z ).(2)∵函数g (x )=sin x ,当x =2k π+π2(k ∈Z )时,取最大值1, 当x =2k π+32π(k ∈Z )时,取最小值-1. ∴函数f (x )=sin x -1,当x =2k π+π2(k ∈Z )时,取最大值0, 当x =2k π+32π(k ∈Z )时,取最小值-2. (3)f ⎝ ⎛⎭⎪⎫-π18=sin ⎝ ⎛⎭⎪⎫-π18-1,f ⎝ ⎛⎭⎪⎫-π12=sin ⎝ ⎛⎭⎪⎫-π12-1, ∵-π2<-π12<-π18<π2,且y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,∴sin ⎝ ⎛⎭⎪⎫-π12<sin ⎝ ⎛⎭⎪⎫-π18. ∴f ⎝ ⎛⎭⎪⎫-π18>f ⎝ ⎛⎭⎪⎫-π12.1.求正弦函数的单调区间和最值时要联系正弦函数的图象,同时注意三角函数的周期性.2.比较三角函数值的大小时,需要把角化为同一单调区间上的同名三角函数,然后用三角函数的单调性即可,如果角不在同一单调区间上,一般用诱导公式进行转化,然后再比较.[再练一题] 3.比较大小:(1)sin 250°与sin 260°; (2)sin ⎝ ⎛⎭⎪⎫-235π与sin ⎝ ⎛⎭⎪⎫-174π.【解】 (1)sin 250°=sin(180°+70°)=-sin 70°,sin 260°=sin(180°+80°)=-sin 80°,因为0°<70°<80°<90°,且函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2是增函数,所以sin 70°<sin 80°,所以-sin 70°>-sin 80°,即sin 250°>sin 260°. (2)sin ⎝ ⎛⎭⎪⎫-23π5=-sin 23π5=-sin 3π5=-sin ⎝ ⎛⎭⎪⎫π-2π5=-sin 2π5, sin ⎝ ⎛⎭⎪⎫-17π4=-sin 17π4=-sin π4. 因为0<π4<2π5<π2,且函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2是增函数,所以sin π4<sin 2π5,-sin π4>-sin 2π5, 即sin ⎝ ⎛⎭⎪⎫-23π5<sin ⎝ ⎛⎭⎪⎫-17π4.[探究共研型]正弦函数的值域与最值问题探究1 函数y =sin ⎝ ⎛⎭⎪⎫x +4在x ∈[0,π]上最小值能否为-1?【提示】 不能.因为x ∈[0,π],所以x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,由正弦函数图象可知函数的最小值为-22.探究2 函数y =A sin x +b ,x ∈R 的最大值一定是A +b 吗?【提示】 不是.因为A >0时最大值为A +b ,若A <0时最大值应为-A +b .求下列函数的值域.(1)y =3+2sin ⎝ ⎛⎭⎪⎫2x -π3;(2)y =1-2sin 2x +sin x .【精彩点拨】 (1)用|sin α|≤1构建关于y 的不等式,从而求得y 的取值范围.(2)用t 代替sin x ,然后写出关于t 的函数,再利用二次函数的性质及|t |≤1即可求出y 的取值范围.【自主解答】 (1)∵-1≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1, ∴-2≤2sin ⎝ ⎛⎭⎪⎫2x -π3≤2,∴1≤2sin ⎝ ⎛⎭⎪⎫2x -π3+3≤5,∴1≤y ≤5,即函数y =3+2sin ⎝ ⎛⎭⎪⎫2x -π3的值域为[1,5]. (2)y =1-2sin 2x +sin x , 令sin x =t ,则-1≤t ≤1, y =-2t 2+t +1=-2⎝ ⎛⎭⎪⎫t -142+98.由二次函数y =-2t 2+t +1的图象可知-2≤y ≤98, 即函数y =1-2sin 2x +sin x 的值域为⎣⎢⎡⎦⎥⎤-2,98.1.换元法,旨在三角问题代数化,要防止破坏等价性.2.转化成同一函数,要注意不要一见sin x 就有-1≤sin x ≤1,要根据x 的范围确定.[再练一题]4.设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值. 【解】 f (x )=cos 2x +sin x =1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54.∵|x |≤π4,∴-22≤sin x ≤22, ∴当sin x =-22时取最小值为1-22.1.以下对于正弦函数y =sin x 的图象描述不正确的是( ) A.在x ∈[2k π,2k π+2π],k ∈Z 上的图象形状相同,只是位置不同 B.关于x 轴对称C.介于直线y =1和y =-1之间D.与y 轴仅有一个交点【解析】 观察y =sin x 图象可知A ,C ,D 正确,且关于原点中心对称,故选B.【答案】 B2.下列图象中,是y =-sin x 在[0,2π]上的图象的是( )【解析】 由y =sin x 在[0,2π]上的图象作关于x 轴的对称图形,应为D 项. 【答案】 D3.点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( )A.0B.1C.-1D.2【解析】 由题意-m =sin π2,∴-m =1,∴m =-1. 【答案】 C4.若sin x =2m +1且x ∈R ,则m 的取值范围是__________.【导学号:72010022】【解析】 因为-1≤sin x ≤1,sin x =2m +1, 所以-1≤2m +1≤1,解得-1≤m ≤0. 【答案】 [-1,0]5.(2016·西安高一检测)用五点法画出函数y =-2sin x 在区间[0,2π]上的简图. 【解】 列表:x 0 π2 π 3π2 2π sin x 0 1 0 -1 0 y =-2sin x-22我还有这些不足:(1)_________________________________________________________ (2)_________________________________________________________ 我的课下提升方案:(1)_________________________________________________________ (2)_________________________________________________________学业分层测评(八)(建议用时:45分钟)[学业达标]一、选择题1.函数y =sin|x |的图象是( )【解析】 ∵函数y =sin|x |是偶函数,且x ≥0时,sin|x |=sin x .故应选B.【答案】 B2.(2016·济南高一检测)函数y =|sin x |的一个单调递增区间是( )A.⎝ ⎛⎭⎪⎫π2,π B.(π,2π) C.⎝ ⎛⎭⎪⎫π,3π2 D.(0,π)【解析】 作出函数y =|sin x |的图象,如图,观察图象知C 正确, 故选C.【答案】 C3.在[0,2π]内,不等式sin x <-32的解集是( )【导学号:72010023】A.(0,π)B.⎝ ⎛⎭⎪⎫π3,4π3C.⎝ ⎛⎭⎪⎫4π3,5π3D.⎝ ⎛⎭⎪⎫5π3,2π 【解析】 画出y =sin x ,x ∈[0,2π]的草图如下:因为sin π3=32,所以sin ⎝ ⎛⎭⎪⎫π+π3=-32, sin ⎝ ⎛⎭⎪⎫2π-π3=-32. 即在[0,2π]内,满足sin x =-32的是x =4π3或x =5π3.可知不等式sin x <-32的解集是⎝ ⎛⎭⎪⎫4π3,5π3. 【答案】 C4.(2016·兰州高一检测)设a >0,对于函数f (x )=sin x +a sin x (0<x <π),下列结论正确的是( )A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值【解析】 因为0<x <π,所以0<sin x ≤1,1sin x ≥1,所以函数f (x )=sin x +a sin x =1+a sin x 有最小值而无最大值,故选B.【答案】 B5.函数y =sin(2x +φ)(0≤φ≤π)是R 上的偶函数,则φ的值是( )A.0B.π4C.π2D.π 【解析】 当φ=π2时,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x ,而y =cos 2x 是偶函数,故选C.【答案】 C 二、填空题6.y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的周期是23π,则ω=________. 【解析】 根据题意有sin ⎝ ⎛⎭⎪⎫ω⎝⎛⎭⎪⎫x +2π3+π3=sin ⎝ ⎛⎭⎪⎫ωx +π3, sin ⎝ ⎛⎭⎪⎫ωx +2πω3+π3=sin ⎝ ⎛⎭⎪⎫ωx +π3, ∴2π3ω=2π,∴ω=3.【答案】 37.函数y =log 2(sin x )的定义域为________.【解析】 据题意知sin x >0,得x ∈(2k π,2k π+π)(k ∈Z ).【答案】 (2k π,2k π+π)(k ∈Z )8.(2016·杭州高一检测)若x 是三角形的最小角,则y =sin x 的值域是________.【解析】 由三角形内角和为π知,若x 为三角形中的最小角,则0<x ≤π3,由y =sin x 图象知y ∈⎝⎛⎦⎥⎤0,32. 【答案】 ⎝⎛⎦⎥⎤0,32 三、解答题9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 【解】 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32, ∴f ⎝ ⎛⎭⎪⎫5π3=32. 10.已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x -π3+b 的定义域为⎣⎢⎡⎦⎥⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.【解】 ∵0≤x ≤π2,∴-π3≤2x -π3≤23π,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,易知a ≠0. 当a >0时,最大值为2a +b =1,最小值为-3a +b =-5.由⎩⎨⎧ 2a +b =1,-3a +b =-5,解得⎩⎨⎧ a =12-63,b =-23+12 3.当a <0时,最大值为-3a +b =1,最小值为2a +b =-5.由⎩⎨⎧ -3a +b =1,2a +b =-5,解得⎩⎨⎧a =-12+63,b =19-12 3.[能力提升]1.函数y =sin(-x ),x ∈[0,2π]的简图是( )【解析】 因为y =sin(-x )=-sin x ,x ∈[0,2π]的图象可看作是由y =sin x ,x ∈[0,2π]的图象关于x 轴对称得到的.故选B.【答案】 B2.直线x sin α+y +2=0的倾斜角的取值范围是________.【解析】 ∵sin α∈[-1,1],∴-sin α∈[-1,1],∴已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π【答案】 ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π3.已知直线y =a ,函数y =sin x ,x ∈[0,2π],试探求以下问题.(1)当a 为何值时,直线y =a 与函数y =sin x 的图象只有一个交点?(2)当a 为何值时,直线与函数图象有两个交点?(3)当a 为何值时,直线与函数图象有三个交点?(4)当a 为何值时,直线与函数图象无交点?【解】 作出直线y =a ,与函数y =sin x ,x ∈[0,2π]的图象(如图所示),由图象可知.(1)当a =1或-1时,直线与函数图象只有一个交点.(2)当-1<a <0或0<a <1时,直线与函数图象有两个交点.(3)当a =0时,直线与函数图象有三个交点.(4)当a <-1或a >1时,直线与函数图象无交点.。
正弦函数导学案(全章)
1. 引言
本导学案将介绍正弦函数的基本概念、性质和应用。
正弦函数
是数学中重要的三角函数之一,广泛应用于物理、工程等领域。
通
过研究本章内容,我们将能够深入了解和掌握正弦函数的定义、图像、周期性和幅度等特点。
2. 正弦函数的定义和图像
- 正弦函数是以角度为自变量的周期函数。
它的定义域是所有
实数,值域是[-1, 1]。
- 正弦函数的图像具有周期性,每个周期内有一个完整的波形。
- 正弦函数的图像呈现出波浪形态,通过观察图像可以推断函
数的特点和变化规律。
3. 正弦函数的周期性和幅度
- 正弦函数的周期性是指函数在一定角度范围内重复的特性。
对于正弦函数来说,它的周期是360度或2π弧度。
- 正弦函数的幅度是指函数图像在垂直方向上的最大偏移量。
对于正弦函数来说,它的幅度是1。
4. 正弦函数的性质和应用
- 正弦函数具有奇偶性,即sin(x) = -sin(-x)。
- 正弦函数可以表示物理振动的变化规律,例如弹簧振动、声波等。
- 正弦函数在信号处理、电路分析等领域有广泛应用。
5. 总结
正弦函数是数学中重要的三角函数,具有周期性、波浪形态和幅度等特点。
通过研究正弦函数的定义、图像、周期性和幅度等内容,我们能够更好地理解和应用正弦函数在物理和工程问题中的作用。
掌握正弦函数的性质和应用可以帮助我们解决实际问题,并提高数学和科学的应用能力。
第五章三角函数5.4.1 正弦函数、余弦函数的图像1.了解正弦函数、余弦函数图象的来历,掌握“五点法”画出正弦函数、余弦函数的图象的方法.2.正、余弦函数图象的简单应用.3.正、余弦函数图象的区别与联系.重点:理解并掌握用单位圆中的正弦线作正弦函数的图象的方法。
难点:理解作余弦函数的图象的方法。
教材整理1正弦曲线和余弦曲线1.可以利用单位圆中的______线作y=sin x,x∈[0,2π]的图象.2.y=sin x,x∈[0,2π]的图象向____、____平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x,x∈R的图象.3.正弦函数y=sin x,x∈R的图象和余弦函数y=cos x,x∈R的图象分别叫做__________和__________.教材整理2正弦曲线和余弦曲线“五点法”作图1.“五点法”作图的一般步骤是______⇒______⇒______.提出问题下面先研究函数y=sinx,x∈R 的图象,从画函数y=sinx,x∈[0,2π]的图象开始.在[0,2π]上任取一个值x0,如何利用正弦函数的定义,确定正弦函数值sinx0并画出点T(x0,sinx0)?问题探究如图5.4.1,在直角坐标系中画出以原点O为圆心的单位圆,⊙O与x轴正半轴的交点为A(1,0).在单位圆上,将点A绕着点O旋转x0弧度至点B,根据正弦函数的定义,点B的纵坐标y0= sinx0.由此,以x0为横坐标,y0为纵坐标画点,即得到函数图象上的点T(x0,sinx0).若把x轴上从0到2π这一段分成12等份,使x0的值分别为0,π6, π3, π2,…2π,它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点T(x0,sinx0)的方法,就可画出自变量取这些值时对应的函数图象上的点(图5.4.2).事实上,利用信息技术,可使x0在区间[0,2π]上取到足够多的值而画出足够多的点T(x0,sinx0),将这些点用光滑的曲线连接起来,可得到比较精确的函数y=sinx,x∈[0,2π]的图象.根据函数y=sinx,x∈[0,2π]的图象,你能想象函数y=sinx,x∈R 的图象吗?由诱导公式一可知,函数y=sinx,x∈[2kπ,2(k+1)π ],k∈Z且k≠0的图象与y=sinx,x∈[0,2π]的图象形状完全一致.因此将函数y=sinx,x∈[0,2π]的图象不断向左、向右平移(每次移动2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象(图5.4.4).正弦函数的图象叫做正弦曲线(sinecueve),是一条“波浪起伏”的连续光滑曲线.思考:在确定正弦函数的图象形状时,应抓住哪些关键点?观察图5.4.3,在函数y =sinx , x ∈[0,2π]的图象上,以下五个点:(0,0),(π2,1),(π,0)(3π2,−1),(2π,0)在确定图象形状时起关键作用.描出这五个点,函数y =sinx , x ∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种近似的“五点(画图)法”是非常实用的.由三角函数的定义可知,正弦函数、余弦函数是一对密切关联的函数.下面我们利用这种关系,借助正弦函数的图象画出余弦函数的图象.思考:你认为应该利用正弦函数和余弦函数的哪些关系,通过怎样的图形变换,才能将正弦函数的图象变换为余弦函数的图象?对于函数y =cosx , 由诱导公式cosx =sin(x +π2) 得,y =cosx =sin (x +π2),x ∈R . 而函数y =sin (x +π2),x ∈R 的图象可以通过正弦函数y =sinx , x ∈R 的图象向左平移π2个单位长度而得到.所以,将正弦函数的图象向左平移π2个单位长度,就得到余弦函数的图象,如图5.4.5 所示.你能说明理由吗?余弦函数y =cosx , x ∈R 的图象叫做余弦曲线(cosinecurve ).它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.类似于用“五点法”画正弦函数图象,找出余弦函数在区间[-π,π]上相应的五个关键点,将它们的坐标填入表5.4.1,然后画出y =cosx , x ∈[-π,π]的简图 例1、用“五点法”作出下列函数的简图. (1)y =1+sin x ,x ∈[0,2π]; (2)y =-cos x ,x ∈[0,2π].【精彩点拨】 在[0,2π]上找出五个关键点,用光滑的曲线连接即可.在直角坐标系中描出五点,然后用光滑曲线顺次连接起来,就得到y =1+sin x ,x ∈[0,2π]的图象. 你能利用函数y =sin x ,x ∈[0,2π]的图象,通过图象变换得到y =1+sin x ,x ∈[0,2π]的图象吗?同样地,利用函数y =cos x ,x ∈[0,2π] 图象,通过怎样的图象变换就能得到函数y =-cos x ,x ∈[0,2π] 的图象? 方法与规律1.“五点法”是作三角函数图象的常用方法,“五点”即函数图象最高点、最低点与x 轴的交点. 2.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点.1.以下对于正弦函数y =sin x 的图象描述不正确的是( ) A .在x ∈[2k π,2k π+2π],k ∈Z 上的图象形状相同,只是位置不同 B .关于x 轴对称C .介于直线y =1和y =-1之间D .与y 轴仅有一个交点2.用“五点法”作函数y =cos 2x ,x ∈R 的图象时,首先应描出的五个点的横坐标是( ) A .0,π2,π,3π2,2π B .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π33.点M ⎝⎛⎭⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1C .-1 D .24.函数y =cos x 与函数y =-cos x 的图象( )A .关于直线x =1对称B .关于原点对称C .关于x 轴对称D .关于y 轴对称 5.方程x 2-cos x =0的实数解的个数是__________. 6.用“五点法”画出y =cos ⎝⎛⎭⎫7π2-x ,x ∈[0,2π]的简图.1.正、余弦函数的图象每相隔2π个单位重复出现,因此,只要记住它们在[0,2π]内的图象形态,就可以画出正弦曲线和余弦曲线.2.作与正、余弦函数有关的函数图象,是解题的基本要求,用“五点法”作图是常用的方法.参考答案:一、知识梳理正弦;左;右;正弦曲线;余弦曲线;列表;描点;连线二、学习过程例1【解析】(1)列表:(2)列表:描点连线,如图三、达标检测1. 【解析】 观察y =sin x 的图象可知A ,C ,D 正确,且关于原点中心对称,故选B. 【答案】 B2.【解析】 令2x =0,π2,π,3π2和2π,得x =0,π4,π2,3π4,π,故选B.【答案】 B3.【解析】 由题意-m =sin π2,∴-m =1,∴m =-1.【答案】 C4. 【解析】 作出函数y =cos x 与函数y =-cos x 的简图(略),易知它们关于x 轴对称,故选C. 【答案】 C5.【解析】 作函数y =cos x 与y =x 2的图象,如图所示,由图象,可知原方程有两个实数解. 【答案】 26.【解】 由诱导公式得y =cos ⎝⎛⎭⎫7π2-x =-sin x , (1)列表:x 0 π2 π 3π2 2π -sin x-11(2)描点:在坐标系内描出点(0,0),⎝⎛⎭⎫π2,-1,(π,0),⎝⎛⎭⎫3π2,1,(2π,0). (3)作图:将上述五点用平滑的曲线顺次连接起来.。
2019-2020学年高一数学 正弦函数图像1导学案
学会用参数思想讨论()sin y A x ωϕ=+函数的图象变换过程,掌握图象变换与函数解析式的内在联系的认识,会用五点法作图。
二、文本研读
阅读教材P49——P50探究(一)回答下列问题
1、你能说出sin 3y x π⎛⎫=+
⎪⎝⎭
和y=sinx 的关系?请把研究办法写出
2、请大家协同完成函数sin 4y x π⎛⎫=- ⎪⎝
⎭的图象,并与y=sinx 的图象比较并与上面的到的结论的共同点写出
阅读教材P50——P51探究(二)回答下列问题
1、sin 2sin y x y x ==与图象的关系你知道吗?作图试验一下。
2、sin 2sin 33y x y x ππ⎛
⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝
⎭与的关系与上面一样吗?比较后写出结论
三、知识应用
1、完成下列各题
(1)y =s in(x +
4
π)是由y =sin x 向_______平移_____-个单位得到的 (2)y =sin(x -4
π)是由y =sin x 向______平移________个单位得到的 (3)y =sin(x -4π)是由y =sin(x +4π)向______平移______个单位得到的 2、下列变换中,正确的是( )
A 将y =sin2x 图象上的横坐标变为原来的2倍(纵坐标不变)即可得到 y =sin x 的图象
B 将y =s in2x 图象上的横坐标变为原来的2
1倍(纵坐标不变)即可得到 y =sin x 的图象 C 将y =-sin2x 图象上的横坐标变为原来的2
1倍,纵坐标变为原来的相反 数,即得到y =sin x 的图象 D 将y =-3sin2x 图象上的横坐标缩小一倍,纵坐标扩大到原来的
31倍, 且变为相反数,即得到y =sin x 的图象
4、把函数y =cos(3x +
4π)的图象适当变动就可以得到y =cos(3x )的图象,这种变动可以是( ) A 向右平移4π B 向左平移4
π C 向右平移12π D 向左平移12π 四、实战演练
2.为了得到sin(3)4y x π=-
的图象,只要将sin 3y x =的图象( )
A .向左平移4π个单位
B 向右平移4π个单位
C .向左平移12π个单位
D 向右平移12π个单位
5、用图象变换的方法写出在同一坐标系内由y =sin x 的图象画出函数y =sin(2x+5
π)的图象的方法。
1.3sin().5y x C π=+已知函数的图象为()(1)3sin(),5(). ().5522(). ().
55y x C A B C D πππππ=-为了得到函数的图象只要把上所有的点向右平行移动个单位长度向左平行移动个单位长度向右平行移动
个单位长度向左平行移动个单位长度()3sin(2),51()2, (),21()2, (),2y x C A B C D π=+3.为了得到函数的图象只要把上所有的点横坐标伸长到原来的倍纵坐标不变横坐标缩短到原来的倍纵坐标不变纵坐标伸长到原来的倍横坐标不变纵坐标缩短到原来的倍横坐标不变
五、能力提升
1、把函数y =cos(3x +
4
π)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A 向右平移
4π B 向左平移4
π C 向右平移12π D 向左平移12π 4、将函数y =f (x )的图象沿x 轴向右平移3π,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y =sin x 的图象相同,则y =f (x )是( )
A y =sin(2x +3π) B
y =sin(2x -3π) C y =sin(2x +32π
) D
y =sin(2x -32π) 六、归纳小结。