四川省绵阳市江油中学下册机械能守恒定律单元练习(Word版 含答案)
- 格式:doc
- 大小:984.00 KB
- 文档页数:17
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t =匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ 【答案】BD【解析】【分析】【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A AA k kQC m v E E m v θ== 选项D 正确。
机械能及其守恒定律章节练习班级______________学习小组 姓名______________一、本题共8小题;每小题5分,共40分. 在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.下面各个实例中,机械能不守恒的是 ( ) A. 在竖直方向上弹簧吊着一个物体上下运动(不计空气阻力) B .物体从高处以0.9g 的加速度竖直下落C. 铅球运动员抛出的铅球从抛出到落地前的运动 D .拉着一个物体沿光滑的斜面匀速上升2.一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于 ( )A .物体重力势能的增加量B .物体动能的增加量C .物体动能的增加量加上物体重力势能的增加量D .物体动能的增加量加上克服重力所做的功3.某中等体重的中学生进行体能训练时,用100s 的时间登上20m 的高楼,估测他登楼时的平均功率,最接近的数值是 ( )A .10WB .100WC .1KWD .10KW4.如图所示,一辆玩具小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上,由图中位置无初速释放,则小球在下摆过程中,下列说法正确的是 ( )A .绳对车的拉力对车做正功B .绳的拉力对小球做正功C .小球所受的合力对小球不做功D .绳的拉力对小球做负功5.如图所示,站在汽车上的人用手推车的力为F ,脚对车向后的静摩擦力为F ′,下列说法正确的是 ( )A .当车匀速运动时,F 和F ′所做的总功为零B .当车加速运动时,F 和F ′的总功为负功C .当车加速运动时,F 和F ′的总功为正功D .不管车做何种运动,F 和F ′的总功都为零6.如图所示,一滑块从半圆形光滑轨道上端由静止滑下,当滑到最低点时,关于滑块动能大小和它对轨道最低点的压力,下列叙述中正确的是bA.轨道半径越大,滑块动能越大,对轨道压力越大B 轨道.半径越大,滑块动能越大,对轨道压力越小C.轨道半径越大,滑块动能越大,对轨道压力与半径无关D.轨道半径变化,滑块动能和对轨道压力都不变7.如图所示,长为2L的轻杆上端及其正中央固定两个质量均为m 的小球,杆竖直立在光滑的水平面上,杆原来静止,现让其自由倒下,设杆在倒下过程中着地端始终不离开地面,第5题第4题则A 着地时的速度为A.gL 1551B.gL 1552C.gL 3051D.gL 3052 8.一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为V ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有 ( ) A .返回斜面底端时的动能为E B .返回斜面底端时的动能为3E/2 C .返回斜面底端时的速度大小为2V D .返回斜面底端时的速度大小为V 2二、本题共2小题,共12分,把答案填在题中的横线上或按题目要求作答. 9.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于 J .10.一列火车由机车牵引沿水平轨道行使,经过时间t ,其速度由0增大到v .已知列车总质量为M ,机车功率P 保持不变,列车所受阻力f 为恒力.这段时间内列车通过的路程 .三、本题共3小题,共48分,解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分. 有数值计算的题,答案中必须明确写出数值和单位. 11.(15分)如图所示,长为l 的细线下系一质量为m 的小球,线上端固定在O 点,小球可以在竖直面内摆动,不计空气阻力,当小球从摆角为θ的位置由静止运动到最低点的过程中,求:(1)重力对小球做的功?(2)小球到最低点时的速度为多大?(3)小球在最低点时,细线对小球的拉力?12.(16分)如图所示,m A =4kg ,m B =1kg,A 与桌面间的动摩擦因数μ=0.2,B 与地面间的距离s=0.8m ,A 、B 原来静止,求: (1)B 落到地面时的速度为多大;(2)B 落地后,A 在桌面上能继续滑行多远才能静止下来.(g 取10m/s 2)θO 第11题 第12题13.(17分)一种氢气燃料的汽车,质量为m=2.0×103kg,发动机的额定输出功率为80kW,行驶在平直公路上时所受阻力恒为车重的0.1倍。
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.如图所示,一根轻质弹簧放在光滑斜面上,其下端与斜面底端的固定挡板相连,弹簧处于自然伸长状态。
第一次让甲物块从斜面上的A 点由静止释放,第二次让乙物块从斜面上的B 点由静止释放,两物块压缩弹簧使弹簧获得的最大弹性势能相同,两物块均可看作质点,则下列说法正确的是( )A .甲物块的质量比乙物块的质量大B .甲物块与弹簧刚接触时的动能大于乙物块与弹簧刚接触时的动能C .乙物块动能最大的位置在甲物块动能最大的位置下方D .将两物块释放的位置上移,两物块向下运动的过程中,动能最大的位置会下移【答案】BC【解析】【分析】【详解】A .由于两物块使弹簧获得的最大弹性势能相同,即两物块向下运动最低点的位置相同,根据机械能守恒可知,两物块减少的最大重力势能相同,由此可以判断甲物块的质量比乙物块的质量小,选项A 错误;B .从两物块与弹簧相接触到弹簧被压缩到最短的过程中,乙物块的质量大,则乙物块减小的重力势能大,所以其动能减小的少,选项B 正确;C .动能最大的位置是合外力为零的时候,由力的平衡可知,乙物块动能最大的位置在甲物块动能最大位置的下方,选项C 正确;D .由力的平衡可知,改变两物块释放的位置,两物块向下运动的过程中,动能最大的位置不会变,选项D 错误。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ 【答案】BD【解析】【分析】【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q点将小环v速度分解可知cosAv vθ=根据动能212kE mv=可知,物体A与小环C的动能之比为221cos2122AAAkkQCm vEE m vθ==选项D正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为10m/s 41D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:25m 3m x =- kx mg =解得弹簧的劲度系数为:20N/m k =故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:cos37A o C v v =B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:2211222A C mgh mg x mv mv -=+ 解得:A 108m/s 41v =所以C 正确。
对于A 物体,由动能定理得:2122A W mg x mv -=解得:640(40)41W J =+故B 错误。
D .对C 由动能定理得:212T C mgh W mv -=解得绳子对C 做的功为:2110002280(80)24141T C W mgh mv J J =-=-=物块A 动能的增加量:21640241KA A E mv J ∆== 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
第六节机械能守恒定律1、如下图所示,小球从高处下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是()(A)重力势能和动能之和总保持不变(B)重力势能和弹性势能之和总保持不变(C)动能和弹性势能之和总保持不变(D)重力势能、弹性势能和动能之和总保持不变2、在利用电磁打点计时器验证自由下落过程中机械能守恒的实验中,电磁打点计时器是用来测量____的仪器,某学生在实验时打出的纸带如图所示,其中O为重锤由静止下落时打下的第一个点,A、B、C、D为选出的计数点,每相邻两点间都有一个点未画出,用刻度尺测得各点到O点的距离都标在纸带上,实验所在地重力加速度g=9.8m/s2,根据数据计算:打下C 点时重锤的速度大小v= (填计算式)=(填数值)。
重锤从O由静止下落到打C点时的动能增加为mJ,重力势能的减力量为mJ.3、(1)用落体法验证机械能守恒定律,下面哪些测量工具是必需的?( )(A)天平(B)弹簧秤(C)刻度尺(D)秒表(2)图是实验中得到的一条纸带。
已知打点计时器所用电源的频率为50Hz,当地的重力加速度g=9.80m/s2,测得所用重物的质量为1.00kg,纸带上第0、1两点间距离接近2mm,A、B、C、D是连续打出的四个点,它们到O点的距离如图所示,则由图中数据可知,重物由O点运动到C点,重力势能的减少量小于________J,动能的增加量等于________J(取三位有效数字)。
动能增量小于重力势能的减少量的原因主要是_________________________________________________________________________________________4、在验证机械能守恒定律的实验中,得到一条打了点的纸带,如图(甲)所示,点a为释放纸带前打的点,b、c、d 为连续的三点,由此能否验证机械能守恒定律?若得到一条纸带如图(乙)所示,a仍为释放纸带前打的点,c、d为连续的两点。
(完整版)机械能守恒定律练习题含答案机械能守恒定律练习题一、选择题(每题6分,共36分)1、下列说法正确的是:(选CD)A、物体机械能守恒时,一定只受重力和弹力的作用。
(是只有重力和弹力做功)B、物体处于平衡状态时机械能一定守恒。
(吊车匀速提高物体)C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。
(受到一对平衡力)D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。
2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C)A.所具有的重力势能相等(质量不等)B.所具有的动能相等C.所具有的机械能相等(初始时刻机械能相等)D.所具有的机械能不等3、一个原长为L的轻质弹簧竖直悬挂着。
今将一质量为m的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。
在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A)A、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0)B、减少的重力势能等于增加的弹性势能C、减少的重力势能小于增加的弹性势能D、系统的机械能增加(动能不变,势能减小)4、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为(选B)A、mghB、mgHC、mg(H+h)D、mg(H-h)6、质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是(选BD)A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能)B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力)C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能)二、填空题(每题8分,共24分)7、从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t =匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
故选BD 。
2.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D.小环C到达Q点时,物体A与小环C的动能之比为cos2θ【答案】BD【解析】【分析】【详解】A.在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C、物体A和轻弹簧组成的系统机械能守恒,选项A错误;B.小环C下落到位置S过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S时,小环的机械能最大,选项B 正确;C.小环在R、Q处时弹簧均为拉伸状态,且弹力大小等于B的重力,当环运动到S处,物体A的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C错误;D.在Q位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cosCT m gθ=对A、B整体,根据平衡条件有2AT m g=故2cosC Am mθ=在Q点将小环v速度分解可知cosAv vθ=根据动能212kE mv=可知,物体A与小环C的动能之比为221cos2122AAAkkQCm vEE m vθ==选项D正确。
故选BD。
3.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿在竖直的杆上。
轻杆OB 一端固定在墙上,一端为定滑轮。
若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。
已知C 、E两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为2mg,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。
下列说法正确的是( )A .小球在D 点时速度最大B .若在E 点给小球一个向上的速度v ,小球恰好能回到C 点,则2v gh = C .小球在CD 阶段损失的机械能等于小球在DE 阶段损失的机械能D .若O 点没有固定,杆OB 在绳的作用下以O 为轴转动,在绳与B 点分离之前,B 的线速度等于小球的速度沿绳方向分量 【答案】AD 【解析】 【详解】A .设当小球运动到某点P 时,弹性绳的伸长量是BP x ,小球受到如图所示的四个力作用:其中T BP F kx =将T F 正交分解,则N T sin sin 2BP BC mgF F kx kx θθ⋅====f N 14F F mg μ==T F 的竖直分量T T cos cos y BP CP F F kx kx θθ===据牛顿第二定律得f T y mg F F ma --=解得T 3344y CP F kx a g g m m=-=- 即小球的加速度先随下降的距离增大而减小到零,再随下降的距离增大而反向增大,据运动的对称性(竖直方向可以看作单程的弹簧振子模型)可知,小球运动到CE 的中点D 时,加速度为零,速度最大,A 正确;B .对小球从C 运动到E 的过程,应用动能定理得T F 0104mgh W mgh ⎛⎫-+-=- ⎪⎝⎭若在E 点给小球一个向上的速度v ,小球恰能从E 点回到C 点,应用动能定理得T 2F 11()042mgh W mgh mv ⎛⎫-++-=- ⎪⎝⎭联立解得T F 34W mgh =,v gh = B 错误;C .除重力之外的合力做功等于小球机械能的变化,小球在CD 段所受绳子拉力竖直分量较小,则小球在CD 段时摩擦力和弹力做的负功比小球在DE 段时摩擦力和弹力做的负功少,小球在CD 阶段损失的机械能小于小球在DE 阶段损失的机械能,C 错误; D .绳与B 点分离之前B 点做圆周运动,线速度(始终垂直于杆)大小等于小球的速度沿绳方向的分量,D 正确。
故选AD 。
4.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:25m 3m x =-kx mg =解得弹簧的劲度系数为:20N/m k =故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:cos37A o C v v =B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:2211222A C mgh mg x mv mv -=+ 解得:A v = 所以C 正确。
对于A 物体,由动能定理得:2122A W mg x mv -=解得:640(40)41W J =+故B 错误。
D .对C 由动能定理得:212T C mgh W mv -=解得绳子对C 做的功为:2110002280(80)24141T C W mgh mv J J =-=-=物块A 动能的增加量:21640241KA A E mv J ∆== 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
故D 错误。
5.如图甲所示,轻弹簧下端固定在倾角37°的粗糙斜面底端A 处,上端连接质量5kg 的滑块(视为质点),斜面固定在水平面上,弹簧与斜面平行。
将滑块沿斜面拉动到弹簧处于原长位置的O 点,由静止释放到第一次把弹簧压缩到最短的过程中,其加速度a 随位移x 的变化关系如图乙所示,,重力加速度取10m/s 2,sin37°=0.6,cos37°=0.8。
下列说法正确的是 ( )A .滑块在下滑的过程中,滑块和弹簧组成的系统机械能守恒B .滑块与斜面间的动摩擦因数为0.1C 13m/sD .滑块在最低点时,弹簧的弹性势能为10.4J 【答案】BC 【解析】 【分析】 【详解】A .滑块在下滑的过程中,除重力和弹簧的弹力做功外,还有摩擦力做功,故滑块和弹簧组成的系统机械能不守恒,故A 错误;B .刚释放瞬间,弹簧的弹力为零,由图象可知此时加速度为a =5.2m/s 2,根据牛顿第二定律有sin cos mg mg ma θμθ-=解得0.1μ=,故B 正确;C .当x =0.1m 时a =0,则速度最大,此时滑块受到的合力为零,则有sin cos 0mg kx mg θμθ--=解得260N /m k =,则弹簧弹力与形变量的关系为F kx =当形变量为x =0.1m 时,弹簧弹力F =26N ,则滑块克服弹簧弹力做的功为112.60.1J 1.3J 22W Fx ==⨯⨯=从下滑到速度最大,根据动能定理有()2m 1sin cos 2mg mg x W mv θμθ--=解得m 135v =m/s ,故C 正确; D .滑块滑到最低点时,加速度为25.2m/s a '=-,根据牛顿第二定律可得sin cos mg mg kx ma θμθ--'='解得0.2m x '=,从下滑到最低点过程中,根据动能定理有()p sin cos 00mg mg x E θμθ'--=-解得E p =5.2J ,故D 错误。
故选BC 。
6.如图所示,质量为0.1kg 的小滑块(视为质点)从足够长的固定斜面OM 下端以20m/s 的初速度沿斜面向上运动,小滑块向上滑行到最高点所用的时间为3s ,小滑块与斜面间的动摩擦因数为33,取重力加速度大小g =10m/s 2,下列说法正确的是( )A .斜面的倾角为60°B .小滑块上滑过程损失的机械能为5JC .小滑块上滑的最大高度为10mD .若只减小斜面的倾角,则小滑块上滑的最大高度可能比原来高 【答案】AB 【解析】 【分析】 【详解】A .物体上滑的加速度为203v a t == 由牛顿第二定律sin cos mg mg ma θμθ+=解得=60θ选项A 正确;B .小滑块上滑过程损失的机械能为3120cos6013J=5J2322vE mg tμ∆=⋅=⨯⨯⨯⨯选项B正确;C.小滑块上滑的最大高度为203sin60sin603m=15m222vh l t===⨯⨯选项C错误;D.根据动能定理21cossin2hmgh mg mvμθθ+⋅=解得22(1)tanvhgμθ=+则若只减小斜面的倾角θ,则小滑块上滑的最大高度减小,选项D错误。