函数周期性和对称性
- 格式:ppt
- 大小:2.35 MB
- 文档页数:10
(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+ ⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= 7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=。
函数周期性与对称性一、函数周期:对任意的x D ∈,都有()()f x T f x +=,则T 叫做函数()f x 的周期 例如:求11()()(),(),()()1()f x f x a f x f x a f x a f x f x -+=-+=+=+的周期 二、对称性:函数关于原点对称即奇函数:()()f x f x -=- 函数关于y 对称即偶函数:()()f x f x -=函数关于直线 x a =对称:()()f x a f a x +=-或()(2)f x f a x =-或 者 (2)()f x a f x +=-函数关于点(a,b )对称:f(x+a)+f(a-x)=2b1.f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0在区间(0,6)内解的个数的最小值是 A .2; B .3; C .4; D .5 ( )2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .53.已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=( )A 、2005B 、2C 、1D 、04. 设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B )()()()3.5 1.5 6.5f f f <<; (C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x xC .122-x D.122-x x6.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x )=1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为( )A .–2B .–1C .0D .17.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A .0 B.12 C.1 D.528.若()f x 是定义在R 上的奇函数,且当x <0时,1()1f x x =+,则1()2f = .9.()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =f(2009)=_ 10.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)= ____。
函数周期性、对称性、零点一、函数的周期性:对于函数()y f x =,如果存在大于零的常数,使得x 取定义域内的任意值时都有()()f x T f x +=,那么函数()y f x =就叫做周期函数,T 叫做周期。
最小正周期:如果()y f x =是以T 为周期的函数,那么()kT k Z ∈也是()y f x =的周期,因而,周期函数会有无数多个周期,如果这些周期中存在最小的值,那么这个最小的周期就叫做最小正周期。
例1:已知对于定义域内的任意一个x 都有()()2f x f x +=,切当[)1,1x ∈-时,有()2f x x =,求()2014f ,()2013.5f周期函数的判定以及性质:1. 如果对于定义域内的任意x ,()f x 满足()()f x T f x +=-,那么函数()f x 就是以2T 周期的函数。
2. 如果对于定义域内的任意x ,()f x 满足()()()f x a f x b a b +=+≠,那么函数就是以b a -为周期的函数。
二、函数的对称性:如果函数()f x 的定义域为M ,如果存在实数a ,使得对于任意的,a x a x M +-∈,都有()()f a x f a x +=-,那么()f x 是以x a =为对称轴的对称函数。
例2:已知二次函数()22f x x mx m =-++-满足()()11f x f x +=-,求函数()f x 的解析式。
函数对称性判定以及性质:1. 如果()f x 是以x a =为对称轴的对称函数,那么必有()()2f x f a x =-,同理如果函数()f x 满足()()2f x f a x =-,那么()f x 是以x a =为对称轴。
2. 如果函数满足()()f a x f b x +=-,那么函数()f x 一定是对称函数,对称轴为()()22a xb x a b x ++-+==。
例3:求证函数()y f x k =-关于x k =对称。
函数的对称性与周期性函数是数学中的重要概念之一,也是实际问题建模时必不可少的工具。
在函数的研究中,对称性和周期性是两个重要的特性,它们在解决问题时具有重要的意义。
一、对称性对称性是指当函数中存在一些特定的点、直线或面对称时,函数会出现相应的特征变化。
在函数研究中,对称性分为奇偶对称性、轴对称性和中心对称性三种类型。
1.1 奇偶对称性在定义域上对函数进行某种变换,若此时函数值不变,则称函数具有对称性。
其中,奇偶对称是一种特殊的对称性。
若函数$f(x)$满足$f(-x)=f(x)$,即对于定义域上任意一个$x$,都有$f(-x)=f(x)$成立,则函数$f(x)$具有奇函数对称性。
若函数$f(x)$满足$f(-x)=f(x)$且$f(x)$具有偶函数性质,即对于定义域上任意$x$都有$f(-x)=f(x)$,且对于定义域上任意$x$都有$f(-x)=f(x)$成立,则$f(x)$具有偶函数对称性。
1.2 轴对称性对于定义域上的任意一个$x$,若函数$f(x)$等于一个定值减去该点处的函数值,则称函数$f(x)$具有轴对称性。
定义域上的这条轴称为对称轴。
轴对称性表明函数$f(x)$在对称轴两侧的函数值相等。
1.3 中心对称性对于定义域的任意一个$x$,若函数$f(x)$与以坐标系原点为中心的另一个点对称,则称函数$f(x)$具有中心对称性。
中心对称性表明函数$f(x)$在以原点为中心的圆形中的两侧具有对称性。
二、周期性周期性是指函数具有在某一定量级范围内重复的规律性。
对于函数$f(x)$,若存在正数$T$,使得对于定义域上的任何一个$x$,都有$f(x+T)=f(x)$成立,则函数$f(x)$是周期函数,其中最小正周期为$T$。
具有周期性的函数,其解析式通常为三角函数式。
结论函数在解决实际问题时,对称性和周期性的特性具有重要的意义。
它们可以用来研究函数的性质、求函数的极值、判别函数的奇偶性、求证某些理论结论等。
(完整版)函数周期性与对称性常见结论
函数周期性与对称性是数学中一种基本的类型,可以用来描述函数的特征。
这种性质
极大地影响着函数的曲线形状,对于函数研究也是非常重要的。
本文为读者介绍函数周期
性与对称性常见的结论。
一、周期性
1. 可以说函数f(x+T)与f(x)的图像有周期性,T<>0是一个常数,也称为函数的周期,它可以定义一个函数的曲线;
2. 周期性循环是一种规律,表明函数的值随着参数的改变而不断变化,但最终又会
回到原来的状态;
3. 一般情况下,定义域内的函数都具有周期性,当x的取值超出定义域时,函数f(x)也可能有周期性;
4. 一个周期性函数的周期T是其变化模式的重要特征,其变化规律如果舍弃它,函
数f(x)就不再具有周期性;
5. 若函数f(x)具有周期性,那么它的最小正周期Tc就定义了整个函数的曲线,可以视为一种最基本的形状。
二、对称性
1. 当函数f(x)满足f(-x)=f(x)的性质时,称此函数具有对称性;
2. 一个函数的平行四边形对称性表明,函数f(-x)和f(x)的图像是完全一模一样的,而不管x的取值为多少;
3. 一些函数具有点对称性,点对称性表明f(-x0)=f(x0),即对称中心为x0的函数图像;
4. 如果一个函数的图象可以通过给定的任意角度旋转而不失真,则称其为角度对称性;
5. 对称性可有效描述函数f(x)的特征,常用于应用函数研究中。
函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b -y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。
推论1:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0推论2:的图象关于点对称.推论3:的图象关于点对称.推论4:的图象关于点对称.结论2. 若函数 y = f (x)满足f (a +x) = f (b-x)那么函数本身的图像关于直线x = 对称,反之亦然。
证明:已知对于任意的都有f(a+) =f(b-)=令a+=, b-=则A(,),B(,)是函数y=f(x)上的点 显然,两点是关于x= 对称的。
反之,若已知函数关于直线x = 对称, 在函数y = f (x)上任取一点P()那么()关于x = 对称点(a+ b-,)也在函数上故f()=f(a+ b-)f(a+(-a))=f(b-(-a))所以有f (a +x) = f (b-x)成立。
推论1:函数y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x)推论2:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)结论3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。
高中数学函数图像的对称与周期性在高中数学中,函数图像的对称性和周期性是一个非常重要的概念。
对称性是指函数图像关于某个轴或点对称,而周期性是指函数在一定区间内以某个固定的周期重复。
一、对称性1. 关于y轴对称当一个函数图像关于y轴对称时,意味着对于函数中的任意一点(x, y),点(-x, y)也在函数图像上。
这种对称性可以用来简化函数图像的绘制和分析。
例如,考虑函数y = x^2,它是一个二次函数,具有关于y轴对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
2. 关于x轴对称当一个函数图像关于x轴对称时,意味着对于函数中的任意一点(x, y),点(x, -y)也在函数图像上。
这种对称性也可以用来简化函数图像的绘制和分析。
例如,考虑函数y = sin(x),它是一个正弦函数,具有关于x轴对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
3. 关于原点对称当一个函数图像关于原点对称时,意味着对于函数中的任意一点(x, y),点(-x, -y)也在函数图像上。
这种对称性同样可以用来简化函数图像的绘制和分析。
例如,考虑函数y = x^3,它是一个三次函数,具有关于原点对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
二、周期性1. 周期函数周期函数是指在一定区间内以某个固定的周期重复的函数。
周期函数的图像具有一定的规律性,可以通过观察周期来简化函数图像的绘制和分析。
例如,考虑函数y = sin(x),它是一个周期为2π的正弦函数。
我们可以通过绘制一个周期内的函数图像,再利用周期性得到完整的图像。
2. 非周期函数非周期函数是指在任意区间内不以固定周期重复的函数。
非周期函数的图像通常没有明显的规律性,需要通过其他方法进行分析和绘制。
例如,考虑函数y = x^2,它是一个非周期函数。
我们需要根据函数的性质和变化规律来绘制函数图像。
三、举一反三通过对函数图像的对称性和周期性的分析,我们可以得到一些解题技巧和方法。
函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+Û()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+Û关于2a bx +=轴对称在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a bx +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x Þ=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
①要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+éùëû:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+éùëû②本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+Û()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+Û关于,02a b +æöç÷èø轴对称在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a bx +=为所给对称中心即可。
完整版)函数的周期性与对称性总结在已知条件$f(a+x)=f(b-x)$或$f(x+a)=f(x-b)$中,可以得到以下结论:1.当等式两端的两自变量部分相加得常数,如$(a+x)+(b-x)=a+b$,则$f(x)$的图像具有对称性,其对称轴为$x=\frac{a+b}{2}$。
2.当等式两端的两自变量部分相减得常数,如$(x+a)-(x-b)=a+b$,则$f(x)$的图像具有周期性,其周期$T=a+b$。
如果对于$f(x)$定义域内的任意$x$,恒有下列条件之一成立:周期性规律对称性规律1.$f(x-a)=f(x+a)$,则$T=2a$;$f(a+x)=f(a-x)$,则$x=\frac{a^2+b^2}{2a+b}$。
2.$f(x)=f(x+a)$,则$T=a$;$f(a+x)=f(b-x)$,则$x=\frac{a+b}{2}$。
3.$f(x+a)=-f(x)$,则$T=2a$;$f(a-x)=f(b+x)$,则$x=2a-b$。
4.$f(x+a)=\frac{1}{a+b}$,则$T=2a$;$f(a+x)=-f(b-x)$,则点$(a,-\frac{1}{2})$为对称中心。
5.$f(x+a)=-\frac{1}{a+b}$,则$T=2a$;$f(a+x)=-f(a-x)$,则点$(a,0)$为对称中心。
6.$f(x+a)=\frac{f(x)+1}{1-f(x)}$,则$T=2a$;$f(x+a)=\frac{f(x)-1}{1+f(x)}$,则$T=2a$。
7.$f(x+a)=\frac{1+f(x)}{1-f(x)}$,则$T=4a$。
8.$f(x+a)=-\frac{1-f(x)}{1+f(x)}$,则$T=4a$。
9.$f(x+a)=\frac{1+f(x)}{1+f(x)}$,则$T=4a$。
10.$f(x)=f(x-a)+f(x+a)$,且$a>0$,则$T=6a$。
函数的对称性与周期性吴江市盛泽中学数学组 徐建东对称性:函数图象存在的一种对称关系,包括点对称和线对称。
周期性:设函数)(x f 的定义域是D ,若存在非零常数T ,使得对任何D x ∈,都有D T x ∈+且)()(x f T x f =+,则函数)(x f 为周期函数,T 为)(x f 的一个周期。
对称性和周期性是函数的两大重要性质,他们之间是否存在着内在的联系呢?本文就来研究一下它们之间的内在联系,有不足之处望大家批评指正。
一、一个函数关于两个点对称。
命题1:如果函数)(x f y =的图象关于点)0,(a 和点)0,(b )(a b ≠对称,那么函数)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
证明:∵函数)(x f y =的图象关于点)0,(a 对称,∴)2()(x a f x f --=对定义域内的所有x 成立。
又∵函数)(x f y =的图象关于点)0,(b 对称,∴)2()(x b f x f --=对定义域内的所有x 成立。
从而)2()2(x b f x a f -=-∴)()]2(2[)]2(2[x f x b b f x b a f =--=-- 即:)()])22[(x f x b a f =+- ∴)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
特例:当0=a 时,)(x f y =为奇函数,即奇函数)(x f y =如果又关于点)0,(b )0(≠b 对称,那么函数)(x f y =是周期函数,b T 2=为函数)(x f y =的一个周期。
命题1':如果函数)(x f y =的图象关于两点),(b a 和),(d c 对称,那么: 当d b =,c a ≠时,)(x f y =是周期函数,)(2c a T -=为函数)(x f y =的一个周期。
当d b ≠,c a ≠时,)(x f y =不是周期函数。
函数对称性与周期性关系【知识梳理】一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称(2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
函数的周期性与对称性1,函数周期性的定义设函数()y f x =,x D ∈,如果存在非零常数T ,使得对于任何x D ∈都有()()f x T f x +=,则函数()y f x =为周期函数,T 为函数()y f x =的一个周期. 说明:若T 为函数()y f x =的一个周期,则()k T k Z ∈函数()y f x =的一个周期.2,关于周期函数的几种判定方法①、对于函数)(x f 定义域中的任意的x ,总存在一个非零常数T ,使得)()(x f T x f =+恒成立,则T 是函数)(x f 的一个周期。
②、若函数)(x f 满足)0)(()(≠-=+a a x f a x f ,则a T 2=是它一个周期 ③、若函数)(x f 满足)0)(()(≠-=+a x f a x f ,则a T 2=是它的一个周期 ④、若函数)(x f 满足)0()(1)(≠-=+a x f a x f ,则a T 2=是它的一个周 ⑤、若函数)(x f 满足)0()(1)(≠=+a x f a x f ,则a T 2=是它的一个周期 ⑥、若函数)(x f 满足)0()(1)(1)(≠+-=+a x f x f a x f ,则a T 2=是它一个周期 3、函数对称性:若)(x f 满足)0)(()(≠-=+a a x f a x f ,则a x =是)(x f 的对 称轴,即)(x f 的图像关于直线a x =对称。
①、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a ) 是它的一个周期。
②、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称, 则函数()f x 是以()2b a -为周期的周期函数;③、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函 数()f x 是以()4b a -为周期的周期函数;④、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个 周期。
第七讲函数之周期性与对称性函数的周期性与对称性一.定义:假定T 为非零常数,关于定义域内的任一x ,使)()(x f T x f =+恒成立那么f (x )叫做周期函数,T 叫做这个函数的一个周期。
二.重要结论1、()()f x f x a =+,那么()y f x =是以T a =为周期的周期函数;2、 假定函数y=f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数且2a 是它的一个周期。
3、 假定函数()()f x a f x a +=-,那么()x f 是以2T a =为周期的周期函数4、 y=f(x)满足f(x+a)=()x f 1 (a>0),那么f(x)为周期函数且2a 是它的一个周期。
5、假定函数y=f(x)满足f(x+a)= ()x f 1-(a>0),那么f(x)为周期函数且2a 是它的一个周期。
6、1()()1()f x f x a f x -+=+,那么()x f 是以2T a =为周期的周期函数. 7、1()()1()f x f x a f x -+=-+,那么()x f 是以4T a =为周期的周期函数. 8、 假定函数y=f(x)满足f(x+a)=)(1)(1x f x f -+(x ∈R ,a>0),那么f(x)为周期函数且4a 是它的一个周期。
9、 假定函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,那么f(x)为周期函数且2〔b-a 〕是它的一个周期。
10、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,那么函数()f x 是以()2b a -为周期的周期函数;11、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,那么函数()f x 是以()4b a -为周期的周期函数;12、假定偶函数y=f(x)的图像关于直线x=a 对称,那么f(x)为周期函数且2a 是它的一个周期。