第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt
- 格式:pps
- 大小:669.00 KB
- 文档页数:29
目录第四章高阶微分方程 0内容提要及其它 (1)4.1 线性微分方程的一般理论 (2)4.1.1 引言 (2)4.1.2 齐线性方程的解的性质与结构 (3)4.1.3 非齐线性方程与常数变易法 (4)4.2 常系数线性方程的解法 (7)4.2.1 复值函数和复值解 (7)4.2.2 常系数齐线性方程和欧拉方程 (9)1、常系数齐线性方程 (9)2、欧拉(Euler)待定指数函数法 (9)3、应用 (14)4、欧拉方程 (15)4.2.3 非齐次线性方程:比较系数法和拉普拉斯变换法——求特解 (17)1. 比较系数法 (17)2. 拉普拉斯变换法 (22)4.2.4 质点振动 (25)1. 无阻尼自由振动 (25)2. 有阻尼自由振动 (26)3. 无阻尼强迫振动 (27)4. 有阻尼强迫振动 (29)4.3高阶方程的降阶和幂级数解法 (31)4.3.1可降阶的一些方程类型 (31)1.方程不显含未知函数x (31)t2.方程不显含自变量的方程 (32)3.齐线性方程 (34)4.3.2二阶线性方程的幂级数解法 (35)4.4.3 第二宇宙速度计算 (39)本章小结及其它 (41)第四章高阶微分方程内容提要及其它授课题目(章、节)第四章:高阶微分方程教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p120-185主要参考书[1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005,p164-223[2]高等代数,北京大学数学力学系几何与代数教研室代数小组编,人民教育出版社,1978,p102-156[3]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p225-383[4]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p149-164目的与要求掌握线性微分方程的解的性质和通解结构.掌握常系数齐次线性微分方程的解法和欧拉方程的解法.掌握常数变易法、比较系数法求特解.理解高阶常微分方程的降阶解法的思想,掌握二阶常微分方程的降阶解法.了解二阶齐线性微分方程的幂级数解法的思想.教学内容与时间安排、教学方法、教学手段教学内容第1节线性微分方程的一般理论;第2节常系数线性微分方程的解法;第3节高阶微分方程的降阶和幂级数解法时间安排:12学时教学方法:讲解方法教学手段:传统教学方法与多媒体教学相结合.教学重点分析方法上的重点:常数变易法、特征根法和比较系数法.内容上的重点:线性微分方程解的结构理论是一个重点,它是求解高阶线性微分方程的理论基础,并从理论上给出了高阶线性微分方程求解的一般方法.另一个重点是常系数线性微分方程的解法,它把微分方程求解问题转化为一个代数问题进行讨论.教学难点分析方法上的难点:常数变易法、特征根法和比较系数法.内容上的难点:第一个难点是非齐次线性微分方程的常数变易法,主要是学生理解上有一定难度,没有从理论上理解为何要构造这样一个方程组,从而求解.另一个难点是常系数线性微分方程的解法,因为把求解微分方程的问题转化为了一个代数方程来讨论,而代数方程的讨论相对来说要直观容易一些.在前面的讨论中已经看出,在实际问题中除了已讨论的一阶微分方程外,还将遇到一些其它类型的非一阶的微分方程,即高阶微分方程.而在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅因为线性微分方程的一般理论已被研究得十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术中也有着广泛的应用.所以本章着重讨论线性微分方程的基本理论和常系数微分方程的解法,对于高阶微分方程的降阶问题和二阶线性方程的幂级数解法也作适当地介绍和讨论.4.1 线性微分方程的一般理论4.1.1 引言如下的n 线性阶微分方程)()()()(1111t f x t a dt dx t a dtx d t a dt x d n n n n n n =++++−−−L (4.1) 其中b t a t f n i t a i ≤≤=都是区间及)(),,2,1)((L 上的连续函数.如果,则方程(4.1)变为0)(≡t f 0)()()(1111=++++−−−x t a dt dx t a dt x d t a dt x d n n n n n n L (4.2) 定义:(n 阶齐次线性微分方程,或齐线性方程)称(4.2)为n 阶齐线性微分方程,简称为齐线性方程定义:(n 阶非齐次线性微分方程,或非齐线性方程)而一般的方程(4.1)称为n 阶非齐线性微分方程,或简称为非齐线性方程,并且通常把方程(4.2)叫做对应于方程(4.1)的齐线性方程.对于高阶微分方程,同一阶微分方程一样,也存在着解的存在性和唯一性问题,即在什么条件下,高阶微分方程有解和唯一解.为此,先给出方程(4.1)的解存在唯一性定理. 定理 1 如果b t a t f n i t a i ≤≤=都是区间及)(),,2,1)((L 上的连续函数,则对于任一及任意的,方程(4.1)存在唯一解],[0b a t ∈)1(0)2(0)1(00,,,−n x x x x L )(t x ϕ=,定义在区间上,且满足初始条件:b x a ≤≤1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ−−−===L (4.3) 证明(略,具体在下一章讨论.)注释;初始条件唯一地确定了方程(4.1)的解,而且这个解在所有()(1,2,,)i a t i n =L 及()f t 连续的整个区间上有定义.a tb ≤≤4.1.2 齐线性方程的解的性质与结构定理2(叠加原理)如果是方程(4.2)的k 个解,则它们的线性组合也是(4.2)的解,这里是任意常数. )(,),(),(21t x t x t x k L )()()(2211t x c t x c t x c k k +++L k c c c ,,,21L 证明:(详细过程略),基本思想:利用导数的性质进行简单的运算即可证明原命题.特别地,当k =n 时,即方程(4.2)有解)()()(2211t x c t x c t x c x n n +++=L (4.4)它含有n 个任意常数,现在问:在什么条件下,表达式(4.4)能构成为n 阶齐次线性方程(4.2)的通解?它将具有什么特性?为了讨论的方便,先引进基本概念:函数线性相关与线性无关及伏朗斯基(Wronsky )行列式.考虑定义在区间上的函数,如果存在不全为零的常数使得恒等式b t a ≤≤)(,),(),(21t x t x t x k L kc c c ,,,21L 0)()()(2211≡+++t x c t x c t x c k k L对于所有都成立,则称这些函数是线性相关的,否则就称这些函数在所给区间上线性无关的.],[b a t ∈例:函数在任何区间上都是线性无关的;但函数在任何区间上都是线性相关的.又如函数在任何区间上都是线性无关的,因为恒等式t t sin cos 和1sin cos 22−t t 和nt t t ,,,,12L 02210≡++++n n t c t c t c c L (4.5)仅当所有时才成立.如果至少有一个),,2,1(0n i c i L ==0≠i c ,则(4.5)的的左端是一个不高于n 次的多项式,它最多可有n 个不同的根.因此,它在所考虑的区间上不能多于n 个零点,更不可能恒为零.由定义在区间],[b a t ∈上的k 个可微k-1次的函数所作成的行列式 )(,),(),(21t x t x t x k L )()()()()(')()()()()()](,),(),([)1()1(2)1(1'2'12121t x t x t x t x t x t x t x t x t x t W t x t x t x W k k k k k k k −−−≡≡L LL L L L L L 称为这些函数的伏朗斯基(Wronsky )行列式.定理3 若函数在区间)(,),(),(21t x t x t x n L ],[b a t ∈上k-1次可微且线性相关,则在[a,b]上它们的伏朗斯基(Wronsky )行列式为零,即有:0)(≡t W证明:(除教材上p123的证明方法外,还可以用反证法.注:该定理的逆命题不一定成立.构造函数如下,得到说明:)(),(21t x t x ⎩⎨⎧≤≤<≤−=10001)(21t t t t x 和. ⎩⎨⎧≤≤<≤−=10010)(22t t t t x 定理4如果方程(2)的解在区间)(,),(),(21t x t x t x n L ],[b a t ∈上线性无关,则在[,的任何点上都不等于零,即有:)](,),(),([21t x t x t x W k L ]a b )(0)(b t a t W ≤≤≠.证明:(反证方法).定理5 n 阶奇线性方程(4.2)一定存在n 个线性无关的解.定理6(通解结构定理) 如果是方程(4.2)的n 个线性无关的解,则方程(4.2)的通解可表为:)(,),(),(21t x t x t x n L )()()(2211t x c t x c t x c x n n +++=L (4.11)其中是任意常数.且通解(4.11)包括了方程(4.2)的所有解.n c c c ,,,21L 推论:方程(4.2)的线性无关解的最大个数等于n .因此有:n 阶齐线性方程的所有解构成一个n 维线性空间.方程(4.2)的一组n 个线性无关解称为方程的一个基本解组,显然,基本解组不唯一.4.1.3 非齐线性方程与常数变易法知道了齐线性方程通解的结构,很容易得到非齐线性高阶微分方程的通解结构了. 考虑n 阶非齐线性方程(4.1))()()()(1111t f x t a dt dx t a dt x d t a dt x d n n n n n n =++++−−−L (4.1) 易见方程(4.2)是它的特殊情形,仿照一阶非齐线性微分方程的解法,两者之间解的性质和结构有着十分密切的联系.性质 1 如果)(t x 是方程(4.1)的解,而是方程(4.2)的解,则也)(t x )()(t x t x +是方程(4.1)的解.性质2 方程(4.1)的任意两个解之差必为方程(4.2)的解.定理7 设为方程(4.2)的基本解组,而)(,),(),(21t x t x t x n L )(t x 是方程(4.1)的某一个解,则方程(4.1)的通解可表为)()()()(2211t x t x c t x c t x c x n n ++++=L (4.14)其中为任意常数,而且这个通解(4.14)包括了方程(1)的所有解.n c c c ,,,21L 证明:(略,仿定理6)根据性质1易知(14)是(4.1)的解,它包含n 个任意常数,可以证明这些常数是相互独立的,因此,它是方程(4.1)的通解.现设是方程(4.1)的任一解,则由性质2,)(~t x )()(~t x t x −是方程(4.2)的解,根据定理6,必有一组确定的常数,使得n c c c ,,,21L )(~)(~)(~)()(~2211t x c t x c t x c t x t x nn +++=−L 即)()(~)(~)(~)(~2211t x t x c t x c t x c t x nn ++++=L 这就是说,方程(4.1)的任一解可以由(4.14)表出,其中为相应的确定常数.由于地任意性,这就证明了通解表达式(14)包括了(4.1)的所有.定理7告诉我们要求一个非齐线性方程的解,只需要先求出对应的齐线性方程的一个基本解组,然后再求非齐线性方程的一个特解,然后按照定理7就可以写出非齐线性方程的通解.通过分析,特别是一阶微分方程的求解方法,进一步还可以指出,只要知道对应齐线性方程的基本解组就可以利用常数变易方法求得非齐线性方程的解.例1 求方程tx x cos 1"=+的通解,已知它的对应齐线性方程的基本解组为:. t t sin ,cos 解:(常数变易方法).步骤:第一步,求对应齐线性方程的一个基本解组;已知对应齐线性方程的一个基本解组为:.t t sin ,cos 第二步,用常数变易法求非齐线性方程的通解.令:t t c t t c x sin )(cos )(21+=将它代入原方程,则可得有关的方程组:)(')('21t c t c 和⎪⎩⎪⎨⎧=+−=+t t tc t c t t t c t t c cos 1)('cos )('sin 0sin )('cos )('2121 解得:1)(',cos sin )('21=−=t c tt t c 由此 2211)(,cos ln )(r t t c r t t c +=+=然后求解得原方程的解t t t t t r t r x sin cos ln cos sin cos 21+++=其中是任意常数.21,r r例2 求方程于域2'"t x tx =−0≠t 上的所有解.解:第一步,求对应齐线性方程的基本解组.对应的齐线性方程为0'"=−x tx容易直接积分求得它的基本解组.事实上,将这个齐线性方程改写为tx x 1'"= 积分即得.所以At x ='B At x +=221,这里A ,B 为任意常数.易见有基本解组.为应用上面的结论(标准的非齐线性方程),也将原方程改写为:2,1t t x t x =−'1" 第二步,把原方程变为标准的非齐线性方程的形式.令:221)()(t t c t c x +=代入原方程有:0)(')('221=+t t c t c 及t t c t =)('22于是2221)(k t t c +=和13161)(k t t c +−= 故原方程的通解为 322131t t k k x ++=. 这里是任意常数.由定理知这个解包括了方程的所有解.作业:P131:2、3、4、5、64.2 常系数线性方程的解法通过前面的学习和讨论,关于线性微分方程的通解的结构问题,从理论上说,可以认为已经是完全解决了.但是,求方程通解的方法还没有具体给出.事实上,对于一般的线性微分方程是没有普遍的解法的.这里将介绍求解问题能够彻底解决的一类方程——常系数线性微分方程及可以化为这一类型的方程.同时将看到,为了求得常系数齐次线性方程的通解,只须解一个代数方程而不必通过积分运算.对于某些特殊的非齐线性方程也可以通过代数运算和微分运算求得它的通解.注:1、本节的内容可以用于解决实际问题:质点振动问题;2、在介绍求解方法时需要用到实变量的复值函数和复指数函数.4.2.1 复值函数和复值解如果对于区间中的每一实数t ,有复数b t a ≤≤)()()(t i t t z φϕ+=与它对应,其中)(t ϕ和)(t φ是在区间上定义的实函数,i 是虚单位,就说在区间b t a ≤≤上给定了一个复值函数.如果实函数)(t z )(t ϕ,)(t φ当趋于时有极限,就称复值函数当趋于时有极限,并且定义t 0t )(lim )(lim )(lim 000t i t t z t t t t t t φϕ→→→+= 如果,就称在连续.显然,在连续相当于)()(lim 00t z t z t t =→)(t z 0t )(t z 0t )(t ϕ,)(t φ在连续.当在区间上每一点都连续时,就称在区间0t )(t z b t a ≤≤)(t z b t a ≤≤上连续.如果极限00)()(lim 0t t t z t z t t −−→存在,就称在有导数(可微),且记此极限为)(t z 0t dtt dz )(0或者.显然在处有导数相当于)('0t z )(t z 0t )(t ϕ,)(t φ在处有导数,且0t dtt d i dt t d dt t dz )()()(000φ+ϕ= 如果在区间)(t z b t a ≤≤上每点都有导数,就称在区间)(t z b t a ≤≤上有导数,对于高阶导数可以类似地定义.设是定义在上的可微函数,c 是复值常数,容易证明下列等式成立(复值函数的微分运算性质):)(,)(21t z t z b t a ≤≤dtt dz t z t z dt t dz t z t z dt dz dtt dz c t z c dt dz dtt dz dt t dz t z t z dt dz )()()()()]()([)()]([)()()]()([212121112121⋅+⋅=⋅=⋅+=+ 在讨论常系数线性方程时,函数将起着非常重要的作用,这里是t K e K 复值常数.下面讨论它的定义,并且讨论其一些性质.设是任一复数,而是实变量,于是定义:β+α=i K t )sin (cos )(t i t e e e t t i t K β+β==αβ+α于是有)(21sin )(21cos t i t i t i t i e e i t e e t β−ββ−β−=β+=β 如果以β−α=i K 表示复数K 的共轭复数,那么有:−=−t K Kt e e函数有下面的重要性质.t K e zt K t K t K K e e e 2121)(=+z Kt tK Ke dtde =,其中是实变量. t zKt n t K ne K e dt d =)( 定理8 如果方程(4.2)中所有系数),,2,1)((n i t a i L =都是实值函数,而)()()(t i t t z x φ+ϕ==是方程(4.2)的复值解,则的实部)(t z )(t ϕ、虚部和共轭复值函数)(t φ)t z 也是方程(4.2)的解.定理9 若方程)()()()()(1111t iv t u x t a dt dx t a dtx d t a dt x d n n n n n n +=++++−−−L 有复值解,这里)()(t iV t U x +=),,2,1)((n i t a i L =及都是实值函数,那么这个解的实部和虚部分别是)(),(t v t u )(t U )(t V )()()()(1111t u x t a dt dx t a dtx d t a dt x d n n n n n n =++++−−−L 和)()()()(1111t v x t a dt dx t a dtx d t a dt x d n n n n n n =++++−−−L 的解.4.2.2 常系数齐线性方程和欧拉方程1、常系数齐线性方程若齐线性方程(4.2)的所有系数都是常数,即原方程可以写为如下形式:0][1111=++++=−−−x a dt dx a dtx d a dt x d x L n n n n n n L (4.15) 其中是常数.此时,称(4.15)为n 阶常系数齐线性方程.),,2,1(n i a i L =2、欧拉(Euler )待定指数函数法通过前面的一阶常系数齐线性方程的解的指数形式可以启示,对于n 阶齐线性方程是否也有类似形式的解.于是用试探法讨论n 阶齐线性方程(4.15)的解,假设形如t a ce t e x λ= (4.16)其中是待定常数,可以是实数,也可以是复数.λ注意到:tt n n n n tnt n n t n n t n te F e a a a e a dt de a dt e d a dt e d e L λλ−−λλ−−λ−λλλ≡+λ++λ+λ=++++≡)()(][1111111L L 其中是n n n n a a a F +λ++λ+λ≡λ−−111)(L λ的n 次多项式.易知(4.16)为方程(4.15)的解的充要条件是:是代数方程λ0)(111=+λ++λ+λ≡λ−−n n n n a a a F L (4.17)的根.因此,方程(4.17)将起着预示方程(4.15)的解的特性的作用,被称为(4.15)的特征方程,它的根被称为特征根.于是,下面根据特征根的情况分别进行讨论(由代数知识知道,特征方程的根由两种情况:单根、重根). z 特征根是单实根的情形设是特征方程(4.17)的n 个彼此不相等等根,则相应地方程(4.16)有如下n 个解:n λλλ,,,21L t t t n e e e λλλ,,,21L (4.18)可以证明这n 个解在区间b t a ≤≤上线性无关,从而组成方程(4.15)的基本解组.事实上,此时,有1121121)(1121121111][1212121−−−λ++λλ−λ−λ−λλλλλλλλλλλλ=λλλλλλ≡n n n n nttn n tn t n tn t t t tt n n n n e e e ee e e e e e t W L L L L L L L L L L L L L LL而最后一个行列式是著名的范德蒙(Vandermonde )行列式,它等于.由于假设,故此行列式不等于零,从而∏≤<≤λ−λni j j i1)()(j i j i ≠λ≠λ0][≠x W ,于是解组(4.18)线性无关,这就是所要证明的.如果均为实数,则(4.18)是方程(4.15)的n 个线性无关的实值解,而方程(4.15)的通解可表示为),,2,1(n i i L =λt n t t n e c e c e c x λλλ+++=L 2121其中为任意常数.n c c c ,,,21L 例1 求方程0452244=+−x dtxd dt x d 的通解.解:(单根的情形).特征方程为:0454=+λ−λ由此得到特征根:2,2,1,14321=λ−=λ=λ−=λ,其对应的基本解组为:t t t t e x e x e x e x 242321,,,====−−故通解为:t t t t e c e c e c e c x 242321+++=−−.如果特征根有单复根的情形),,2,1(n i i L =λ如果特征根有复根,则因方程的系数是实常数,由代数学基本定理,复根将成对共轭的出现.设β+α=λi 1是一特征根,则β−α=λi 2也是特征根,因而与对共轭复根对应的,方程(15)有两个复值解)sin (cos )sin (cos )()(t i t e et i t e e tti t t i β−β=β+β=αβ−ααβ+α根据定理8,它们的实部和虚部也是方程的解.这样一来,对应于特征方程的一对共轭复根,可求得方程(4.15)的两个实值解:β±α=λi t e t e t t ββααsin ,cos此时,方程(4.15)的基本解组为:t t t tn e e t e t e λλααββ,,,sin ,cos 3L 例2 求方程的通解010'18"156)3()4(=+−+−y y y y y解:(单复根的情形).特征方程为:010********=+λ−λ+λ−λ由此得到特征根:i i i i −=λ+=λ−=λ+=λ2,2,1,14321,其对应的基本解组为:x e y x e y x e y x e y x x x x sin ,cos ,sin ,cos 242321====故通解为:)sin cos ()sin cos (43221x c x c e x c x c e y x x +++=.z 特征根是重根的情形设特征方程有k 重根,则由代数学知识有1λ=λ0)(,0)()(')(11)1(11≠λ=λ==λ=λ−k k F F F F L先设,即特征方程有因子,于是01=λk λ011====+−−k n n n a a a L也就是特征方程的形状为011=λ++λ+λ−−k k n n n a a L而对应的方程(4.15)变为0111=+++−−−k k k n n n n n dtxd a dt x d a dt x d L 易见它有个解,而且它们是线性无关的,这样一来,特征方程的k 重零根就对应于方程(4.15)的个线性无关的解.k 12,,,,1−k tt t L k 12,,,,1−k tt t L 如果这个k 重根,作变换,注意到0≠λtyex 1λ=]!2)1([)(1)2(21)1(1)()()(11y y m m y m y e ye x m m m m t m t m λ++λ−+λ+==−−λλL 可得t t n n n n n n te y L e y b dtdyb dt y d b dt y d ye L 121][)(][11111λλ−−−λ=++++=L于是方程(4.15)化为0][11111=++++≡−−−y b dt dyb dty d b dt y d y L n n n n n n L (4.19)其中仍为常数,而相应的特征方程为n b b b ,,,21L 0)(111=+μ++μ+μ≡μ−−n n n n b b b G L (4.20)直接计算易得t t t t t e G e e L e L e F )(1)()(11111)()()()(λ+μλμλ+μλ+μμ===λ+μ因此)()(1μ=λ+μG F从而)()()(1)(μ=λ+μj j G F可见(4.17)的根对应于(20)的根1λ=λ01=μ=μ,而且重数相同,这样,问题就化为前面已经讨论过的情形了.因为,方程(4.20)的重根1k 01=μ对应于方程(4.19)的个解,因而对应于特征方程(4.17)的重根1k 121,,,,1−=k t t t y L 1k 1λ,方程(4.15)有个解:1k t k t t t e t e t te e 11111,,,2λλλλL (4.21)同样,假设特征方程(4.17)其它根m λλλ,,,32L 重数依次为(单根相当于),而且1;,,,32≥i m k k k k L j λ1=j k i j m n k k k λ≠λ=+++,32L (当i j ≠),则方程(4.15)对应地有解:⎪⎩⎪⎨⎧λ−λλλλ−λλλt k t t t tk t t t m m m m m et e t te e e t e t te e 1212,,,,,,,,22222L LL L L L L L (4.22) 下面要证明(4.21)和(4.22)全体n 个解构成方程(4.15)的基本解组. 假若这些函数线性相关,则有0)()(2)(11)(1)(1)(01≡≡+++∑∑=λ−λ=λ−−mr t r mr tk r k r r r r r r e t P et At A AL (4.23)其中是常数,不全为零.不是一般性,假定多项式至少有一个系数不等于零,即.将恒等式(4.23)除以,然后对t 微分次,得到)(r j A )(t P m 0)(≠t P m t e 1λ1k 0)(2)(1≡∑=λ−λmr trr et Q (4.24)其中,为次数低于 的次数的多项式.因此,与次数相同,且)()()()(11t S t P t Q r r kr r +λ−λ≡)(t S r )(t P r )(t Q r )(t P r 0)(≠t Q m .恒等式(4.24)与(4.23)类似,但项数减少了.如果对(4.24)施行同上的手续(这时除以而微分次),于是有项数更少的类似的恒等式(4.23).如此继续下去,经过m-1次后,得到恒等式:te)(12λ−λ0)()(1≡−λ−λt m m m e t R这是不可能的,因为与有相同的次数,且)(t R m )(t P m 0)(≠t R m .事实上,不难直接计算得到)()()()()()(121121t W t P t R m m k m m k m k m m m +λ−λλ−λλ−λ≡−−L其中是次数低于的次数的多项式.)(t W m )(t P m 于是证明了(4.21)和(4.22)全部个解线性无关,从而构成了(4.15)的基本解组. n 对于特征方程有复重根的情况,譬如假设β+α=λi 是k 重特征根,则β−α=λi 也是k 重特征根,仿1一样处理,将得到方程(4.15)的2k 个实值解:te tt e t t t e t e t e t t e t t t e t e tk tttt k t t t ββββββββα−αααα−αααsin ,,sin ,sin ,sin cos ,,cos ,cos ,cos 1212L L3、应用例3 求方程044=−x dtxd 的通解解:(单根的情形).例4 求方程033=+x dtxd 的通解解:(单根、有复根的情形).例5 求方程0332233=−+−x dt dx dtx d dt x d 的通解解:(重根的情形).例6 求方程022244=++x dtxd dt x d 的通解解:(复重根的情形). 特征方程为:01224=+λ+λ由此得到特征根:是2重根,其对应的基本解组为:i ±=λ21、t t x t x t t x t x sin ,sin ,cos ,cos 4321====故通解为:t t c c t t c c x sin )(cos )(4321+++=.4、欧拉方程定义:形如011111=++++−−−−y a dx dy x a dx y d x a dx y d x n n n n n n n n nL (4.25) 的方程被称为欧拉方程.其中),,2,1(n i a i L =是常数.此方程可以简单的变换变为常系数齐线性方程,因而求解问题很容易解决.事实上,引进变换:x t e x t ln ,==经计算得到:dtdy e dx dt dt dy dx dy t−== ()(22222dtdy dt y d edt dy e dt d e dx y d t t t −==−−− 用数学归纳法不难证明:对一切自然数k 均有关系式:(1111dt dy dt y d dt y d e dx y d k k k k kkt k k −−−−β++β+=L 其中都是常数.于是11,,−ββk Ldt dydty d dt y d dx y d x k k k k k k k k1111−−−β++β+=L 将上述关系式代入方程(4.25),就得到常系数齐线性方程11110n n n n n n d y d y dyb b b dt dt dt−−−++++L y = (4.26) 其中都是常数,因而可用上述讨论的方法求出(4.26)的通解,再带回原来的变量(注意:11,,−k b b L x t ln =)就可以求得方程(4.25)的通解.由上述推演过程,知道方程(4.26)有形如的解,从而方程(4.25)有形如的解,因此可以直接求欧拉方程的形如的解.以代入(4.25)并约去因子,就得到确定te y λ=λ=xy Kx y =Kx y =K x K 的代数方程:0)2()1()1()1(1=+++−−++−−n a n K K K a n K K K L L L (4.27)可以证明这正是(4.26)的特征方程.因此,方程(27)的m 重实根,对应于方程(4.25)的m 个解0K K =x x x x x x x m K K K K 12ln ,,ln ,ln ,0000−L而方程(27)的m 重复根β+α=i K ,对应于方程(4.25)的2m 个实值解)ln sin(ln,),ln sin(ln ),ln sin()ln cos(ln ,),ln cos(ln ),ln cos(11x x x x x x x x x x x x x x x x m m ββββββ−ααα−αααL L .例5 求解方程0222=+−y dx dyx dxy d x 解: 寻找方程的形式解,得到确定Kx y =K 的代数方程:或,,因此方程的通解为01)1(=+−−K K K 0)1(2=−K 121==K K x x c c y )ln (21+=其中是任意常数.21,c c4.2.3 非齐次线性方程:比较系数法和拉普拉斯变换法——求特解现在讨论常系数非齐线性方程)(][1111t f x a dt dx a dtx d a dt x d x L n n n n n n =++++=−−−L (4.28)的求解问题.其中是常数,而为连续函数.),,2,1(n i a i L =)(t f 其实,方程(4.28)的求解问题已经解决,因为在前面已经解决了(4.1)的求解问题,即比(4.28)更一般的微分方程(4.1)的通解问题是这样解决的:(常数变易法)用先求出对应齐线性方程(4.2)的一个基本解组,然后找出(4.1)的某一个解,根据前面的定理7就可以写出(4.1)的通解.于是也就完成了(4.28)的求解问题,只是用常数变易法来求解,求解步骤比较繁琐,并且要用到积分运算.(注:大家必须掌握常数变易法求解高阶微分方程,因为它带有普遍性.)但是,在解决实际问题时,往往要解决一些比较简单的微分方程,即带有特殊形式的微分方程,为此,在这里,我们介绍两种常用的比较系数法和拉普拉斯变换法,它们的共同特点是不需要通过积分而用代数运算方法即可求得非齐线性方程的特解.这个方法的特点:比较简单,把求解微分方程的问题转化为某一个代数问题来处理.1. 比较系数法类型Ⅰ设,其中t m m m m e b t b t b t b t f λ−−++++=)()(1110L λ及),,2,1(m i b i L =为实常数,那么方程(28)有形如t m m m m k e B t B t B t B t x λ−−++++=)(~1110L (4.29)的特解,其中k 为特征方程0)(=λF 的根λ的重数(单根相当于1=k ;当不是特征根时,取),而是待定常数,可以通过比较系数来确定. λ0=k m B B B ,,,10L ①如果,则此时,0=λm m m m b t b t b t b t f ++++=−−1110)(L现在再分两种情形讨论z 在不是特征根的情形,即0=λ0)0(≠F ,因而0≠n a ,这时,取,以0=k m m m m B t B t B t B x ++++=−−1110~L 代入方程(4.28),并比较t 的同次幂的系数,得到常数必须满足的方程:m m B B B B ,,,,110−L ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=−+−+=+−−−mn m n n n n n n b a B b a B m m b a B m a B b a mB a B b a B L L L 2200112110100)1()1( (4.30) 注意到,这些待定常数可以从方程(30)唯一地逐个确定出来. 0≠n a m m B B B B ,,,,110−L z 在是特征根的情形,即,也就是0=λ0)0(,0)0()0(')0()1(≠====−k k F FF F 而L 0,011≠====−+−−k n k n n n a a a a L ,这时相应地,方程(28)将为)(111t f dtxd a dt x d a dt x d k k k n n n n n =+++−−−L (4.31) k k dtxd z =,则方程(4.31)化为)(111t f z a dtzd a dt z d k n k n k n k n k n =+++−−−−−−−L (4.32) 对方程(4.32)来说,由于0,0=λ≠−k n a 已不是它的特征根.因此,由前一种情况,它有形如的特解,因而方程(31)有特解m m m mB t B t B t B z ~~~~~1110++++=−−L x ~满足:m m m m kk B t B t B t B z dtx d ~~~~~~1110++++==−−L 这表明x ~是t 的次多项式,其中的幂次k m +t 1−≤k 的项带有任意常数.但因只需要知道一个特解就够了.特别地取这些任意常数均为零,于是得到方程(4.31)(或方程(4.28))的一个特解)(~1110m m m m k t t t t x γ+γ++γ+γ=−−L这里m m γγγγ−,,,,110L 是已确定了的常数.②如果,则此时可象前面的讨论一样,作变量变换,将方程(4.28)化为0≠λtye x λ=m m n n n n n n b t b y A dt dyA dty d A dt y d ++=++++−−−L L 01111 (4.33) 其中都是常数.而且特征方程(4.17)的根n n A A A ,,,11−L λ对应于方程(4.33)的特征方程的零根,并且重数也相同.因此,利用上面的结果就有下面的结论:在不是特征方程(4.17)的根的情形,方程(4.33)有特解λm m m B t B t B y +++=−L 110~,从而方程(28)有特解t m m m e B t B t B x λ−+++=)(~110L在是特征方程(4.17)的重根的情形,方程(4.33)有特解λk )(~110m m m k B t B t B t y +++=−L ,从而方程(4.28)有特解t m m m k e B t B t B t x λ−+++=)(~110L例7 求方程133222+=−−t x dt dxdtdx 的通解. 解:先求对应的齐线性方程03222=−−x dt dxdtdx 的通解.这里特征方程有两个根0322=−λ−λ1,321−=λ=λ.因此,通解为:,其中为任意常数,再求非齐线性方程的一个特解.这里t t e c e c x −+=23121,c c 13)(+=t t f 0=λ,并且不是特征根,故可取特解形如Bt A x +=~,其中为待定常数.为了确定,将B A ,B A ,Bt A x +=~代入原方程,得到 13332+=−−−t Bt A B比较系数得⎩⎨⎧=−−=−13233A B B 由此得到1,31−==B A ,从而t x −=31~,因此,原方程的通解为 31231+−+=−t e c e c x t t例8 求方程t e x dt dxdtdx −=−−3222的通解. 解:从例7知道对应的齐线性方程的通解为:,其中为任意常数,这里,因为t te c ec x −+=23121,c c te tf −=)(1,321−=λ=λ刚好是特征方程的单根,故有特解形如,将它代入原方程得到,从而,t Ate x −=~t t e Ae −−=−441−=A ,于是,t te x −−=41~,因此,原方程的通解为t t t te e c e c x −−−+=41231类型Ⅱ设,其中te t t B t t A tf αβ+β=]sin )(cos )([)(βα,为常数,而是带实系数的t 的多项式,其中一个的次数为,而另一个的次数不超过,那么有如下结论:方程(28)有形如)(),(t B t A m m t k e t t Q t t P t x αβ+β=]sin )(cos )([~ (4.34)的特解,这里为特征方程k 0)(=λF (4.21)的根β+αi 的重数,而均为待定的带实系数的次数不高于的t 的多项式,可以通过比较系数的方法来确定.)(),(t Q t P m 事实上,分析类型Ⅰ的讨论过程,容易知道,当不是实数,而是复数时,有关结论仍然成立.现将表为指数形式)(t f ti t i et iB t A e t iB t A t f )()(2)()(2)()()(β−αβ+α++−=根据非齐线性方程的叠加原理,方程t i e t iB t A t f x L )(12)()()(][β−α+≡=与ti et iB t A t f x L )(22)()()(][β+α−≡= 的解之和必为方程(4.28)的解.注意到)()(21t f t f =,易知,若为1x )(][1t f x L =的解,则1x 必为的解.因此,直接利用类型Ⅰ的结果,可知方程(4.28)有解形如)(][2t f x L =t k k t i k t i k e t t Q t t t P t e t D t e t D t x αβ+αβ−αβ+β=+=]sin )(cos )([)()(~)()(其中为的的m 次多项式,而)(t D t )}(Im{2)()},(Re{2)(t D t Q t D t P ==.显然为带实系数的的多项式,其次数不高于m .可见上述结论成立.)(),(t Q t P t 例9 求方程t x dt dx dtdx 2cos 4422=++的通解解:先求对应的齐线性方程04422=++x dt dxdt dx的通解.这里特征方程有重根0442=+λ+λ221−=λ=λ.因此,通解为:t e t c c x 221)(−+=其中为任意常数,再求非齐线性方程的一个特解.因为21,c c i 2±不是特征根,求形如t B t A x 2sin 2cos ~+=的特解,将它代入原方程并化简得到t t A t B 2cos 2sin 82cos 8=−比较同类项的系数得81,0==B A ,于是,t x 2sin 81~=,因此原方程的通解为t e t c c x t 2sin 81)(221++=−附注:类型Ⅱ的特殊情形t e t B t f t et A t f t tβ=β=ααsin )()(cos )()(或可用另一种简便方法求解:复数法求解. 例10 用复数法求解例9解:由例9已知对应齐线性方程的通解为t e t c c x 221)(−+=为求非齐线性方程的一个特解,先求方程ite x dt dx dtdx 22244=++ 的特解.这属于类型Ⅰ,而不是特征根,故可设特解为i 2it Ae x 2~=将它代入方程并消去因子得it e 218=iA ,因而,8iA −=,t t i e i x it 2sin 812cos 88~2+−=−=,t x 2sin 81}~Re{=由定理9这是原方程的特解,于是原方程的通解为t e t c c x t 2sin 81)(221++=−2. 拉普拉斯变换法常系数线性微分方程(组)还可以应用拉普拉斯变换法进行求解,有时显得比较简单. 拉普拉斯变换:由积分∫∞−=0)()(dt t f e s F st所定义的确定于复平面σ>s Re 上的复变数的函数,称为函数的拉普拉斯变换,其中于有定义,且满足不等式s )(s F )(t f )(t f 0≥t t Me t f σ<)(这里为某两个正常数,将称为原函数,而称为象函数.σ,M )(t f )(s F 拉普拉斯变换法主要目的是借助于拉普拉斯变换把常系数线性微分方程(组)转换为复变数的代数方程(组),通过一些代数运算,一般地再利用拉普拉斯变换表,即可求出微分方程(组)的 解.虽然这种方法简单,但是有一定的局限性.而对有关拉普拉斯变换的基本概念和基本性质在附录1 中有介绍.设给定微分方程)(][1111t f x a dt dx a dtx d a dt x d x L n n n n n n =++++=−−−L (4.28)及初始条件。