第11讲 模式搜索法
- 格式:ppt
- 大小:847.50 KB
- 文档页数:25
最优化理论课程名称:最优化理论英文译名:Optimization Theory课程编码:070102X07适用专业:信息与计算科学课程类别:专业选修学时数:64 学分:4编写执笔人:余东明审定人:高仕龙编写日期:2005/04/15一、课程的性质、目的和任务最优化理论是现代应用数学的一个重要分支,是一门应用广泛、实用性强的学科。
它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。
通过最优化理论和方法的学习,使学生得到良好的数学训练,培养学生的抽象思维能力和解决实际问题的能力。
二、课程教学内容及教学基本要求:第一章概述(2学时)1、教学内容:学科简述,线性规划与非线性规划问题。
2、教学目的及要求:了解学科发展历程。
理解优化理论包含的内容。
掌握线性规划与非线性规划的定义,形式和性质。
第2 章凸集与凸函数(4学时)1、教学内容:凸集,凸函数。
2、教学目的及要求:了解本学科的研究内容、重要进展及发展趋势。
理解凸集、凸函数等基本概念,凸集,凸函数的几何意义。
掌握凸集、凸函数等基本概念,定理和判定理。
第3 章线性规划的基本性质(4学时)1、教学内容:标准形式及图解法,基本性质。
2、教学目的及要求:了解线性规划解的方法与计算机实现方法。
理解与线性规划有关的定理,性质。
掌握线性规划的性质,涉及相关的定理,计算方法。
第4章单纯形方法(6学时)1、教学内容:单纯形方法,两阶段法与大M法,退化情形,修正单纯形法,变量有界的情形,分解算法。
2、教学目的及要求:了解解的有效性和时间性。
理解变量有界的情形,分解算法。
掌握线性规划的基本性质、单纯形法、修正单纯形法,对偶理论等线性规划的基本理论和方法。
第5章对偶原理及灵敏度分析(6学时)1、教学内容:线性规划中的对偶理论,对偶单纯形法,原始—对偶算法,灵敏度分析。
2、教学目的及要求:了解对偶理论和灵敏度分析的作用和意义。
理解有关算法收敛性的理论。
掌握线性规划中的对偶理论,对偶单纯形法算法和原始—对偶算法,并能借助算法进行一些计算。
第十一课WWW浏览一、教学目标知识方面:1.使学生初步了解全球信息网和浏览器的功能。
2.使学生掌握网页、网址、超等基本概念。
3.使学生掌握WWW浏览的基本方法。
技能方面:培养学生上网浏览信息、获取信息的能力。
情感方面:1.培养学生在网上获取信息的意识。
2.培养学生良好的网上浏览信息的习惯。
3.培养学生互相合作的精神。
二、教学重点WWW浏览的基本方法。
三、教学难点WWW浏览的方法。
四、教学方法1.演示法。
2.实践法。
3.讨论法。
五、教学手段与教学媒体多媒体网络教室。
六、课时安排1课时。
览文字、图像、声音等多媒体信息。
(2)浏览器简介教师介绍浏览器的作用以与常用的浏览器。
用于浏览网页的软件称为浏览器,它可以将WWW上的多媒体信息转换成我们可以看得到文字、图形和图像与听得见的声音。
目前,我们一般使用InternetExplorer (简称IE)。
例启动浏览器,并认识浏览器窗口(见图3-1)。
图3-1学生听教师介绍,观看教师演示,并上机实践,学习启动浏览器的方法,认识浏览器窗口。
通过教师介绍、演示和学生上机实践,学生应掌握启动浏览器的方法,认识浏览器窗口,对浏览器窗口中各部分的使用需要在实际应用中掌握。
不同的机器设置的主页不同,教师应结合自己设置的主页进行讲解。
教师介绍启动浏览器的方法,结合图3-1介绍浏览器中的菜单栏、工具栏、地址栏、状态栏、显示区等。
教师要求学生启动浏览器,并观察浏览器窗口中各个部分。
2.网页知识介绍教师结合图3-1介绍网页、网址、超等概念。
3.WWW浏览教师要求学生输入中国中小学教育教学网的:// ,观察屏幕变化。
教师提问:输入网址后,屏幕上有什么变化?说明什么? 教师要求学生将鼠标光标指向中国中小学教育教学网中“学生频道”上(见图3-2),然后单击鼠标,观察鼠标光标的变化和屏幕的变化。
学生上机实践。
学生听教师介绍,学习网页、网址、超等概念。
学生练习输入中国中小学教育教学网的:// k12 .cn学生回答并讨论问题。
五种最优化方法 Prepared on 22 November 2020五种最优化方法1. 最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
原理和步骤3. 最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4. 模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)). g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
一维搜索:1精确一维搜索精确一维搜索可以分为三类:区间收缩法、函数逼近法(插值法)、以及求根法。
区间收缩法:用某种分割技术缩小最优解所在的区间(称为搜索区间)。
包括:黄金分割法、成功失败法、斐波那契法、对分搜索法以及三点等间隔搜索法等。
优化算法通常具有局部性质,通常的迭代需要在单峰区间进行操作以保证算法收敛。
确定初始区间的方法:进退法①已知搜索起点和初始步长;②然后从起点开始以初始步长向前试探,如果函数值变大,则改变步长方向;③如果函数值下降,则维持原来的试探方向,并将步长加倍。
1.1黄金分割法:黄金分割法是一种区间收缩方法(或分割方法),其基本思想是通过取试探点和进行函数值比较,使包含极小点的搜索区间不断缩短以逼近极小值点。
具有对称性以及保持缩减比原则。
优点:不要求函数可微,除过第一次外,每次迭代只需计算一个函数值,计算量小,程序简单;缺点:收敛速度慢;函数逼近法(插值法):用比较简单函数的极小值点近似代替原函数的极小值点。
从几何上看是用比较简单的曲线近似代替原的曲线,用简单曲线的极小值点代替原曲线的极小点。
1.2牛顿法:将目标函数二阶泰勒展开,略去高阶项后近似的替代目标函数,然后用二次函数的极小点作为目标函数的近似极小点。
牛顿法的优点是收敛速度快,缺点是需要计算二阶导数,要求初始点选的好,否则可能不收敛。
1.2抛物线法:抛物线法的基本思想就是用二次函数抛物线来近似的代替目标函数,并以它的极小点作为目标函数的近似极小点。
在一定条件下,抛物线法是超线性收敛的。
1.3三次插值法:三次插值法是用两点处的函数值和导数值来构造差值多项式,以该曲线的极小点来逼近目标函数的极小点。
一般来说,三次插值法比抛物线法的收敛速度要快。
精确一维搜索的方法选择:1如目标函数能求二阶导数:用Newton法,收敛快。
2如目标函数能求一阶导数:1如果导数容易求出,考虑用三次插值法,收敛较快;2对分法、收敛速度慢,但可靠;3只需计算函数值的方法:1二次插值法, 收敛快,但对函数单峰依赖较强;2黄金分割法收敛速度较慢,但实用性强,可靠;4减少总体计算时间:非精确一维搜索方法更加有效。