五种最优化方法
- 格式:docx
- 大小:8.10 KB
- 文档页数:3
2018-2019学年第一学期《运筹学》实验报告(五)班级:交通运输171学号: **********姓名: *****日期: 2018.12.6654321m in x x x x x x z +++++=..ts 6,...,2,1,0302050607060655443322116=≥≥+≥+≥+≥+≥+≥+i x x x x x x x x x x x x x x i i 均为整数,且实验一:一、问题重述某昼夜服务的公共交通系统每天各时间段(每4个小时为一个时段)所需的值班人数如下表所示。
这些值班人员在某一时段开始上班后要连续工作8个小时(包括轮流用膳时间)。
问该公交系统至少需要多少名工作人员才能满足值班的需要?设该第i 班次开始上班的工作人员的人数为x i 人,则第i 班次上班的工作人员将在第(i+1)班次下班。
(i=1,2,3,4,5,6)三、数学模型四、模型求解及结果分析Global optimal solution found.Objective value: 150.0000Objective bound: 150.0000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 4Variable Value Reduced CostX1 60.00000 1.000000X2 10.00000 1.000000X3 50.000001.000000X4 0.000000 1.000000X5 30.00000 1.000000X6 0.000000 1.000000Row Slack or Surplus DualPrice1 150.0000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 10.00000 0.0000007 0.000000 0.000000根据Lingo程序运行结果分析可知:当第i班次开始上班的工作人员排布如下时,所需人力最少,为150人。
精心整理五种最优化方法1.最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);341.22.2.11232.23.3.11233.24.模式搜索法(步长加速法)4.1简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min(f_1(x),f_2(x),...,f_k(x))s.t.g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2线性加权求合法6.遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
6.1遗传算法基本概念1.个体与种群个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。
种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。
2.适应度与适应度函数适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。
适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。
该函数就是遗传算法中指导搜索的评价函数。
6.2遗传算法基本流程遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。
五种最优化方法 Prepared on 22 November 2020五种最优化方法1. 最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
原理和步骤3. 最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4. 模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)). g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
一、分治算法在计算机科学中,分治法是一种很重要的算法。
字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作一次比较即可排好序。
n=3时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治法所能解决的问题一般具有以下几个特征:1) 该问题的规模缩小到一定的程度就可以容易地解决2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
五种最优化方法范文最优化是一个数学领域,在解决实际问题时,通过寻找最优解的方法,使得目标函数的值最小或最大化。
在最优化问题中,有许多不同的方法可以用来求解。
以下是五种常见的最优化方法。
1.梯度下降法梯度下降法是一种基于梯度信息的迭代算法,用于求解最小化目标函数的最优解。
其基本思想是从初始点开始,根据负梯度方向进行迭代求解,直到达到预定的停止条件或收敛到最优解。
梯度下降法的优点是简单易实现,适用于大规模问题。
缺点是容易陷入局部最优或鞍点,并且收敛速度可能较慢。
2.牛顿法牛顿法是一种基于二阶导数信息的迭代算法,用于求解非线性最优化问题。
其基本思想是通过二阶泰勒展开近似目标函数,以牛顿法的更新方程进行迭代求解。
与梯度下降法相比,牛顿法收敛速度更快。
但牛顿法的缺点是需要计算目标函数的二阶导数矩阵,计算代价较大,并且需要满足一定的收敛条件。
3.拟牛顿法拟牛顿法是一种通过拟合目标函数的局部特征来逼近牛顿法的方法。
常用的拟牛顿法有DFP(Davidon-Fletcher-Powell)方法和BFGS (Broyden-Fletcher-Goldfarb-Shanno)方法。
拟牛顿法利用目标函数的一阶导数信息来近似目标函数的二阶导数矩阵,从而避免了计算二阶导数的复杂性,且收敛速度比梯度下降法更快。
拟牛顿法的缺点是需要存储和更新一个Hessian矩阵的逆或近似逆。
4.线性规划线性规划是一种最优化问题的形式,其中目标函数和约束条件都是线性的。
线性规划问题可以通过线性规划算法求解,如单纯形法、内点法等。
线性规划问题具有良好的理论基础和高效的求解方法。
线性规划在工业、供应链管理、运输问题等方面有广泛的应用。
5.整数规划整数规划是一种最优化问题的形式,其中决策变量只能取整数值。
整数规划问题可以通过整数规划算法求解,如分支定界法、割平面法等。
整数规划在许多实际情况下具有重要的应用,例如在生产计划、线路设计、货物装载等问题中。
五种最优化方法范文最优化方法是指为了在给定的条件和约束下,找到一个最优解或者接近最优解的问题求解方法。
这些方法可以用于解决各种实际问题,例如优化生产计划、项目管理、机器学习、数据分析等。
下面将介绍五种常见的最优化方法。
1. 线性规划(Linear Programming):线性规划是一种数学优化技术,用于解决线性目标函数和线性约束条件下的问题。
线性规划方法可以用于优化生产计划、资源分配、供应链管理等问题。
它的基本思想是将问题转化为一个线性目标函数和线性约束条件的标准形式,然后使用线性规划算法求解最优解。
2. 非线性规划(Nonlinear Programming):与线性规划不同,非线性规划处理非线性目标函数和约束条件。
非线性规划方法适用于一些复杂的问题,例如优化机器学习模型、最优化投资组合配置等。
非线性规划方法通常使用梯度下降、牛顿法等迭代算法来逐步优化目标函数,找到最优解。
3. 整数规划(Integer Programming):整数规划是一种数学优化技术,用于求解在决策变量为整数的情况下的优化问题。
整数规划方法通常用于优化工程排程、选址和布局问题等。
整数规划在求解时需要考虑变量取值范围的整数要求,使用分支定界、割平面等方法求解,保证最优解是整数。
4. 动态规划(Dynamic Programming):动态规划是一种将复杂问题分解为一系列子问题来求解的最优化方法。
它通常用于处理具有重叠子问题和最优子结构特性的问题,例如最优路径问题、背包问题等。
动态规划方法通过记忆化或者状态转移的方式来求解最优解,可以有效避免重复计算,提高求解效率。
5. 元启发式算法(Metaheuristic Algorithm):元启发式算法是一类基于启发式的最优化方法。
与传统的优化方法不同,元启发式算法通常不需要依赖目标函数的导数信息,适用于处理复杂问题和无法建立数学模型的情况。
常见的元启发式算法包括遗传算法、蚁群算法、粒子群算法等,它们通过模拟自然界中的生物群体行为来最优解。
第五章线性规划线性规划(Linear Programming,简记为LP)是数学规划的一个重要的分支,其应用极其广泛.1939年,前苏联数学家康托洛维奇(Л.B.Kah )在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题.1947年美国数学家丹泽格(G. B. Dantzig)提出了一般线性规划的数学模型及求解线性规划的通用方法─单纯形方法,为这门科学奠定了基础.此后30年,线性规划的理论和算法逐步丰富和发展.1979年前苏联数学家哈奇扬提出了利用求解线性不等式组的椭球法求解线性规划问题,这一工作有重要的理论意义,但实用价值不高.1984年在美国工作的印度数学家卡玛卡(N. Karmarkar)提出了求解线性规划的一个新的内点法,这是一个有实用价值的多项式时间算法.这些为线性规划更好地应用于实际提供了完善的理论基础和算法.第一节线性规划问题及其数学模型一、问题的提出例1 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知条件如表所示。
问应如何安排计划使该工厂获利最多?ⅠⅡ现有资源设备原材料A 原材料B 14248台时16kg12kg每件利润23ⅠⅡ现有资源设备原材料A 原材料B 1402048台时16kg12kg每件利润23解: 设x 1、x 2 分别表示在计划期内产品Ⅰ、Ⅱ的产量。
12max 23z x x =+..s t 1228x x +≤1416x ≤2412x ≤12,0x x ≥二、线性规划问题的标准型112211112211211222221122123max ..,,0n nn n n n m m m mn n mn z c x c x c x s t a x a x a x b a x a x a x b a x a x a x b x x x x =+++⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪≥⎩,,其中1,,0m b b ≥11max ..,1,2,,0,1,2,,nj jj nij j i j j z c x s t a x b i mx j n=====≥=∑∑ 12(,,,)T n c c c =c 12(,,,)Tn x x x =x 12(,,,)Tm b b b =b 111212122212n nm m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 12[,,,]n = p p pmax ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 001max ..()Tnj j j z s tx =⎧=⎪⎪=≥⎨⎪⎪≥⎩∑c xp bb x 00对于不是标准形式的线性规划问题,可以通过下列方法将线性规划的数学模型化为标准形式:(1)目标函数的转换对min z 可以化max()z -(2)右端项的转换对0i b <,给方程两边同时乘以1-(3)约束条件的转换约束条件为≤方程左边加上一个变量,称为松弛变量约束条件为≥方程左边减上一个变量,称为剩余变量(4)变量的非负约束变量j x 无限制时,令,,0j j j j j x x x x x ''''''=-≥变量0j x ≤时,令j jx x '=-例将下列线性规划模型转化为标准形式12312312312312min 23..7232500x x x s t x x x x x x x x x x x -+-⎧⎪++≤⎪⎪-+≥⎨⎪--=-⎪≥≥⎪⎩,解(1)变量的非负约束令345x x x =-1245max 233x x x x -+-..s t 612457x x x x x ++-+=712452x x x x x -+--=12453225x x x x -++-=§2 两变量线性规划问题的图解法例1 求下列线性规划的解12121212max ..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,120x x z +=将等值线沿梯度方向移动当等值线即将离开可行例2 求下列线性规划的解12121212max 2..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,1202x x z +=将等值线沿梯度方向移动当等值线即将离开可行域时与可行域“最后的交点点为问题的最优解例3 求下列线性规划的解12121212max ..2200z x x s t x x x x x x =+⎧⎪-≤⎪⎨-≥-⎪⎪≥≥⎩,c2x 1x O无解例4 求下列线性规划的解12121212min 3..123600z x x s t x x x x x x =-⎧⎪≤⎪⎨≥⎪⎪≥≥⎩++,2x 1x O线性规划问题的性质:(1)线性规划的可行域为凸集,顶点个数有限.若可行域非空有界,则可行域为凸多边形.(2)线性规划可能有唯一最优解,可能有无数多个最优解,也可能无解最优解.无最优解可能是目标函数在可行域上无界,也可能可行域为空集.(3)若线性规划有最优解,则最优解必可在可行域的某个顶点达到.若两个顶点都为最优解,那么这两点连线上的所有点都是线性规划的最优解.§3 线性规划解的概念及其性质1 线性规划解的概念考虑线性规划问题max ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 00定义.1 矩阵A 中任何一组m 个线性无关的列向量构成的可逆矩阵B 称为线性规划的一个基矩阵与这些列向量对应的变量称为基变量(basis variable )其余变量称为基对应的非基变量(nonbasis variable )B 若设一个基为12(,,)m B p p p = ,12,,,m x x x ——为基B 对应的基变量1,,m n x x + ——为基B 对应的非基变量1B m x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1m N n x x x +⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦12(,,,)m m n ++= N p p p (,)=A B N 从而令=Ax b 则(,)N x ⎡⎤=⎢⎥⎣⎦B x B N b11B Nx B b B Nx --=-B N Bx Nx b+=令0N x =则1B x B b-=10B b -⎡⎤⎢⎥⎣⎦——基本解(basis solution )满足10B b -⎡⎤≥⎢⎥⎣⎦,=≥0Ax b x 的基本解——基本可行解(basis feasible solution )对应的基称为可行基(feasible basis ).B 可以写成即:定义4 若基本可行解中所有基变量都为正,这样的基本可行解称为非退化解(non-degenerate solution).若基本可行解中某基变量为零,这样的基本可行解称为退化解(degenerate solution).例1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:12123141234max ..28400,00z x x s t x x x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥≥≥⎩,,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点2 解的判别定理定理1 最优解的判别准则设B 为线性规划LP 的一个基,1(1)0-≥B b 1(2)T T--≥0Bc B A c 则基对应的基本可行解1-⎡⎤⎢⎥⎣⎦0B b 是LP 的最优解.1(1,2,,)σ--== TBj j j c B p c j n 为变量对应的检验数j x 112[0,,0,,,]σσσ-++-= ,T TBm m n c B A c 显然基变量对应得检验数为零.定理2 无穷多个最优解的判别定理在线性规划的最优解中,某个非基变量对应的检验数为零,则线性规划有无数多最优解.定理3 无界解的判别定理设B 为线性规划的一个可行基,若基本可行解中s x 对应的检验数0σ<s ,且1-≤0s B p 则线性规划具有无界解(或称无解).某非基变量§3.4 单纯形表设B 为线性规划的一个基,x 为对应的可行解,则=Ax b两边同乘得1-B 11--=B Ax B b两边同乘得T Bc 11T T --=BBc B Ax c B b T z =c xTz -=c x 11T T --+-=TBBz c B Ax c x c B b 11(T T --+-=)TBBz c B A c x c B b1111()T TT z ----⎧+-=⎨=⎩BBc B A c x c B b B Ax B b 11111T T Tz ----⎡⎤⎡⎤-⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0BBc B b c B A c x B A B b 定义矩阵1111TT----⎡⎤-⎢⎥⎣⎦T BBc B b c B A c B bB A 为基B 对应的单纯形表(table of simplex ),记为()T B1111()T T----⎡⎤-=⎢⎥⎣⎦T BBc B b c B A c T B B bB A 检验数函数值基变量的值各变量的系数100T b -=Bc B b 101020(,,,)--= T TBn c B A c b b b 10201-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥ b b B b则单纯形表可写成000101011102()⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦B n n m m mn b b b b b b T b b b 1112121222111112(,,)---⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦n n n m m mn b b b b b b B A B p B p bb b上例中1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:121231412max ..28400z x x s t x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥⎩,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点13410(,)01⎡⎤==⎢⎥⎣⎦B p p 231(,)=B p p 12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p T(0,0)=B C 10()T⎡⎤-=⎢⎥⎣⎦c T B b A 34011008121041001z x x -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦23140101()4021141001x x ⎡⎤⎢⎥=-⎢⎥⎢⎥z T B 121101--⎡⎤=⎢⎥⎣⎦B 31401014021141001z x x ⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦T(0,1)=B C单纯形表的特点:1、基变量对应的检验数为零2、基变量的系数构成单位阵§5旋转变换(基变换)设已知12(,,,,,)= r m j j j j B p p p p T()=B 1 r m j j j z x x x 1sn x x x 0001001011110102⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦sn s n r r rs rn m m ms mn b b b b b b b b b b b b b b b b为了将s x 变为基变量,而将r j x 变为非基变量,必须使表中的第s 列向量变为单位向量,变换按下列步骤进行:(1)将()T B 中第r 行,第s 列的元素化为1.01(,,,,,1,,) rj r rnr rs rs rs rsb b b b b b b b (2)将()T B 中第s 列的的其余元素化为0.0101(,,,,,0,,)---- is rn is rj is r is r i i ij in rs rs rs rsb b b b b b b b b b b b b b b b由此得出变换后矩阵中各元素的变换关系式如下,其中,01== ,,,rjrj rsb b j nb ,,01,01=-≠== ,,,,,,is rjij ij rsb b b b i r i m j nb 变换式称为旋转变换rs b 称为旋转元,r称为旋转行称为旋转列,s s x 称为入基变量,称为出基变量,r j x {,}r s定理3.5.1,01== ,,,rj rj rsb b j n b ,,0,01=-≠== ,,,,,is rj ij ij rsb b b b i r i m j n b 在变换之下,将基12(,,,,,)= r m j j j j B p p p p 的单纯形表变为基12(,,,,,)= m j s j j B p p p p 的单纯形表第6节单纯形法基本思路是:线性规划(通常是求最小值的形式)若有最优解,其必定在可行域(在相应几何空间中是一个凸多面体)的顶点达到,故从某一个顶点出发,沿着凸多面体的棱向另一顶点迭代,使得目标函数的值增加,经过有限次迭代,将达到最优解点.1.入基变量及出基变量的确定入基变量的确定由上面可知,目标函数用非基变量表示的形式为01n j jj m z z x σ=+=-∑若某检验数0j σ<则j x 的系数大于零,将j x 由零变为非零,目标函数值增大.所以,为了使的取值目标函数值增加,可以将某检验数0j σ<对应的非基变量j x 中的某个变为基变量.{}min 0j s j σ=<则s x 可选作为入基变量.即:在负检验数中,列标最小的检验数对应的非基变量入基.2.出基变量的确定在确定出基变量时应满足两个原则:(1)目标函数值不减;(2)保证新的基本解为基本可行解.0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,2 单纯形法设已知一个初始可行基及B T()B 基变量指标集合为{}1,,B m J j j = 非基变量的指标集合为{}1,2,,\N BJ n J =单纯形法若所有()00j N b j J ≥∈,则停止,最优解为0,1,,0,ij i j N x b i m x j J **⎧==⎪⎨=∈⎪⎩否则转(2).(1)最优性检验(2)选入基变量{}0min 0,j N s j b j J =<∈若()01~is b i m ≤=,则停止,(LP)无最优解,否则转(3)(3)选出基变量0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭0min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,(4)作{},r s 旋转运算,01rj rj rsb b j n b == ,,,,,01,01is rj ij ij rsb b b b i r i m j n b =-≠== ,,,,,,得B 的单纯形表()()ijT B b =,以ij b 代替ij b ,转(1)例1 求线性规划问题的解解标准型为:121231425max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 2328416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/408-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x08-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/40140244011/201001/40002-15z x 12345x x x x x 3/21/80⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 1/2例2求线性规划问题的解解标准型为:121231425max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 228416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/404-2441202101001/400400135z x x 12345x x x x x 01/40⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x0-2441202101001/400400135z x x 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/4080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 41/42-1/2080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 2x 2T 0803280101/410101/2-004-12z 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣01x 2x 42-1/25x 11212x k x k x =+12120,1,1k k k k ≤≤+=全部最优解为§7 两阶段法第二阶段从初始可行基开始,用单纯形法求解原问题.(LP )max ..(0)0T z c x s t Ax b b x ⎧=⎪=≥⎨⎪≥⎩(ALP )max ..0()T w s t z ⎧=-⎪-=⎪⎨+≥⎪⎪≥⎩00T e y c x A =b b x y x 第一阶段引入人工变量,构造辅助问题,求辅助问题的最优解,得出原问题的初始可行基及对应的基本可行解.(ALP)12112211112211121122222211212312max..0 ,,,,0mn nn nn nm m mn n m mn mw y y ys t z c x c x c xa x a x a x y ba x a x a x y ba x a x a x y bx x x x y y y=----⎧⎪----=⎪⎪++++=⎪++++=⎨⎪⎪++++=⎪⎪≥⎩,,,,,121111211112122122212000000100()010001m m m m i i i in i=1i i i n n n m m m mn b a a a c c c b a a a T B b a a a b a a a ===⎡⎤----⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑∑。
在信息技术教学中培养学生的优化思想摘要:人们在日常生活中,为完成某件事,总有多种方法,通常会选择最省时最省力,效果最好的方法,这个选择的过程需要采用对比、试验、评价、反馈等方式,经过反复验证,最终达到比较完美的结果,这就是优化。
优化的目的是为了办事效率及做事效果的最大化。
通过多年教学,笔者总结了“SECRS五原则”优化方法,在信息技术教学中培养学生优化思想。
关键词:SECRS五原则优化思想解决问题人们在日常生活中,为完成某件事,总有多种方法,通常会选择最省时最省力,效果最好的方法,这个选择的过程需要采用对比、试验、评价、反馈等方式,经过反复验证,最终达到比较完美的结果,这就是优化;信息技术教学中,设计程序、网页、绘画作品等教学内容,学生通过优化方法,拿出最完美的作品,选择优化方法的思想就是优化思想,优化思想就是在有限种或无限种可行方案(决策)中挑选最优的方案(决策)的思想。
优化的目的是为了办事效率及做事效果的最大化。
随着现代科技的发展优化思想的应用越来越广泛,它的潜在价值也日渐明显,学生是祖国的未来,肩负着建设祖国的使命,更应该具备优化思想,那么教师在教学中怎样培养学生的优化思想呢?优化方法有那些呢,通过多年教学,笔者总结了“SECRS五原则”。
一、“SECRS五原则”优化方法信息技术内容设定了做什么,接下来就是怎么做的问题,在学生有了初步的设想,方案,关键在于研究和探讨改进的可能性,通过多年教学,笔者认为下面五种方法简单实用,循序渐进,可以让学生在优化中按“SECRS五原则”来训练应用。
1、S(Share),共享。
身处变革大时代,一定要教会学生紧跟代潮流和最新技术,否则,设计出来的作品再完美无缺,也是纸上谈兵。
共享新技术,共享新应用,这是优化的基础。
2、E(Eliminate),消除。
删除键是学生在电脑学习中应用最多的键,在优化思想上,首先要会使用“删除键”。
编程、设计网页、电脑作品时,在决定了做什么之后,在具体实施的环节,列出方案,准备了诸多元素候,首先要问自己,某些元素、操作是否必要,若答复为不必要,则予以取消,取消是改善的最佳效果,如取消不必要的程序、动作,消除冗余功能,这是信息化技术遵循的最重要的原则,取消是改善的最高原则。
初中求最值五种方法1. 排序法排序法是求最值常用的一种方法。
如果要求一个数组的最大值,就可以先对数组进行排序,然后取最后一个元素即可;如果要求一个数组的最小值,则取排序后的第一个元素即可。
步骤:1.定义一个数组,并给数组赋值。
2.使用排序算法对数组进行排序。
3.选择最后一个元素作为最大值,选择第一个元素作为最小值。
下面是一个使用Python编写的实例代码,在数组中求最大值和最小值:def find_max(arr):arr.sort()return arr[-1]def find_min(arr):arr.sort()return arr[0]# 调用函数arr = [9, 5, 7, 2, 1]max_value = find_max(arr)min_value = find_min(arr)print("最大值:", max_value)print("最小值:", min_value)2. 遍历法遍历法是另一种常用的求最值的方法。
遍历数组中的每个元素,通过比较来找到最大值或最小值。
步骤:1.定义一个数组,并给数组赋值。
2.遍历数组,比较每个元素的大小,找到最大值或最小值。
下面是一个使用Python编写的实例代码,在数组中求最大值和最小值:def find_max(arr):max_value = arr[0] # 假设第一个元素为最大值for num in arr:if num > max_value:max_value = numreturn max_valuedef find_min(arr):min_value = arr[0] # 假设第一个元素为最小值for num in arr:if num < min_value:min_value = numreturn min_value# 调用函数arr = [9, 5, 7, 2, 1]max_value = find_max(arr)min_value = find_min(arr)print("最大值:", max_value)print("最小值:", min_value)3. 使用最值函数在部分编程语言中,我们可以使用内置的最值函数直接求出数组的最大值和最小值。
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
巴班斯基教学过程最优化理论及其现实反思尤•康•巴班斯基(1927.1~1987.8)是当代著名的教育家、教学论专家,前苏联教育科学博士、教授、教育科学院院士。
他在全面总结顿河一罗斯托夫地区克服大面积留级现象教学经验的基础上,从探讨预防学生学业不良问题入手,以马克思主义辩证法思想为核心,结合系统论、控制论等原理,对教育教学中许多重大问题进行了全面和系统的研究,形成了“教学教育过程最优化”的教育教学思想。
一、教学过程最优化的概念“最优的”这个术语,意思是说“根据一定的标准衡量对当时条件来说最佳的”。
教学过程最优化,综合一个比较完整的定义:教学过程最优化是指在教学过程中, 教师在全面考虑教学规律和原则, 教学任务、内容、方法和形式,以及该系统的特征及其内外部条件的基础上,选择教学过程的最佳方案,组织对教学过程的控制,从而在规定的时间内使学生在教养、教育和发展三个方面获得最大可能的效果。
这里着重指出的是在巴班斯基教学过程最优化的理论中, “最优的一词并不等于“理想的” , 也不是一般所指的“最好的” ”。
“最优的是从一定标准来看, 对一定条件来说是最好的意思” 更具体地说“是指一定学校、一定班级在具体条件的制约下所能得到的最大成果,也就是指学生和教师在一定场合下所具有的全部可能性”。
发挥了全部可能性, 获得该条件所能达到的最大成果, 就可认为是实现了最优化。
可见最优化不是一种抽象、僵化的模式,它是相对于一定条件而言的,这充分显示出辨证法对具体事物作具体分析的灵魂。
二、教学过程最优化理论的起源顿河—罗斯托夫地区的教学科学实验是巴班斯基教学过程最优化理论的起源。
任何一门学科要想成为一门独立的科学,必须有其自身独特的理论和实践基础。
巴班斯基的教学过程最优化理论来源于教育科学实验和教学实践,是在教学实践的基础上进行的教学科学实验。
纵观巴班斯基走过的教育科学化道路,经历了两个重大的发展阶段。
第一阶段,六十年代初,顿河—罗斯托夫地区创造了大面积客服留级现象的经验,后在全国范围内推广。
五种最优化方法
1.最优化方法概述
最优化问题的分类
1)无约束和有约束条件;
2)确定性和随机性最优问题(变量是否确定);
3)线性优化与非线性优化(目标函数和约束条件是否线性);
4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):
式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法
简介
1)解决的是无约束非线性规划问题;
2)是求解函数极值的一种方法:
3)是一种函数逼近法。
原理和步骤
3.最速下降法(梯度法)
最速下降法简介
1)解决的是无约束非线性规划问题;
2)是求解函数极值的一种方法;
3)沿函数在该点处目标函数下降最快的方向作为搜索方向;
最速下降法算法原理和步骤
4•模式搜索法(步长加速法)
简介
1)解决的是无约束非线性规划问题;
2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的
是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤
5.评价函数法
简介
评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:
min (f_1(x),f_2(x),…,f_k(x))
.g(x)<=o
传统的多目标优化方法本质是将多目标优化中的各分目标函数, 经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权
求合法介绍。
线性加权求合法
6.遗传算法
智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
遗传算法基本概念
1.个体与种群
个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼。
种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。
2.适应度与适应度函数
适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。
适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。
该函数就是遗传算法中指导搜索的评价函数。
遗传算法基本流程
的就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。
遗传算法步骤
步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc 和变异率Pm代数T;
步2随机产生U中的N个个体s1, s2,…,sN ,组成初始种群S={s1,
s2,…,sN},置代数计数器t=1 ;
步3计算S中每个个体的适应度f();
步4若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
步5负责继续进行选择、交叉、变异等遗传操作,重复以上步骤,直到达到最优结果。