100立方0.2Mpa不锈钢储罐压力容器强度计算书
- 格式:doc
- 大小:322.00 KB
- 文档页数:8
第11章压力容器的强度计算本章重点要讲解内容:(1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则;(2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差;(3)掌握内压圆筒的厚度设计;(4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。
(5)熟悉内压容器强度校核的思路和过程。
第一节设计参数的确定1、我国压力容器标准与适用范围我国现执行GB150-98 “钢制压力容器”国家标准。
该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。
JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。
其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。
2、容器直径(diameter of vessel)考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。
对于用钢板卷制的筒体,以内径作为其公称直径。
表1 压力容器的公称直径(mm)如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。
表2 无缝钢管制作筒体时容器的公称直径(mm)3、设计压力(design pressure)(1)相关的基本概念(除了特殊注明的,压力均指表压力)✧工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。
①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同;②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。
③标准中的最大工作压力,最高工作压力和工作压力概念相同。
压力容器的强度计算第11章压力容器的强度计算本章重点要讲解内容:(1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则;(2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差;(3)掌握内压圆筒的厚度设计;(4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。
(5)熟悉内压容器强度校核的思路和过程。
第一节设计参数的确定1、我国压力容器标准与适用范围我国现执行GB150-98 “钢制压力容器”国家标准。
该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。
JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。
其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。
2、容器直径(diameter of vessel)考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。
对于用钢板卷制的筒体,以内径作为其公称直径。
表1 压力容器的公称直径(mm)如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。
表2 无缝钢管制作筒体时容器的公称直径(mm)3、设计压力(design pressure)(1)相关的基本概念(除了特殊注明的,压力均指表压力)工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。
①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同;②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowableworking pressure)。
③标准中的最大工作压力,最高工作压力和工作压力概念相同。
压力容器、常压容器钢板壁厚计算选择和标准公式容器标准:《GB 150-2011 压力容器》《NB/T 47003.1-2009 钢制焊接常压容器》钢材标准:《GB 713-2008 锅炉和压力容器用钢板》--GB 150碳素钢和低合金钢的钢板标准牌号Q245R、Q345R、Q370R、18MnMoNbR、13MnNiMoR、15CrMoR、14Cr1MoR、12Cr2Mo1R、12Cr1MoVR 《GB/T 3274-2007 碳素结构钢和低合金结构钢热轧厚钢板和钢带》--GB150 Q235B钢板标准《GB 24511-2009 承压设备用不锈钢钢板及钢带》--GB150高合金钢的钢板标准《GB/T 4237-2007 不锈钢热轧钢板和钢带》--NB/T 47003高合金钢板标准,化学成分、力学性能《GB/T 3280-2007 不锈钢冷轧钢板和钢带》《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》《GB/T 699-1999 优质碳素结构钢》牌号08F、10F、15F、08、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、15Mn、20Mn、25Mn、30Mn、35Mn、40Mn、45Mn、50Mn、60Mn、65Mn、70Mn《GB/T 700-2006 碳素结构钢》--牌号Q195、Q215、Q235、Q275《GB/T 709-2006 热轧钢板和钢带的尺寸、外形、重量级允许偏差》不锈钢牌号对照表《GB 150-2011 压力容器》俗称GB 24511-2009承压设备用不锈钢钢板及钢带GB/T 4237-1992不锈钢热轧钢板和钢带ASME(2007)SA240 统一数字代号新牌号旧牌号型号S304 S30408 06Cr19Ni10 0Cr18Ni9 304 S316 S31608 06Cr17Ni12Mo2 0Cr17Ni12Mo2 316 S316L S31603 022Cr17Ni12Mo2 00Cr17Ni14Mo2 316L S321 S32168 06Cr18Ni11Ti 0Cr18Ni10Ti 321圆筒直径:钢板卷焊的筒体,规定内径为公称直径。
项目一压力容器任务四压力容器的强度计算及校核容器按厚度可以分为薄壁容器和厚壁容器,通常根据容器外径Do与内径Di 的比值K来判断,K>1.2为厚壁容器,K≤1.2为薄壁容器。
工程实际中的压力容器大多为薄壁容器。
为判断薄壁容器能否安全工作,需对压力容器各部分进行应力计算与强度校核。
一、圆筒体和球形壳体1.壁厚计算公式圆筒体计算壁厚:圆筒体设计壁厚:球形容器计算壁厚:球形容器设计壁厚:式中δ——圆筒计算厚度,mmδd——圆筒设计厚度,mmpc——计算压力,MPa。
pc=p+p液,当液柱静压力小于5%设计压力时,可忽略Di——圆筒的内直径,mm[σ]T——设计温度T下,圆筒体材料的许用应力,MPa(可查表)φ——焊接接头系数,φ≤1.0C2——腐蚀裕量,mm2.壁厚校核计算式在工程实际中有不少的情况需要进行校核性计算,如旧容器的重新启用、正在使用的容器改变操作条件等。
这时容器的材料及壁厚都是已知的,可由下式求设计温度下圆筒的最大允许工作压力[pw]。
式中δe——圆筒的有效厚度,mm设计温度下圆筒的计算应力σT:σT值应小于或等于[σ]Tφ。
设计温度下球壳的最大允许工作压力[pw]:设计温度下球壳计算应力σT:σT值应小于或等于[σ]Tφ。
二、封头的强度计算1.封头结构封头是压力容器的重要组成部分,常用的有半球形封头、椭圆形封头、碟形封头、锥形封头和平封头(即平盖),如图1-4所示。
工程上应用较多的是椭圆形封头、半球形封头和碟形封头,最常用的是标准椭圆形封头。
以下只介绍椭圆形封头的计算,其他形式封头的计算可查阅GB150—2011。
图1-4 封头的结构型式2.椭圆形封头计算椭圆形封头由半个椭球面和高为h的直边部分所组成,如图1-5所示。
直边h的大小根据封头直径和厚度不同有25mm、40mm、50mm三种,直边h的取值可查表1-7。
表1-7 椭圆形封头材料、厚度和直边高度的对应关系单位:mm图1-5 椭圆形封头椭圆形封头的长、短轴之比不同,封头的形状也不同,当其长短轴之比等于2时,称为标准椭圆形封头。
软件批准号:DATA SHEET OF PROCESSEQUIPMENT DESIGN设备名称:分气缸EQUIPMENT图号:DWG NO。
设计单位:青岛畅隆电力设备有限公司DESIGNER钢制卧式容器计算单位青岛畅隆电力设备有限公司计算条件简图设计压力p 1 MPa设计温度t300 ℃筒体材料名称Q235-B封头材料名称Q235-B封头型式椭圆形筒体内直径D i800 mm筒体长度L5656 mm筒体名义厚度δn10mm 支座垫板名义厚度δrn6mm 筒体厚度附加量C 2.8mm 腐蚀裕量C1 2 mm 筒体焊接接头系数Φ0.85封头名义厚度δhn8.8mm 封头厚度附加量C h 2.8mm 鞍座材料名称Q235-B鞍座宽度b150mm 鞍座包角θ120°支座形心至封头切线距离A625mm 鞍座高度H 250mm 地震烈度低于七度内压圆筒校核计算单位 青岛畅隆电力设备有限公司计算条件筒体简图计算压力 P c 1.00MPa 设计温度 t 300.00︒ C 内径 D i 800.00mm 材料Q235-B ( 板材 )试验温度许用应力 [σ]116.00MPa 设计温度许用应力 [σ]t81.00MPa 试验温度下屈服点 σs 235.00MPa 钢板负偏差 C 1 0.80mm 腐蚀裕量 C 2 2.00mm 焊接接头系数 φ0.85厚度及重量计算 计算厚度 δ = P D P c it c 2[]σφ- = 5.85mm 有效厚度 δe =δn - C 1- C 2= 7.20 mm 名义厚度 δn = 10.00mm 重量1129.80Kg压力试验时应力校核 压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt = 1.7901 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 211.50MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 118.05 MPa校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]=2δσφδe t i e []()D += 1.22825MPa 设计温度下计算应力 σt= P D c i e e()+δδ2= 56.06 MPa [σ]tφ 68.85 MPa校核条件 [σ]t φ ≥σt 结论 合格左封头计算计算单位青岛畅隆电力设备有限公司计算条件椭圆封头简图计算压力P c 1.00 MPa设计温度 t 300.00 ︒ C内径D i 800.00 mm曲面高度h i 200.00 mm材料 Q235-B (板材)设计温度许用应力[σ]t 81.00 MPa试验温度许用应力[σ] 116.00 MPa钢板负偏差C1 0.80 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ- = 4.95mm有效厚度δe =δn - C1- C2= 6.00mm最小厚度δmin = 3.00mm名义厚度δn =8.80mm结论满足最小厚度要求重量51.97 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 1.21046MPa结论合格右封头计算计算单位青岛畅隆电力设备有限公司计算条件椭圆封头简图计算压力P c 1.00 MPa设计温度 t 300.00 ︒ C内径D i 800.00 mm曲面高度h i 200.00 mm材料 Q235-B (板材)设计温度许用应力[σ]t 81.00 MPa试验温度许用应力[σ] 116.00 MPa钢板负偏差C1 0.80 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ- = 4.95mm有效厚度δe =δn - C1- C2= 6.00mm最小厚度δmin = 3.00mm名义厚度δn =8.80mm结论满足最小厚度要求重量51.97 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 1.21046MPa结论合格卧式容器(双鞍座)计算单位青岛畅隆电力设备有限公司计算条件简图计算压力p C 1 MPa设计温度t300 ℃圆筒材料Q235-B鞍座材料Q235-B圆筒材料常温许用应力 [σ] 116 MPa圆筒材料设计温度下许用应力[σ]t 81 MPa圆筒材料常温屈服点σσ235MPa鞍座材料许用应力 [σ]sa147MPa 工作时物料密度Oγ1000kg/m3液压试验介质密度γT1000kg/m3圆筒内直径D i800 mm 圆筒名义厚度δn10mm 圆筒厚度附加量C 2.8mm 圆筒焊接接头系数φ0.85封头名义厚度hnδ8.8mm 封头厚度附加量 C h 2.8mm 两封头切线间距离L5706 mm 鞍座垫板名义厚度δrn6mm 鞍座垫板有效厚度δre6mm 鞍座轴向宽度 b150mm 鞍座包角θ120°鞍座底板中心至封头切线距离A625mm 封头曲面高度h i200mm 试验压力p T 1.79012MPa 鞍座高度H250mm 腹板与筋板组合截面积A sa9500mm2腹板与筋板组合截面断面系数Z r96864.8mm3地震烈度<7圆筒平均半径R a405 mm物料充装系数oφ1一个鞍座上地脚螺栓个数2地脚螺栓公称直径16mm 地脚螺栓根径13.835mm 鞍座轴线两侧的螺栓间距530 mm 地脚螺栓材料Q345。
第1页共9页强度计算按GB150-1998《钢制压力容器》、《固定式压力容器安全技术监察规程》及质检特函〔2010〕86号函<关于《固定式压力容器安全技术监察规程》的实施意见>进行计算。
目录一、技术参数 (2)二、筒体强度计算 (2)三、筒体开孔及开孔补强计算 (3)四、封头强度计算 (6)资料来源编制校核标准化提出部门审核标记处数更改文件号签字日期批准文号批准序号项目符号计算依据计算公式数据单位第2页共9页一、技术参数符号计算依据计算公式数据单位1.最高工作压力P e给定 1.25Mpa 2.3.设计压力Pc GB150.1-2011P19Pc=(1.05~1.1)Pe =1.25×1.1=1.375 1.375MPa4.最高工作温度te 任务书给定193℃5.设计温度t c193+(15~30)210℃6.介质饱和水蒸气任务书给定7.选用材料GB150-2011P47Q345R/GB713、20/GB8163、20/NB470088.许用应力[]tσ根据GB150.2-2011 GB713 B-1碳素钢和低合金钢钢板许用应力,筒体材料Q345R,板厚<16mm,温度193℃所得应力值184.2MPa9.许用应力[]tσ根据GB150.2-2011 GB713 B-3碳素钢和低合金钢钢板许用应力,人孔圈及接管材料20/GB8163,板厚<16,温度193℃所得应力值184.2MPa10.许用应力[]tσ根据GB150.2-2011 GB/6479 B-6碳素钢和低合金钢钢管许用应力,接管材料20钢,板厚15mm,温度193℃所得应力值184.2MPa二、筒体强度计算1.筒体内直径D n1400mm2.筒体壁厚S S=δ+C+Δ=6.17+1.8+2.03=10Δ为除去负偏差的圆整量10mm3.筒体壁厚附加量C C1=0.8;C2=1;C=C1+C2=1.8 1.8mm4.焊缝系数ϕGB150-2011P13局部无损检测0.85第3 页共9页5. 筒体计算厚度 δ=6.176.17 mm6. 有效厚度δeδe=s-C=10-1.8=8.28.2mm7. 筒体设计厚度δ+C=6.17+1.8=7.977.97mm 8. 校核δe =8.2mm>δ=6.17mm 满足要求三、筒体开孔及开孔补强计算1.开孔直径d.mm 1.1Φ89×5接管开孔直径 d 189mm1.2 M20*1.5接管开孔直径Φ32×6接管开孔直径 d2 32mm 1.3 人孔开孔直径 d 3400mm 2 校核3 孔的补强计算1.2 Φ100×8接管的补强计算1.3 接管内径92 mm 1.3 接管材料20/GB816320钢 1.4接管名义厚度nt δnt δ =δ + C8mm1.5 接管壁厚附加量 CC1=8×12.5%=1 C2 = 1 C = C1 + C2 =22 mm第4 页共9页1.6接管材料许用应力[]3tσ根据GB150.2-2011 GB713 B-3碳素钢和低合金钢钢板许用应力,筒体材料20/GB8163,板厚<16,温度193℃所得应力值184.2MPa1.7 强度削弱系数 f r fr = 1.01.0 1.8开孔直径dd = Di + 2C = 92+ 2*2=9696 mm1.9筒体有效厚度e δδe=S-C=8-1.75=6.256.25mm1.10 开孔处焊缝系数 ϕ局部无损检测0.85 1.11开孔处筒体计算厚度δ=6.176.17mm1.12 接管有效厚度et δet δ=nt δ-C6 mm1.13 筒体开孔处所需补强的面积AP155592.321.14 有效加强宽度 B P156取二者中较大者192 mm1.15接管外侧有效力加强高度h 1P156取二者中较小值27.71 mm1.16 接管内侧有效力加强高度h 2P156取二者中较小值 h 2= 0 mm1.17 筒体多余面积 A 1P157 7.64 mm 2 1.18 接管计算厚度 t δ0.82mm 1.19接管多余面积A 2P157287.08mm 2op op 222n nt d B d δδ⎧⎫=⎨⎬++⎩⎭1nt d h δ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭接管实际外伸高度nt d δ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭接管实际内伸高度()()()()1op =21e et e A B d fr δδδδδ-----()()122222et t et A h fr h C frδδδ=-+-第5 页共9页1.20 焊缝金属截面积 A 3 P157 A3 = a*b25mm 2 1.21 补强的截面积 A e P157 Ae = A1 + A2 + A3319.72mm 2 1.2 校核Ae <A 需另加补强 A4≥ A –Ae272.6mm 22 人孔开孔补强计算2.3人孔圈材料20/GB8163 20钢2.4 人孔圈壁厚附加量 C C1 = 16 12.5% =2 C2 = 1 C = C1+ C2 =33 mm2.5 人孔圈材料许用应力 []3t σ根据GB150.2-2011 GB713 B-3碳素钢和低合金钢钢板许用应力,人孔圈材料20/GB8163,板厚<16,温度193℃所得应力值184.2MPa2.6 强度削弱系数 f r GB150-2011P155 fr = 1.0 1.0 2.7 人孔直径 d394 mm 2.8 人孔圈名义厚度 nt δ16 mm 2.9人孔圈有效厚度et δet δ =nt δ - C=1313mm2.10 开孔处筒体计算壁厚 δ=6.176.17 mm2.11筒体开孔处所需补强的面积 AGB150-2011P1552430.98 mm 22.12 有效加强宽度B取二者中较大者800mm2.13接管外侧有效力加强高度h 1取二者中较小值80 mm2.14 接管内侧有效力加强高度h 2取二者中较小值 80 mm2.15筒体有效厚度e δδe=S-C=10-1.8=8.28.2 mm()op =21et A d fr δδδ+-op op 222n nt d B d δδ⎧⎫=⎨⎬++⎩⎭1nt d h δ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭接管实际外伸高度nt d δ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭接管实际内伸高度第6 页共9页2.16 筒体多余面积 A 1GB150-2011P157812 mm 2 2.17 人孔圈焊缝系数 ϕ局部无损检测0.85 2.18人孔圈计算厚度t δ3.49mm2.19 人孔圈多余面积 A 2 GB150-2011P1573441.6mm 2 2.20 焊缝金属截面积 A 3A3 = a*b64mm 2 2.21 补强的截面积 A e GB150-2011P157 Ae=A1+A2+A3=812+3441.6+64=4317.6 4317.6mm 2 2.16校核Ae > A 开孔不需另加补强mm 2四、封头强度计算封头壁厚计算 上下封头工作条件相同,统一计算 1.封头选用材料20钢2.许用应力 []t σGB150.2-2011 GB713B-1 碳素钢和低合金钢钢板许用应力,筒体材料Q345R ,板厚3-16,温度193℃所得应力值 184.2MPa 3. 筒体封头规格 GB150-2011 P116椭圆形封头EHA 4. 壁厚附加量 C C1=0.8; C2=1; C=C1+C2=1.8 1.8 mm 5. 封头内直径 Di1400 mm 6. 封头深度 hiGB/T25198-2010350 mm 7. 封头形状系数 KGB150-2011 P117由查表5-1得K = 11 8. 封头焊缝系数 ϕ局部无损检测0.85 9.封头计算厚度 δGB150.3-2011 5.3.2(5-1)=6.166.16 mm 10. 封头有效厚度 e δδe=S-C=10-1.8=8.28.2 mm 11.封头设计厚度δ+C=6.16+1.8=7.977.96mm 12. 校核δe =8.2mm>δ=6.16mm 满足要求一) 上封头开孔计算()()()()1op =21e et e A B d fr δδδδδ-----()()122222et t et A h fr h C frδδδ=-+-第7 页共9页Φ50×6接管开孔补强计算1 接管材料 20/NB47008 20钢2 接管名义内径45 mm 3 接管壁厚附加量 C C=6×12.5%+1=1.75 1.75mm 4 开孔直径 d 1 48.5 mm5开孔尺寸校核6 接管材料许用应力 []3t σ根据GB150.2-2011 GB713 B-3碳素钢和低合金钢钢板许用应力,接管材料20/NB47008,板厚<16,温度193℃所得应力值184.2MPa7 强度削弱系数 f rfr = 1.0 1.0 8 接管名义厚度 nt δ6 mm 9接管圈有效厚度et δet δ=nt δ-C4.25mm10 开孔处封头计算壁厚 δ=6.166.16 mm11 筒体开孔处所需补强的面积 A298.76mm 212 有效加强宽度B取二者中较大者97 mm13接管外侧有效力加强高度h 1取二者中较小值17.06 mm14 接管内侧有效力加强高度h 2取二者中较小值0 mm15封头有效厚度e δδe=S-C=10-1.8=8.28.2 mm16 封头多余面积A 198.94 mm 2op op 222n nt d B d δδ⎧⎫=⎨⎬++⎩⎭1nt d h δ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭接管实际外伸高度nt d δ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭接管实际内伸高度()op =21et A d fr δδδ+-()()()()1op =21e et e A B d fr δδδδδ-----第8 页共9页17 接管焊缝系数 ϕ局部无损检测0.85 18 接管计算厚度 t δ0.4mm 19 接管多余面积 A 2 131.36mm 2 20 焊缝金属截面积 A 3 A3 = a*b25mm 2 21 补强的截面积 A e Ae = A1 + A2 + A3255.3mm 2 122校核Ae <A 需另加补强 A4≥ A –Ae43.46mm 2二) 下封头开孔计算Ø32x 3 1 接管材料 20/NB47008 20钢 2 接管名义内径20 mm 3 接管壁厚附加量 C C=6×12.5%+1=1.75 1.75mm 4 开孔直径 d 1 23.5 mm5 开孔尺寸校核6 接管材料许用应力 []3t σ根据GB150.2-2011 GB713 B-3碳素钢和低合金钢钢板许用应力,接管材料20/NB47008,板厚<16,温度193℃所得应力值184.2MPa 7 强度削弱系数 f rfr = 1.0 1.0 8 接管名义厚度 nt δ6 mm 9接管圈有效厚度et δet δ=nt δ-C4.25mm10 开孔处封头计算壁厚 δ 6.16 mm11筒体开孔处所需补强的面积 A144.76mm 212 有效加强宽度B取二者中较大者51.5 mmop op 222n nt d B d δδ⎧⎫=⎨⎬++⎩⎭()()122222et t et A h fr h C fr δδδ=-+-()op =21et A d fr δδδ+-第9 页共9页13接管外侧有效力加强高度h 1取二者中较小值11.87 mm14 接管内侧有效力加强高度h 2取二者中较小值0 mm15 封头有效厚度 e δδe=S-C=10-1.8=8.28.2 mm 16 封头多余面积 A 157.12 mm 2 17 接管焊缝系数 ϕ局部无损检测0.85 18 接管计算厚度 t δ0.18mm 19 接管多余面积 A 296.62 mm 2 20 焊缝金属截面积 A 3 A3 = a*b25mm 2 21 补强的截面积 A e Ae = A1 + A2 + A3 178.84mm 2 122 校核Ae > A 开孔不需另加补强nt d δ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭接管实际内伸高度1nt d h δ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭接管实际外伸高度()()()()1op =21e et e A B d fr δδδδδ-----()()122222et t et A h fr h C frδδδ=-+-。
压力容器的强度计算精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-第11章压力容器的强度计算本章重点要讲解内容:(1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则;(2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差;(3)掌握内压圆筒的厚度设计;(4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。
(5)熟悉内压容器强度校核的思路和过程。
第一节设计参数的确定1、我国压力容器标准与适用范围我国现执行GB150-98 “钢制压力容器”国家标准。
该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。
JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。
其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。
2、容器直径(diameter of vessel)考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。
对于用钢板卷制的筒体,以内径作为其公称直径。
表1 压力容器的公称直径(mm)如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。
表2 无缝钢管制作筒体时容器的公称直径(mm)3、设计压力(design pressure)(1)相关的基本概念(除了特殊注明的,压力均指表压力)✧工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。
①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同;②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowableworking pressure)。
4000m³储罐计算书一、 计算个圈壁板厚度1、计算罐壁板厚度,确定罐底板、罐顶板厚度: 用GB50341-2003中公式(6.3.1-1)计算罐壁厚度ϕσρd d ][0.3)-(H 9.4t D =式中:d t —储存介质条件下管壁板的计算厚度,mm D —油罐内径(m )(21m )H —计算液位高度(m ),从所计算的那圈管壁板底端到罐壁包边角钢顶部的高度,或到溢流口下沿(有溢流口时)的高度(12.7m ) ρ—储液相对密度(1.0)d ][σ—设计温度下钢板的许用应力,查表4.2.2(157MPa ) ϕ—焊接接头系数(0.9) 第1圈: mm 7.89.0163.010.3)-(12.7219.4t d =⨯⨯⨯⨯=n δ=8.7+2.3=11mm 取12mm 第2圈: mm 38.79.0163.011.88)-0.3-(12.7219.4t d =⨯⨯⨯⨯=n δ=7.38+2.3=9.68mm 取12mm 第3圈: mm 06.69.0163.011.88)2-0.3-(12.7219.4t d =⨯⨯⨯⨯⨯=n δ=6.06+2.3=8.36mm 取10mm 第4圈: mm 74.49.0163.011.88)3-0.3-(12.7219.4t d =⨯⨯⨯⨯⨯=n δ=4.74+2.3=7.04mm 取8mm根据表6.4.4,罐壁最小厚度得最小厚度为6+2=8mm ,故第5、6、7圈取8mm 。
二、罐底、罐顶厚度、表边角钢选择(按GB50341规定) 罐底板厚度:查表5.1.1,不包括腐蚀余量的最小公称直径为6mm ,加上腐蚀余量2mm ,中幅板厚度为8mm查表5.1.2,不包括腐蚀余量的最小公称直径为11mm ,加上腐蚀余量2mm ,取边缘板厚度为14mm 罐顶板厚度:查7.1.3,罐顶板不包括腐蚀余量的公称厚度不小于4.5mm ,加上1mm 的腐蚀余量后取6mm包边角钢:按GB50341表6.2.2-1,选∠75×10 罐顶加强筋:-60×8 三、罐顶板数据计算:①分片板中心角(半角)55.2425200302/21000arcsin 302/arcsini 1︒=-=-=)()(SR D α ②顶板开孔(φ2200)中心角(半角)5.2252001100arcsin r arcsin2︒===SR α 顶板开孔直径参照《球罐和大型储罐》中表5-1来选取注:中心顶板与拱顶扇形顶板的搭接宽度一般取50mm ,考虑到分片板最小弧长不小于180mm ,故取φ2200mm③分片板展开半径mm 1151144.25tg 25200tg 11=︒⨯==αSR R mm 1100.52tg 25200tg 22=︒⨯==αSR R④分片板展开弧长:⌒AD =mm 96985.255.24360252002360221=-⨯⨯⨯=-⨯)()(πααπSR ⑤分片板大小头弧长:大头:⌒ABmm 1535446021000n302i =∆+-⨯=∆+⨯-=)()(ππD 小头:⌒CDmm 1974411002n r 2=∆+⨯⨯=∆+=ππ ⑥中心顶板展开弧长⌒L mm 22995023605.22520022502360222=⨯+⨯⨯⨯=⨯+⋅⋅=)()(παπSR四、拱顶高度计算内侧拱顶高:mm 227830)-(21000/2252002520030)-/2(D h 222i 2n =--=--=SR SR外侧拱顶高:m m 228462278h w =+=五、盘梯计算计算参数:g H —罐壁高度,mm (12700) i R —罐内半径,mm (10500)W SR —拱顶半径,mm (25206) α—内侧板升角(45°)n R —内侧板半径,mm (n R =10500+12+150=10662mm )B —盘梯宽度(内外板中心距)取656mm ,板宽150mm ,板厚6mm 1、平台高度WW SR SR --+=2i 2w 1L)-(R h h425mm 252061000)-(1050025206228422=--+=mm 3125142512700=+=H式中:1h —平台支撑角钢上表面至包边角钢上表面的距离,mmL —平台端部至罐内表面的距离,一般取800-1000mm ,取L=1000mm2、内侧板展开长度mm 184202100)-(1312523n =⨯=-=)(H H L式中:3H —盘梯下端至罐底上表面的距离,mm ,≮50mm ,取100mm3、外侧板展开长度mm 189951066265611184207071.0117071.022n n w =++⨯⨯=++=•R B L L )()( 4、三角架个数个)(717001225)-(13125x n 3==-=L H式中:x —第一个三角架到罐底上表面的距离,mm 取1225mm 3L —相邻三角架的垂直距离,mm 一般1500-2000mm5、三角架在罐壁上的水平位置a n =n01n 2b h R R)(- 式中:1b —内侧板及外侧板的宽度,mm ,一般取150mm —n h 第n 个三角架平台表面的距离,n ×1700mm0R —底圈壁板外半径,mm (10500+12=10512mm ) n R —内侧板半径mm (10662)a 1=mm 1467106621051221507001=-)( a 2=mm 31431066210512215070012=-⨯)( a 3=mm 48191066210512215070013=-⨯)( a 4=mm 64951066210512215070014=-⨯)( a 5=mm 81711066210512215070015=-⨯)( a 6=mm 98471066210512215070016=-⨯)( a 7=mm 115231066210512215070017=-⨯)( 6、盘梯包角︒=⋅-=⋅-=96.691801066210013119180n 3b ππαR H H ≈70° 六、带肋球壳稳定性验算21mn 2s m t t t 0001.0][)()(⋅=R E P (C.2.1-1) 式中: ][P —带肋求壳的许用外载荷,KPaE —设计温度下钢材的弹性模量,MPa 查表4.1.6得192×103 MPaS R —球壳的曲率半径,mm S R =SR=25200mm n t —罐顶板有效厚度,mm n t =6-C=6-1-0.6=4.4mmm t —带肋球壳的折算厚度,mm332m3n 31m m 4t t 2t t ++= (C.2.1-2)式中:]e t n 12t 4t 2t h 3h b h [12t 21n 13n 2nn 121s 11131m-+++⨯=)(L (C.2.1-3)]e t n 12t 4t 2t h 3h b h [12t22n 23n 2nn 222s 22232m-+++⨯=)(L (C.2.1-4) S L 1n 111t b h 1n += (C.2.1-5)SL 2n 222t b h 1n += (C.2.1-6) 式中:31m t —纬向肋与顶板组合截面的折算厚度,mm1h —纬向肋宽度,mm (高度60)1b —纬向肋有效厚度mm (8-(2×1+0.8)=5.2) 1s L —纬向肋在径向的间距,mm (1228) 1n —纬向肋与顶板在径向的面积折算系数058.112284.42.5061t b h 1n 1n 111=⨯⨯+=+=S L 1e —纬向肋与顶板在径向组合截面的形心到顶板中面的距离,mm(按CD130A6-86《钢制低压湿式气柜设计规定》算出下面公式)78.1)602.54.41214(2)4.460(602.5)(2)(e 1111111=⨯+⨯⨯+⨯⨯=++=h b t l t h h b n s n32m t —径向肋与顶板组合截面的折算厚度,mm 2h —径向肋宽度,mm (高度60)2b —径向肋有效厚度mm (8-(2×1+0.8)=5.2)2s L —径向肋在纬向的间距,mm 下面求2s L :a) 先求第1圈纬向肋的展开半径3R 先求第圈纬向肋处的角度(半角3α) ∵600360/252002=⋅⋅∆πα ∴364.1=∆α° ︒=︒-︒=∆-=186.23364.155.2413ααα 再求第1圈纬向肋处展开半径3Rm m 10793186.23tg 25200tg R 33=︒⨯==αSRb) 求第1圈纬向肋的每块分片板肋板的弧长2s Lmm 14152]186.23cos 10790244360sin[L 2s =⨯︒⨯⨯⨯=)( 2n —径向肋与顶板在径向的面积折算系数05.114154.4602.51t b h 1n 2n 222=⨯⨯+=+=S L 2e —径向肋与顶板在纬向组合截面的形心到顶板中面的距离,mm537.1)602.54.41415(2)4.460(602.5)(2)(e 2222222=⨯+⨯⨯+⨯⨯=++=h b t l t h h b n s n带肋球壳按下图布置把上面各参数代入C.2.1-3中求31m t4082]78.14.4058.1124.444.424.40636012152.506[12t232231m=⨯⨯-++⨯+⨯⨯⨯=)(把上面各参数代入C.2.1-4中求32m t3492]4537.14.405.1124.444.424.40636014152.506[12t232232m=⨯⨯-++⨯+⨯⨯⨯=)(c) 把31m t ,31m t 代入C.2.1-2中,求m tmm 46.12492434.424082t 33m =+⨯+=d) 把m t 代入C.2.1-1中求[P]78.246.124.42.2546.12101920001.0][2123=⋅⨯⨯⨯=)()(P KPae) 验算:设计外载荷(外压)L P 按7.1.2条规定取1.7KPaL P <[P] 即1.7<2.78 ∴ 本带肋球壳是稳定的 (L P 是外载荷,按7.1.2条规定,取1.7MPa )七、 加强圈计算1、设计外压,按6.5.3-3q 25.2P k o +=W (6.5.3-3)式中:o P —罐壁筒体的设计外压(KPa ) •W k —风载荷标准值(KPa )见式6.4.7q —罐顶呼吸阀负压设定压力的1.2倍(KPa ),取1.2(按SYJ1016 5.2.2条规定)风载荷标准值:按式6.4.7o z s z k w μμβ=•W (6.4.7)式中:•z β——高Z 处见风振系数,油罐取1s μ—风载体系形数,取驻点值,o w —基本风压(取0.4KPa )z μ—风压高度变化系数z μ风压高度变化系数,查表6.4.9.1,建罐地区属于B 类(指田野、乡村,丛林及房屋计较稀疏的乡镇和城市郊区,本储罐高度为12.7m ,介于10和15中间,要用内插法求x=z μ=1.08 (15m —1.14 10—1.0 12.7—x )风载荷标准值:432.04.008.111k =⨯⨯⨯=•W KPa 把k w =0.432KPa 代入6.5.3-3中a 2.22.1432.025.2P o KP =+⨯=2、计算罐壁筒体许用临界压力 2.5min cr )Dt (48.16][P E H D = (6.5.2-1)∑=ei H H E5.2imin iei t t h )(=H 式中:][P cr —核算区间罐壁筒体的需用临界压力,KPa E H —核算区间罐壁筒体的当量高度,mm in t —核算区间最薄板的有效厚度,mm(8-2.3=5.7) i t —第i 圈罐壁板的有效厚度,mmi h —第i 圈罐壁板的实际高度,mm (1880) ei H —第i 圈壁板的当量高度E H 表∑==95.8ei H H E m把E H 代入(6.5.2-1)中48.1)215.7(95.82148.16][P 2.5cr =⨯⨯=KPa ∵o P =2.3>1.48MPa ∴需要加强圈 具体用几个加强圈依据6.5.4的规定 ∵22.3][P 2.3 cr ≥> ∴应设1个加强圈,其位置在1/2E 处 根据6.5.5规定,在最薄板上,不需要换算,到包边角钢的实际距离就是4.5m (距包边角钢上表面4.5m )根据表6.5.6选取加强圈规格,本设计选∠125×80×8八、 抗震计算(CD130A 2-84) 1、水平地震载荷W a Q max 0Z C =式中:0Q —水平地震载荷 kgfZ C —综合影响系数 0.4m ax a —地震影响系数,按附表A 选0.45W —产生地震荷载的储液等效重量(波动液体)’w F W f =式中:f F —动液系数,由R H W /的比值,按附表A 2选取,如遇中间值则用插值法求。
设计计算书Design Calculation Sheet1. 设计参数和条件Design Data and Condition:1) 设计所遵循的规范Applicable Code:ASME SectionⅧ,Div.1, 2013 Edition;2) 设计压力(p) : 内部1.2兆帕Design Pressure (p): Internal 1.2 Mpa;3) 设计温度: 0摄氏度到60摄氏度Design Temperature: 0℃~60℃;4) 最低设计金属温度:-29℃;MDMT: -29℃5) 焊缝系数(E): 壳体为0.85,封头为0.85(无缝),Joint Efficiency (E): 0.85 for Shell and 1.0 for Heads(seamless);6) 材料最大许用应力Material Max. Allowable Stress:Based on ASME Code Sec.Ⅱ, Part D Table 1A壳体和封头: SA516M Gr. 485,60摄氏度时为138兆帕Shell & Heads: SA516M Gr. 485 Material Max. Allowable Stress is 138MPa at 60℃;接管: SA106M Gr. B,60摄氏度时为118兆帕Nozzles:SA106M Gr. B Steel Material Max. Allowable Stress 118 Mpa at 60℃;7) 媒介: 空气Medium: Air ;8) 封头类型: 2:1椭圆封头Head type: 2:1Ellipsoidal Head;9) 其他载荷: Others Loadings: See verify for UG-22 loading;10) 腐蚀余度: 2.0毫米Corrosion Allowance: 2.0 mm11) 容器外形和尺寸(见图纸空气储罐U-1110-1 )Layout of Vessel and Dimension:As Shown in Air storage tank Specification (Dwg. No. U-1110-1)12) ASME 认证钢印及标志符: 要求”ASME”钢印及”U”标志符Stamp of ASME Ceretification Mark and U Designator: Stamp of ASME Ceretification Mark and U Designator required.Verify for UG-22 Loading2.1 内压壳体最小厚度 Min. Required Thickness of Shell under Internal Pressure 符号 Symbols:t= 壳体要求最小厚度,毫米t = minimum required thickness of shell, mm P = 内部设计压力, 1.2兆帕P = internal design pressure, 1.2MPa [see UG-21] R = 容器筒内半径, 402毫米 (考虑腐蚀余量)R = inside radius of the shell course under consideration, 402mm S = 最大许用应力值,138兆帕S = maximum allowable stress value, 138MPa [ see ASME Code Part II D Table 1A for materialSA516M Gr.485] E = 焊缝系数,0.85E = joint efficiency, 0.85 [see Table UW-12(1)]Since P=1.2MPa is less than 0.385SE=45.16MPa, Formula UG-27(c)(1) is used:)(14.42.1*6.085.0138)2400(2.16.0mm P SE PR t =-⨯+⨯=-=考虑腐蚀裕量:Consider of corrosion allowable: tr= t + Ca = 4.14 + 2.0 = 6.14mm ;这些公式只有在环向接头系数小于纵向接头系数一半时才起作用,根据UG-27(c) (2)的注释16,用于纵向应力的UG-27(c) (2)公式不用考虑。
Pressure Vessel版次Rev. No.产品名称:空气储罐Product Name : Air storage tank施工图号:xxxxxxxDrawing. No.版次:0Rev.:版次Rev.编制Prepared By批准Approved By授权检验师Authorized InspectorPressure Vessel版次Rev. No.设计计算书Design Calculation Sheet1. 设计参数和条件Design Data and Condition:1) 设计所遵循的规范Applicable Code:ASME SectionⅧ,Div.1, 2013 Edition;2) 设计压力(p) : 内部1.2兆帕Design Pressure (p):Internal 1.2 Mpa;3) 设计温度: 0摄氏度到60摄氏度Design Temperature: 0℃~60℃;4) 最低设计金属温度:-29℃;MDMT: -29℃5) 焊缝系数(E): 壳体为0.85,封头为0.85(无缝),Joint Efficiency (E): 0.85 for Shell and 1.0 for Heads(seamless);6) 材料最大许用应力Material Max. Allowable Stress:Based on ASME Code Sec.Ⅱ, Part D Table 1A壳体和封头: SA516M Gr. 485,60摄氏度时为138兆帕Shell & Heads: SA516M Gr. 485 Material Max. Allowable Stress is 138MPa at 60℃;接管: SA106M Gr. B,60摄氏度时为118兆帕Nozzles:SA106M Gr. B Steel Material Max. Allowable Stress 118 Mpa at 60℃;7) 媒介: 空气Medium: Air ;8) 封头类型: 2:1椭圆封头Head type: 2:1Ellipsoidal Head;9) 其他载荷: Others Loadings:See verify for UG-22 loading;10) 腐蚀余度: 2.0毫米Corrosion Allowance: 2.0 mm11) 容器外形和尺寸(见图纸空气储罐U-1110-1 )Layout of Vessel and Dimension:As Shown in Air storage tank Specification (Dwg. No. U-1110-1)12) ASME 认证钢印及标志符: 要求”ASME”钢印及”U”标志符Stamp of ASME Ceretification Mark and U Designator: Stamp of ASME Ceretification Mark and U Designator required.Pressure Vessel版次Rev. No.2. 计算Calculation:Verify for UG-22 LoadingYes No1.Internal Pressure 内部压力√2.External Pressure 外部压力√3.Weight of the Vessel 容器重量√4.Weight of Normal Contents Under Operating Conditions (Static Head)√在运行条件下正常容量的重量(落差)5.Weight of Normal Contents Under Test Conditions (Static Head)√在测试条件下正常容量的重量(落差)6.Superimposed Static Loadings From Weight of Attached Equipment√从附加设备重量产生的叠加静负荷7.The Attachment of Internals 内部附件√8.The Attachment of Lifting Lugs 吊耳√9.The Attachment of Vessel of Vessel Support (Skirt, Legs, Saddles,√Etc.) 容器支撑上的附件(裙座、支架、鞍座等)10.Cyclic and Dynamic Loadings Due to Pressure√由于压力产生的旋转和动力载荷11.Cyclic and Dynamic Loadings Due to Thermal Variations√由于热变化产生的旋转和动力载荷12.Cyclic and Dynamic Loadings Due to Equipment mounted on Vessel√由安装在容器上的设备产生的旋转和动力载荷13.Cyclic and Dynamic Loadings Due to Mechanical Loadings√由机械负荷产生的旋转和动力载荷14.Wind Loadings 风负荷√15.Snow Loadings 雪负荷√16.Seismic Loadings 地震负荷√17.Impact Loadings Such As Those Due to Thermal Shock√碰撞负荷,例如由于热冲击产生的负荷18.Temperature Gradients 温度梯度√19.Differential Thermal Expansion 局部热膨胀√20.Minimum Design Metal Temperature 最小设计金属温度√21.Test pressure and the joint effect of static head√试验压力和共同作用的静压头Pressure Vessel版 次Rev. No.2.1 内压壳体最小厚度 Min. Required Thickness of Shell under Internal Pressure符号 Symbols:t= 壳体要求最小厚度,毫米t = minimum required thickness of shell, mm P = 内部设计压力, 1.2兆帕 P = internal design pressure, 1.2MPa [see UG-21]R = 容器筒内半径, 402毫米 (考虑腐蚀余量)R = inside radius of the shell course under consideration, 402mmS = 最大许用应力值,138兆帕S = maximum allowable stress value, 138MPa [ see ASME Code Part II D Table 1A for materialSA516M Gr.485]E = 焊缝系数,0.85E = joint efficiency, 0.85 [see Table UW-12(1)]Since P=1.2MPa is less than 0.385SE=45.16MPa, Formula UG-27(c)(1) is used:)(14.42.1*6.085.0138)2400(2.16.0mm P SE PR t =-⨯+⨯=-=考虑腐蚀裕量:Consider of corrosion allowable: tr= t + Ca = 4.14 + 2.0 = 6.14mm ;这些公式只有在环向接头系数小于纵向接头系数一半时才起作用,根据UG-27(c) (2)的注释16,用于纵向应力的UG-27(c) (2)公式不用考虑。
第11章压力容器的强度计算本章重点要讲解内容:(1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则;(2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差;(3)掌握内压圆筒的厚度设计;(4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。
(5)熟悉内压容器强度校核的思路和过程。
第一节设计参数的确定1、我国压力容器标准与适用范围我国现执行GB150-98 “钢制压力容器”国家标准。
该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。
JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。
其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。
2、容器直径(diameter of vessel)考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。
对于用钢板卷制的筒体,以内径作为其公称直径。
表1 压力容器的公称直径(mm)如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。
表2 无缝钢管制作筒体时容器的公称直径(mm)3、设计压力(design pressure)(1)相关的基本概念(除了特殊注明的,压力均指表压力)✧工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。
①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同;②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。
③标准中的最大工作压力,最高工作压力和工作压力概念相同。
减压管强度计算书描 图 共 页 第 页 描 校 旧底图登记号 底图登记号更改标记 更 改 单 号CAD3 1第 页3本强度计算书遵照国家质量技术监督局《压力容器安全技术监察规程》,GB150-1998《钢制压力容器》的有关规定编写。
1 设计条件工作介质 污水 容积 V=0.08m 3 圆筒内径 D i =13mm 圆筒高度 h 0=980mm 工作压力 P W =4.2MPa 设计压力 P=4.7MPa 计算压力 P c =P=4.7MPa 工作温度 T=145O C 设计温度 T=200OC 材料 S31803 (σ0.2 =448 MPa ,[σ]=155MPa, [σ]t =145 MPa ) 焊接接头系数 φ=1.0 腐蚀裕量 C 2=2mm2 直管厚度计算 [] 4.7130.222 1.0145 4.72c i tcP D m m P δφσ⨯===⨯⨯--设计厚度 δd =δ+C 2=2.22mm计入负偏差 C 1=1mm 取名义厚度 δn =13.5mm 3 直管压力试验应力校核 [][]tTP P σσ25.1==1.25×4.7×155/145=6.28 MPa减压管强度计算书描 图 共 页 第 页 描 校 旧底图登记号 底图登记号更改标记 更 改 单 号CAD3 2第 页4试验压力下直管(DN13)应力 式中:P T ---试验压力,6.28MPaδe =δn -C=13.5-(2+1)=10.5 mm σT <0.9φσ0.2=0.9×448=403.2MPa 满足试验要求 4 法兰设计 法兰的设计参照ASME B16.5《管法兰和法兰管件》的B16.5/A NPS2.5 600LB WN/RF 规格。
4.1 其密封面结构尺寸和法兰厚度查标准如下:法兰外径 O=190mm 对焊法兰厚度 C=28.6mm 颈部直径 X=100mm 凸面直径 R=104.8mm螺栓圆直径 149.2mm 螺栓孔数 8个 螺栓孔直径 22mm 螺栓直径 20mm 螺栓材料: 35CrMoA(685,[]254,[]193.4tsbbM pa M pa M pa σσσ===) 法兰材料: S31803 Ⅲ (σ0.2 =448 MPa ,[σ]=155MPa, [σ]t =145 MPa ) 4.2 法兰颈的倒角R 参照HG20595-97《带颈对焊钢制管法兰(欧洲体系)》的PN10.0Mpa,DN65,取R=6mm. 4.3 法兰内腔参照GB150-1998《钢制压力容器》的锥壳设计 取半顶角α=21O 锥壳计算厚度(式7-7)() 6.281310.52210.57.03T i e T e P D M P a δσδ++==⨯=()减压管强度计算书描 图 共 页 第 页 描 校 旧底图登记号 底图登记号更改标记 更 改 单 号CAD3 3第 页5[]1co s 2 4.76312145 4.7co s 211.11c i c tco P D p m mδασ=∙Φ-⨯=⨯⨯-= 设计厚度 δd =δ+C 2=3.11mm 计入负偏差 C 1=1mm取名义厚度 δn 大于10mm ,满足强度要求。
内筒体下段内压计算 计算单位 工程公司
计算所依据的标准
GB/T 150.3-2011
计算条件
筒体简图
计算压力 p c 0.52 MPa
设计温度 t -196.00 ︒ C 内径 D i 3000.00 mm
材料
S30408(Rp1.0)# ( 板材 ) 试验温度许用应力 [σ]
166.60 MPa 设计温度许用应力 [σ]t
166.60 MPa 试验温度下屈服点 R eL 250.00 MPa 负偏差 C 1 0.30 mm 腐蚀裕量 C 2 0.00 mm 焊接接头系数 φ
1.00
厚度及重量计算
计算厚度 δ = c
t i
c ][2P D p -φσ = 4.69
mm 有效厚度 δe =δn - C 1- C 2= 7.70 mm 名义厚度 δn = 8.00 mm 重量
899.22
Kg
压力试验时应力校核
压力试验类型 气压试验
试验压力值 p T = 1.10p [][]
σσt = 0.3900
MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.80 R eL = 200.00
MPa
试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 76.17 MPa
校核条件 σT ≤ [σ]T 校核结果
合格
压力及应力计算
最大允许工作压力 [p w ]= 2δσφ
δe t i e []()D += 0.85302
MPa 设计温度下计算应力 σt
= e
e i c 2)
(δδ+D p = 101.56 MPa [σ]t
φ 166.60 MPa
校核条件 [σ]t
φ ≥σt
结论 合格
内容器上封头内压计算
计算单位 工程公司 计算所依据的标准
GB/T 150.3-2011 计算条件
椭圆封头简图
计算压力 p c 0.35 MPa
设计温度 t -196.00 ︒ C 内径 D i 3000.00 mm 曲面深度 h i 750.00 mm 材料
S30408 (板材) 设计温度许用应力 [σ]t
166.60 MPa 试验温度许用应力 [σ] 166.60 MPa 负偏差 C 1 0.30
mm 腐蚀裕量 C 2 0.50(封头加工减薄量) mm
焊接接头系数 φ 1.00
压力试验时应力校核
压力试验类型 气压试验 试验压力值
p T = 1.10p
t
][][σσ= 0.3900
MPa 压力试验允许通过的应力[σ]t [σ]T ≤ 0.80 R eL = 200.00
MPa 试验压力下封头的应力
σT = φδδ.2)5.0.(eh eh i T KD p += 112.60
MPa
校核条件 σT ≤ [σ]T 校核结果
合格
厚度及重量计算
形状系数
K = ⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+2
i i 2261h D = 1.0000
计算厚度 δh = c
t i
c 5.0][2p D Kp -φσ = 3.15
mm 有效厚度 δeh =δnh - C 1- C 2= 5.20 mm 最小厚度 δmin = 4.50 mm 名义厚度 δnh = 6.00 mm 结论 满足最小厚度要求 重量
468.64
Kg
压 力 计 算
最大允许工作压力 [p w ]= eh i eh
t 5.0][2δφδσ+KD = 0.57705
MPa
结论 合格
内筒下封头压力计算
计算单位 工程公司 计算所依据的标准
GB/T 150.3-2011 计算条件
椭圆封头简图
计算压力 p c 0.55 MPa
设计温度 t -196.00 ︒ C 内径 D i 3000.00 mm 曲面深度 h i 750.00 mm 材料
S30408 (板材) 设计温度许用应力 [σ]t
166.60 MPa 试验温度许用应力 [σ] 166.60 MPa 负偏差 C 1 0.30
mm 腐蚀裕量 C 2 0.90(封头加工减薄量) mm
焊接接头系数 φ 1.00
压力试验时应力校核
压力试验类型 气压试验 试验压力值
p T = 1.10p
t
][][σσ= 0.3900
MPa 压力试验允许通过的应力[σ]t [σ]T ≤ 0.80 R eL = 200.00
MPa 试验压力下封头的应力
σT = φδδ.2)5.0.(eh eh i T KD p += 86.13
MPa
校核条件 σT ≤ [σ]T 校核结果
合格
厚度及重量计算
形状系数
K = ⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+2
i i 2261h D = 1.0000
计算厚度 δh = c
t i
c 5.0][2p D Kp -φσ = 4.96
mm 有效厚度 δeh =δnh - C 1- C 2= 6.80 mm 最小厚度 δmin = 4.50 mm 名义厚度 δnh = 8.00 mm 结论 满足最小厚度要求 重量
625.86
Kg
压 力 计 算
最大允许工作压力 [p w ]= eh i eh
t 5.0][2δφδσ+KD = 0.75440
MPa
结论 合格
注:带#号的材料数据是设计者给定的。