第四章 管道的屈曲分析
- 格式:ppt
- 大小:3.07 MB
- 文档页数:40
材料力学管道分析知识点总结材料力学是工程力学的一个重要分支,研究材料在外力作用下的力学行为。
管道作为一种常见的工程结构,在各个领域都有广泛应用,了解材料力学管道分析的知识点,对于工程设计和施工具有重要意义。
本文将对材料力学管道分析的知识点进行总结,旨在帮助读者更好地理解和应用该领域的知识。
1. 弹性力学基本概念弹性力学是研究材料在小应变作用下的力学行为的分支。
在材料力学管道分析中,弹性力学的基本概念是必须要了解的。
弹性体的本构方程、应力-应变关系、应变能密度以及泊松比等概念是分析管道弹性行为的基础。
2. 管道的应力分析管道在使用过程中会承受外部载荷的作用,因此对管道的应力分析是非常重要的。
在材料力学管道分析中,应力的分布和大小对于设计管道的强度和稳定性具有重要意义。
应力分析会涉及到静力学平衡、材料的弹性性质以及管道的几何尺寸等因素。
3. 管道的变形分析管道在受到外部载荷作用下,会发生弯曲、拉伸和压缩等变形。
变形分析是了解管道结构受力情况以及变形形式和程度的手段。
在变形分析中,考虑到材料的弹性性质、几何尺寸的变化以及边界条件的影响。
4. 管道的稳定性分析管道的稳定性是指管道在受力作用下不产生破坏或失稳的能力。
稳定性分析是确保管道在使用过程中具有足够的强度和刚度以防止破坏的重要手段。
管道稳定性分析会考虑到材料的弹性性质、几何尺寸的变化、外界环境的影响以及边界条件等因素。
5. 管道的疲劳分析管道在长期使用过程中,会受到交变载荷的作用,从而引发疲劳破坏。
疲劳分析是为了评估管道在反复载荷下的寿命和安全性。
在疲劳分析中,需要考虑到材料的疲劳性能、载荷的频率和幅值、应力范围和设计寿命等因素。
6. 管道的裂纹扩展分析管道的裂纹扩展分析是为了评估管道在裂纹存在的情况下的寿命和安全性。
裂纹扩展分析需要考虑到材料的断裂韧性、裂纹形态和尺寸、应力场分布以及环境因素等因素。
7. 管道的振动分析管道在某些情况下会受到振动的激励,从而引发共振或者疲劳破坏。
管道部分第一章地下管道一、概述埋地管道的敷设程序①开挖管沟②管段组焊③试压检验④管沟回填二、管道载荷及受力分析1、载荷分类永久载荷、可变载荷、偶然载荷2、薄壁环向应力和轴向应力=2??????=4??3、厚壁管道的应力分析从图中的应力分布曲线可看出,内压引起厚壁圆筒的径向应力和环向应力沿壁厚均是变化的,且两向应力的最大值均在内壁面处,而轴向应力在横截面上则为一个常数三、许用应力与壁厚设计1、管道许用应力计算公式[σ]=K φ??K ——强度设计系数Ф——焊缝系数?——钢管的最低屈服强度2、管道壁厚设计输油管道直管段壁厚设计公式输气管道直管段壁厚设计公式t——温度折减系数注:实际使用壁厚需要加上腐蚀余量3、管材选择目前用于长输管道的钢管主要有无缝钢管和焊缝钢管两种。
(焊缝钢管是发展的主要趋势)焊缝钢管主要有直缝埋弧焊钢管和螺旋缝埋弧焊钢管两大类型:直缝埋弧焊钢管与螺旋缝埋弧焊钢管相比具有焊缝短、成型精度高、残余应力小、错边量小等特点,但受力状况不如螺旋缝埋弧焊钢管好四、地下管道轴向应力与变形1、轴向应力-热应力热应力:与A、L无关,仅与管材、温度、约束条件相关。
2、环向应力的泊松效应注:注意正负号(受拉为正,受压为负)3、埋地管道不同约束情况下的应力分析三种不同的热变形:嵌固段、过渡段、自由段过渡段管道单位长度上的摩擦阻力:平衡条件:fl=???∵∴即出/入土段伸缩变形量为同样长度管段自由伸缩量的一半。
注:自由段长度较短,产生的热变形量可以由垫片等一些设施吸收,而过渡段较长,产生的热变形量则需要固定支墩来吸收。
五、固定支墩的设计计算1、作用和位置把过渡段长度缩减为0的措施。
2、固定支墩的受力平衡推力P与摩擦力f(土壤对支墩抗力T)平衡。
注:上式用于支墩和土壤无相对滑移的情况支墩抗滑移校核条件:T>KΦP3、土压力种类:注:上式用于支墩和土壤有相对滑移的情况4、支墩的倾覆校核5、地耐压校核支墩前边缘对地基的压力最大,以表示,后边缘压力最小,以???表示校核条件:六、管道弯曲应力1、简单弯曲情况下的管道弯曲应力计算(嵌固)管壁外层纤维引起的轴向拉力:2、存在相对位移时的弯曲应力计算如果管道曲率很大(>125),那么???=4??,这时弯曲管道由于内压和温差引起的轴向应力恰好与直线管道相同。
钻井用连续管的屈曲分析张辛1, 徐兴平1, 王龙庭2,王雷1(1.中国石油大学(华东)机电学院,山东东营,207061;2. 胜利油田高原石油装备有限责任公司研发中心)摘要:连续管弯曲可能会出现在任何井段。
但是,在不同的井段开始形成弯曲的临界压缩载荷不同。
本文在总结国内外学者研究的基础上,以垂直井段为例,对已有公式的适用条件进行了探讨。
采用能量守恒原理,对垂直井段的连续管进行临界屈曲载荷分析,得到连续管的临界屈曲载荷。
利用拉格朗日乘子方法分别对管柱处于不同屈曲形式下进行管柱与套管壁的接触载荷计算。
并对管柱的屈曲行为进行了ABAQUS计算机模拟分析。
关键词:连续管屈曲分析计算模型计算机模拟Buckling Analysis of Drilling Coiled TubingZhang Xin1, Xu Xingping1, Wang Longting2, Wang Lei1(1. College of Mechanical and Electronic Engineering, China University of Petroleum, Dongying, Shandong, 257061, China; 2. Shengli Oilfield Highland Petroleum Equipment Co., Ltd. R&Dcenter)Abstract:The bend of coiled tubing may appear in any hole section. However, the critical compressive load is different in different interval when the bend is generated. On the base of the research of domestic and foreign scholars, applicable conditions to the existed formulas are researched in this paper with the example of vertical interval. Using energy method, equations are derived to predict the axial compression force required to produce buckling in vertical wells. Utilizing the Lagrange multiplier method, the unit lateral contact force corresponding to straight, sinusoidal, and helical configurations between CT and casing are obtained in vertical, inclined, and curved wells, respectively. The buckling of CT is also discussed on the basis of ABAQUS computer simulations.Keywords: Coiled tubing Buckling analysis Computation model Computer simulation前言在连续管下入过程中,由于管柱本身重力的影响和管柱与井壁摩擦的影响,使得管柱在受压时由初始的近似直线状态变为曲线状态,这就是管柱的屈曲。
屈曲分析分析原理屈曲分析原理字数 765预计阅读时间 5min1、小位移和大位移小位移:在利用欧拉公式计算时,属于线弹性计算,忽略了结构的变形对结构的影响,结构的刚度矩阵是不变的。
而实际上,结构的变形是可以影响荷载的作用效应的。
如下图所示。
对杆件施加一定的荷载后,杆件会产生相应的变形,在这个变形的基础上,荷载会继续作用在这个(刚度矩阵)已经改变的杆件上从而导致二阶变形。
为了更好理解,我用银行利息的例子比喻一下这个现象。
比如我拿一万元钱作为荷载,施加到银行这个杆件上,那么它会产生相应的利息。
之后我这个本金加利息的基础上再次对银行施加荷载以获取进一步的利息。
这就是大位移:几何非线性的,考虑了结构变形的影响。
小位移和大位移的计算公式:2、几何刚度在大位移计算中,考虑了结构变形对荷载作用效应的影响,也就是结构刚度的改变,于是引入几何刚度的概念。
同样用一个比喻来帮助大家理解几何刚度的概念,就是拔河。
在大家的感性认识中,绳子在张紧(受拉)状态下的刚度是不是要比松弛(不受力)状态下的刚度大呢?而实际上,绳子的弹性刚度是没有改变的,所以随着外力的改变,我们引入几何刚度来描述这一现象。
3、计算原理Midas的线性屈曲分析可计算包含桁架单元、梁单元、板单元、实体单元的结构的临界荷载系数和相应的屈曲模态。
结构的静力平衡方程如下:结构的几何刚度矩阵由各单元的几何刚度矩阵构成,各单元的几何刚度矩阵与构件的内力相关。
将几何刚度矩阵用临界荷载系数与使用初始荷载计算的几何刚度矩阵的乘积表示如下:上述平衡方程失稳的条件是存在奇异解,即等效刚度矩阵的行列式的值为零。
即线性屈曲分析就是解下式的特征值,屈曲分析中的特征值就是临界荷载系数。
所谓临界荷载就是初始荷载乘以临界荷载系数的荷载值,表示结构作用临界荷载时结构会发生屈曲(失稳)。
结构失稳时常伴随大位移变形和材料屈服,所以屈曲分析常要求考虑几何非线性线或材料非线性。
屈曲分析流程Bending analysis is a crucial process in the engineering and design of various structures and components. It is essential for determining the structural integrity, safety, and performance of materials under different loading conditions. 屈曲分析是工程和设计中的一个至关重要的过程,对于确定材料在不同载荷条件下的结构完整性、安全性和性能至关重要。
The process of bending analysis involves the evaluation of the stress and strain distribution in the material, as well as the determination of critical points where failure may occur. 屈曲分析的过程涉及材料中应力和应变分布的评估,以及确定可能发生失效的关键点。
By understanding the behavior of materials under bending, engineers are able to optimize the design of various structures, ensuring that they can withstand the required loads and perform effectively in their intended applications. 通过了解材料在弯曲下的行为,工程师能够优化各种结构的设计,确保它们能够承受所需的载荷并在其预期的应用中有效地发挥作用。
One of the primary aspects of bending analysis is the determination of the maximum bending moment and the corresponding stress distribution along the length of the material. 屈曲分析的一个主要方面是确定最大弯曲力矩以及材料长度沿线的相应应力分布。
第23卷第2期 V ol.23 No.2 工 程 力 学 2006年 2 月 Feb. 2006 ENGINEERING MECHANICS173———————————————收稿日期:2004-03-26;修改日期:2004-05-27作者简介:*邢静忠(1966),男,甘肃人,教授,博士,从事海洋石油工程力学研究(E-mail: hsingjzh@); 柳春图(1935),男,江苏人,研究员,博士生导师,从事固体力学、断裂和疲劳研究; 徐永君(1964),男,河北人,博士,从事工程力学研究。
文章编号:1000-4750(2006)02-0173-04埋设悬跨海底管道的屈曲分析*邢静忠1,2,柳春图1,徐永君1(1. 中国科学院力学研究所, 北京 100080; 2. 兰州理工大学理学院, 兰州 730050)摘 要:考虑海床刚度,研究了埋设悬跨海底管道在热膨胀引起的轴向压力下的屈曲问题。
传统方法是将悬跨管道简化为两端简支或者两端固支梁来处理。
基于欧拉-伯努利梁理论,考虑线弹性海床刚度和轴向压力,建立并求解了埋设段管道和悬跨段管道在自重作用下的四阶常微分方程,获得了两段管道的静挠度和内力的解析公式。
通过对静挠度的特性分析,给出了埋设管道段和悬跨管道段的稳定性判断准则。
关键词:屈曲;海底管道;悬跨;弹性地基;热膨胀 中图分类号:O343 文献标识码:ABUCKLING ANALYSIS OF BURIED SPANNING SUBMARINE PIPELINE*XING Jing-zhong 1,2 , LIU Chun-tu 1 , XU Yong-jun 1(1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China; 2. School of Science, Lanzhou University of Science, Lanzhou 730050, China)Abstract: This paper presents a buckling analysis of buried spanning submarine pipelines under axial compressive force caused by thermal expansion, in which the seabed stiffness is taken into account. Traditional methods treat each span segment as a simply-supported beam or clamped-clamped beam in practice. A new approach is developed based on Euler-Bernoulli beam theory, taking into account the linear elastic stiffness of seabed and temperature-driving axial force. A fourth order ordinary differential equation governing buried segment in elastic seabed and spanning segment under self-weight and axial compressive force is established and solved. The static deflection and internal force function of both segments are obtained in closed form. Stability criteria of buried segment and spanning segment are established through analyzing the characteristics of static deflection.Key words: buckling; submarine pipeline; spanning; elastic foundation; thermal expansion由于海床不平整,或者海流淘蚀,海底管道经常出现悬跨(Spanning)情况。