广东省韶关市2020版七年级上学期数学期末考试试卷(I)卷
- 格式:doc
- 大小:618.00 KB
- 文档页数:13
韶关市七年级上册数学期末试卷(含答案)一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 3.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .45.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 6.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .347.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①②C .②④D .③④ 8.下列四个数中最小的数是( ) A .﹣1 B .0C .2D .﹣(﹣1) 9.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣1 10.下列式子中,是一元一次方程的是( )A .3x+1=4xB .x+2>1C .x 2-9=0D .2x -3y=011.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .12.估算15在下列哪两个整数之间( )A .1,2B .2,3C .3,4D .4,5二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.14.把5,5,35按从小到大的顺序排列为______.15.若523m x y +与2n x y 的和仍为单项式,则n m =__________.16.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________. 17.16的算术平方根是 .18.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.20.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.22.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.27.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.28.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB上,此时三角板旋转的角度为 度; (2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果).29.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.30.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.31.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.4.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.5.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.6.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.7.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.8.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.9.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.10.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
广东省韶关市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七上·大石桥期中) 下列各组数中,相等的一组是()A . 2.5和-2.5B . -(+2.5)和-(-2.5)C . -(-2.5) 和+(-2.5)D . -(+2.5)和+(-2.5)2. (2分)如图,直线AB和直线CD交于点O,EO⊥CD,垂足为O,则∠AOE和∠DOB的关系是()A . 大小相等B . 对顶角C . 互为补角D . 互为余角3. (2分) (2019七上·利辛月考) 单项式的系数是()A . -7B .C .D .4. (2分)(2019·瑞安模拟) 如图,几何体的左视图是()A .B .C .D .5. (2分)化简x-(x-1)的结果是()A . x+B . x-C . x-1D . x+16. (2分) (2018七上·揭西月考) 若单项式3xm+1y4与﹣ x2y4﹣3n是同类项,则m•n的值为()A . 2B . 1C . ﹣1D . 07. (2分) (2015四下·宜兴期末) 下列语句正确的是()A . 在所有联结两点的线中,直线最短B . 线段A是点A与点B的距离C . 三条直线两两相交,必定有三个交点D . 在同一平面内,两条不重合的直线,不平行必相交8. (2分)(2017·恩施) 某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A . 5B . 6C . 7D . 89. (2分)下列四个图形中是如图展形图的立体图的是()A .B .C .D .10. (2分)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A .B .C .D .11. (2分) (2016高二下·抚州期中) 设M=2a-3b,N=-2a-3b,则M-N=()A . 4a-6bB . 4aC . -6bD . 4a+6b12. (2分) (2018七上·汉滨期中) 两数在数轴上位置如图所示,将用“<”连接,其中正确的是()A . <<<B . <<<C . <<<D . <<<二、填空题 (共6题;共6分)13. (1分)若|x|=4,则x=________.14. (1分) (2016七上·太康期末) 一个角的余角是54°38′,则这个角的补角是________.15. (1分) (2020七上·越城期末) 请写出一个解为4的一个一元一次方程 ________.16. (1分) (2017七上·哈尔滨月考) 如果a、b互为倒数,c、d互为相反数,且m=—1,则式子=________.17. (1分)一只船沿河顺水而行的航速为30千米/小时,若按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为________千米.18. (1分)如图所示,∠AOE=90°,∠BOD=45°,那么不大于90°的所有角的度数之和是________度.三、解答题 (共8题;共57分)19. (5分)小刚的妈妈有一笔一年期的定期储蓄,年利率为2.25%,利息税率为20%,到期纳税后的利息为180元,小刚的妈妈存入的本金是多少元?20. (11分) (2019七上·南山期末) 如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC-BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并直接写出你的结论.21. (10分) (2019七上·禅城期末) 计算:(﹣1)4﹣|﹣3|×[2﹣(﹣3)2]22. (5分) (2016七上·仙游期末) 解下列方程(1) 4x-3=3x+5(2)23. (5分) (2018七下·昆明期末) 读下列语句,并画出图形:直线AB、CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P,且与直线AB平行,与直线CD相交于点E.24. (5分) (2019八下·浏阳期中) 已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.25. (10分) (2019七下·闽侯期中) 已知∠MAN,点B是∠MAN内的点,以点B为顶点作∠CBD(1)如图1,若边BC∥AN,BD∥AM,点C,D分别在边AM,AN上,求证:∠CBD=∠MAN;(2)如图2,∠MAN是钝角,BD⊥AM,垂足为D,BC∥AN,且2∠MAN﹣∠CBD=30°,请你补全图形,并求∠MAN 的度数.26. (6分) (2018七上·洪山期中) 在数轴上,点A表示数a,点B表示数b,在学习绝对值时,我们知道了绝对值的几何含义:数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.如:|a+6|表示数a和﹣6在数轴上对应的两点之间的距离.|a﹣1|表示数a和1在数轴上对应的两点之间的距离.(1)若a满足|a+6|+|a+4|+|a﹣1|的值最小,b与3a互为相反数,直接写出点A对应的数,点B对应的数.(2)在(1)的条件下,已知点E从点A出发以1单位/秒的速度向右运动,同时点F从点B出发以2单位/秒的速度向右运动,FO的中点为点P,则下列结论:①PO+AE的值不变;②PO﹣AE的值不变,其中有且只有一个是正确的,选出来并求其值.(3)在(1)的条件下,已知动点M从A点出发以1单位/秒的速度向左运动,动点N从B点出发以3单位/秒的速度向左运动,动点T从原点的位置出发以x单位/秒的速度向左运动,三个动点同时出发,若运动过程中正好先后出现两次TM=TN的情况,且两次间隔的时间为4秒,求满足条件的x的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共57分)19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、24-1、25-1、25-2、26-1、26-2、26-3、。
韶关市七年级上册数学期末试卷(含答案)一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线2.当x取2时,代数式(1)2x x-的值是()A.0 B.1 C.2 D.33.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b4.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.5.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C.1004006 2x x+=D.1004006 x2x+=6.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A .1个B .2个C .3个D .4个7.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………15.如图,数轴上点A与点B表示的数互为相反数,且AB=4则点A表示的数为______.16.把5,5,35按从小到大的顺序排列为______.17.已知x=2是方程(a+1)x-4a=0的解,则a的值是 _______.18.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x,使第2次输出的数也是x,则x=_____.19.15030'的补角是______.20.52.42°=_____°___′___″.21.按照下面的程序计算:如果输入x的值是正整数,输出结果是166,那么满足条件的x的值为___________.22.|﹣12|=_____.23.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=______cm.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.三、压轴题25.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.26.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.27.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板∠)的顶点与60角画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将(COD三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 28.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.29.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.30.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.31.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.32.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C .【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.B解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.4.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误.故选C.5.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.8.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.9.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.10.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.11.B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.12.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.二、填空题13.伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.14.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.15.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.16.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 17.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键18.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.19.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.20.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.21.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.22.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.23.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题25.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)4,16;(2)x =﹣28或x =52;(3)线段MN 的运动速度为9单位长度/秒.【解析】【分析】(1)由A 1A 2=A 2A 3=……=A 19A 20结合|a 1﹣a 4|=12可求出A 3A 4的值,再由a 3=20可求出a 2=16;(2)由(1)可得出a 1=12,a 2=16,a 4=24,结合|a 1﹣x|=a 2+a 4可得出关于x 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A 1A 20=19A 3A 4=76,设线段MN 的运动速度为v 单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v 的一元一次方程,解之即可得出结论.【详解】解:(1)∵A 1A 2=A 2A 3=……=A 19A 20,|a 1﹣a 4|=12,∴3A 3A 4=12,∴A 3A 4=4.又∵a 3=20,∴a 2=a 3﹣4=16.故答案为:4;16.(2)由(1)可得:a 1=12,a 2=16,a 4=24,∴a 2+a 4=40.又∵|a 1﹣x|=a 2+a 4,∴|12﹣x|=40,∴12﹣x =40或12﹣x =﹣40,解得:x =﹣28或x =52.(3)根据题意可得:A 1A 20=19A 3A 4=76.设线段MN 的运动速度为v 单位/秒,依题意,得:9v =76+5,解得:v =9.答:线段MN 的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A 3A 4的长度及a 2的值;(2)由(1)的结论,找出关于x 的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.28.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.29.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标. 【详解】 (1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.30.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43.。
七年级数学上学期期末考试试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1.选择题、填空题和解答题都在答题卡上作答,不能答在本试卷上.2.作图(含辅助线)或画表,用铅笔(如2B 铅笔)进行画线、绘图、要求痕迹清晰.第Ⅰ卷 选择题(共30分)一.选择题(10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)1.34的绝对值是( ) A .-34 B .34C .43D .34±2.下列四个数中最小的数是( ) A .-310 B .-3 C .0 D .53.用科学计数法表示2017000,正确的是( ) A .2017×310B .2.017×510C .2.017×610D .0.2017×7104.下列简单几何体中,属于柱体的个数是( )A.5B .4C.3D .25.计算43+(-77)+27+(-43)的结果是( ) A .50B .-104C .-50D .1046.下列各式成立的是( ) A .4334⨯=B .3662=-C .91313=⎪⎭⎫ ⎝⎛D .161412=⎪⎭⎫⎝⎛-7.下列每组单项式是同类项的是( )A .xy 2与yx 31-B .y 2x 3与2x 2y -C .x 21-与xy 2- D .xy 与yz8.下列调查中,适合用普查的是( )A .中央电视台春节联欢晚会的收视率B .一批电视机的寿命C .全国中学生的节水意识D .某班每一位同学的体育达标情况9.过某个多边形一个顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是A .五边形B .六边形C .七边形D .八边形10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n 个“口”字需要用棋子第一个“口” 第二个“口” 第三个“口”第Ⅱ卷 非选择题(共70分)二、填空题(本大题6小题,每小题4分,共24分.把答案填在答题卡上)11.计算()[]3116÷+-的结果为 . 12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1、2、3、-3、A 、B ,相对面上的两个数互为相反数,则A= .第12题图13.某场电影成人票25元/张,卖出m 张,学生票15元/张,卖出n 张,共得票款 元 14.把角度化为秒的形式,则05.5= .15.在一次全市的数学监测中,某6名学生的成绩与全市学生的平均分80的差分别为5、-2、8、 11、5、-6,则这6名学生的平均成绩为 分。
广东省韶关市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)小明在计算-36÷a时,误将“÷”看成“+”结果得-27,则-36÷a的正确结果是()A . -6B . -4C . 6D . 42. (2分)(2017·濉溪模拟) 在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是()A .B .C .D .3. (2分)数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B的左侧,点C在点B的左侧,点D在点B、C之间,则下列式子中,可能成立的是()A . a<b<c<dB . b<c<d<aC . c<d<a<bD . c<d<b<a4. (2分)如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF ,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在()A . 射线OA上B . 射线OB上C . 射线OD上D . 射线OF上5. (2分) (2016七上·大石桥期中) 单项式﹣的系数与次数分别是()A . ﹣2,6B . 2,7C . ﹣,6D . ﹣,76. (2分) (2020七上·萧山期末) 若代数式3a+1的值与3(a+1)的值互为相反数,则a的值为()A .B .C .D .7. (2分)线段AB上有点C,点C使AC:CB=2:3,点M和点N分别是线段AC和线段CB的中点,若MN=4,则AB的长是()A . 6;B . 8;C . 10;D . 128. (2分)下列运算正确的是()A . a+a=a2B . (﹣a3)2=a5C . (a)2=2a2D . 3a•a2=a39. (2分)一个长方形的周长为26cm,若这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设这个长方形的长为xcm,可列方程()A . x+1=(26﹣x)﹣2B . x+1=(13﹣x)﹣2C . x﹣1=(26﹣x)+2D . x﹣1=(13﹣x)+210. (2分) (2017七下·马龙期末) 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1 , A2 , A3 , A4 , A5 ,…,则顶点A55的坐标是()A . (13,13)B . (-13,-13)C . (-14,-14)D . (14,14)二、填空题 (共6题;共6分)11. (1分)用科学记数法表示下列各数:800800=________;-100000=________;78500=________.12. (1分)计算:﹣ab2﹣(﹣3ab2)=________ .13. (1分)在梯形面积公式S= 中,若S=24,a=6,h=3,则b=________.14. (1分)如图,OA⊥OB,OD、OE分别是∠AOC、∠B OC的平分线,则∠DOE=________度.15. (1分) (2019七上·海安期中) 当x=________时,代数式2x+1与5x﹣8的值相等.16. (1分) (2019七上·宜兴期末) 如图,是一个运算程序的示意图,若开始输入x的值为625,则第2019次输出的结果为________.三、解答题 (共8题;共70分)17. (5分) (2019七上·普宁期末) 计算:18. (5分) (2018七上·乌鲁木齐期末) 作图题:如图,已知平面上四点.①画直线;②画射线,与直线相交于;③连结相交于点.19. (5分) (2019七上·深圳期末) 先化简,再求值:2(a2-ab)-3(a2-ab),其中,a=-2,b=3.20. (10分) (2019七下·巴中期中) 计算(1)(2)(3)(4)21. (10分)如图,点O是直线AB上一点,OC平分∠AOB,在直线AB另一侧以O为顶点作∠DOE=90°.(1)若∠AOE=48°,那么∠BOD=________;∠AOE与∠DOB的关系是________;(2)∠AOE与∠COD有什么数量关系?请写出你的结论并说明理由.22. (10分) (2017七上·庄浪期中) 已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长.23. (10分)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?24. (15分) (2017七上·温江期末) 如图,已知线段AB=20,C是AB上的一点,D为CB上的一点,E为DB 的中点,DE=3.(1)若CE=8,求AC的长;(2)若C是AB的中点,求CD的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共70分)17-1、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。
七年级上册韶关数学期末试卷综合测试(Word 版 含答案)一、选择题 1.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .32.用代数式表示“a 的2倍与b 的差的平方”,正确的是( )A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 3.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .4.方程去分母后正确的结果是( ) A .B .C .D .5.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2.5B .2或10C .2.5或3D .36.下列图形经过折叠不能围成棱柱的是( ). A . B . C . D .7.2020的绝对值等于( )A .2020B .-2020C .12020D .12020- 8.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A .()21313x x -+=B .()21313x x ++=C .()23113x x ++=D .()23113x x +-= 9.若,,则多项式与的值分别为( ) A .6,26 B .-6,26 C .-6,-26 D .6,-2610.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④ 11.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mnB .23m nC .3m nD .32m n 12.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小 13.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元14.下列图形中1∠和2∠互为余角的是( )A .B .C .D .15.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( )A . 1.5(7020)x x =-+B .70 1.5(20)x x +=+C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )2kn =(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =13,则:若n =24,则第100次“F ”运算的结果是________.17.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________.18.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 19.数a ,b ,c 在数轴上的对应的点如图所示,有这样4个结论:①c a b >>;②0b a +>;③||||a b >;④0abc >其中,正确的是________.(填写序号即可)20.有一数值转换器,其转换原理如图所示,若开始输入x 的值是9,可发现第1次输出的结果是14,第2次输出的结果是7,第3次输出的结果是12,…,依次继续下去,第2020次输出的结果是______.21.某同学在电脑中打出如下排列的若干个2、0: 202202220222202222202222220,若将上面一组数字依此规律连续复制得到一系列数字,那么前2020个数字中共有__________个0.22.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。
广东省韶关市乐昌市七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱C.三棱锥D.三棱柱3.(3分)如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC 的长为()A.2cm B.4cm C.8cm D.13cm4.(3分)如果代数式与ab是同类项,那么m的值是()A.0 B.1 C.D.35.(3分)如图,在数轴上点A表示的数最可能是()A.﹣2 B.﹣2.5 C.﹣3.5 D.﹣2.96.(3分)当=3,y=2时,代数式的值是()A.B.2 C.0 D.37.(3分)下列式子中,是一元一次方程的有()A.+5=2 B.2﹣8=2+7 C.5﹣3 D.﹣y=48.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2 B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)29.(3分)数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能10.(3分)观察下列算式并总结规律:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律,写出22016的末位数字是()A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.(3分)计算:①﹣2+1=②4﹣(﹣4)=③×()=2.12.(3分)计算:①﹣2=②=③﹣+2=.13.(3分)直接写出下列方程的解:①=﹣+2②﹣=6③=2.14.(3分)把一根木条固定在墙上,至少要钉2根钉子,这是根据.15.(3分)若3 070 000=3.07×10,则=.16.(3分)如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=度.17.(3分)一个角是70°,则这个角的余角为度.18.(3分)某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T 恤的成本为.三、解答题(一)(本大题共21分)19.(8分)计算:(1)26﹣17+(﹣6)﹣33(2)﹣14×[3﹣(﹣3)2].20.(8分)解方程:(1)4=5﹣5(2)﹣1=.21.(5分)先化简,再求值:2ab2﹣3a2b﹣2(a2b+ab2),其中a=1,b=﹣2.四、解答题(二)(本大题共18分)22.(6分)一只船从甲码头到乙码头是顺流行驶,用了2小时;从乙码头返回到甲码头是逆流行驶,用了2.5小时.如果水流的速度是3千米/小时,求船在静水中的速度?23.(6分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°(1)求∠AOB的度数;(2)∠COD的度数.24.(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物元(>300).(1)请用含代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?五、解答题(三)(本大题共7分)25.(7分)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?广东省韶关市乐昌市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣5的倒数是()A.5 B.﹣5 C.D.﹣【解答】解:﹣5的倒数是﹣.故选:D.2.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱C.三棱锥D.三棱柱【解答】解:如图所示:这个几何体是四棱锥.故选:A.3.(3分)如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC 的长为()A.2cm B.4cm C.8cm D.13cm【解答】解:∵BC=3cm,BD=5cm,∴CD=BD﹣BC=2cm,∵D是AC的中点,∴AC=2CD=4cm,故选:B.4.(3分)如果代数式与ab是同类项,那么m的值是()A.0 B.1 C.D.3【解答】解:根据题意得:2m=1,解得:m=.故选C.5.(3分)如图,在数轴上点A表示的数最可能是()A.﹣2 B.﹣2.5 C.﹣3.5 D.﹣2.9【解答】解:∵点A表示的数在﹣3与﹣2中间,∴A、C、D三选项错误,B选项正确.故选:B.6.(3分)当=3,y=2时,代数式的值是()A.B.2 C.0 D.3【解答】解:==7.(3分)下列式子中,是一元一次方程的有()A.+5=2 B.2﹣8=2+7 C.5﹣3 D.﹣y=4【解答】解:A、是一元一次方程,故A正确;B、不是方程,故B错误;C、是多项式,故C错误;D、二元一次方程,故D错误;故选:A.8.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2 B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选B.9.(3分)数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能【解答】解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.10.(3分)观察下列算式并总结规律:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律,写出22016的末位数字是()A.2 B.4 C.6 D.8【解答】解:由21=2,22=4,23=8,24=16,…;可以发现他们的末尾数字是4个数一个循环,2,4,8,6,…∵2016÷4=504,∴22016的与24的末尾数字相同是6.故选:C.二、填空题(每小题3分,共24分)11.(3分)计算:①﹣2+1=﹣1②4﹣(﹣4)=8③×(﹣4)=2.【解答】解:①﹣2+1=﹣1②4﹣(﹣4)=8③×(﹣4)=2故答案为:﹣1、8、﹣4.12.(3分)计算:①﹣2=﹣4②=﹣4.5③﹣+2=.【解答】解:①﹣2=﹣4;②=﹣4.5;③﹣+2=.故答案为:﹣4,﹣4.5,.13.(3分)直接写出下列方程的解:①=﹣+2=1②﹣=6=﹣18③=2=0.【解答】解:①移项得,+=2,合并同类项得,2=2,系数化为1得,=1;②方程两边都乘以﹣3,系数化为1得,=﹣18;③移项得,﹣2=0,合并同类项得,﹣=0,系数化为1得,=0.故答案为:①=1;②=﹣18;③=0.14.(3分)把一根木条固定在墙上,至少要钉2根钉子,这是根据过两点有且只有一条直线.【解答】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是过两点有且只有一条直线或两点确定一条直线.15.(3分)若3 070 000=3.07×10,则=6.【解答】解:∵3 070 000=3.07×106=3.07×10,∴=6.16.(3分)如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=155度.【解答】解:∵点A、O、B在一条直线上,∴∠COB=180°﹣∠AOC=180°﹣50°=130°,∵OD平分∠AOC,∴∠COD=×50°=25°,∴∠BOD=∠COB+∠COD=130°+25°=155°.故答案为:155.17.(3分)一个角是70°,则这个角的余角为20度.【解答】解:∵一个角是70°,∴这个角的余角=90°﹣70°=20°.故答案为:20.18.(3分)某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T 恤的成本为160元.【解答】解:设成本为元,则获利为20%元,售价为0.8×240元,由题意得:+20%=0.8×240,解得:=160.答:这件T恤的成本为160元.故答案为160元.三、解答题(一)(本大题共21分)19.(8分)计算:(1)26﹣17+(﹣6)﹣33(2)﹣14×[3﹣(﹣3)2].【解答】解:(1)原式=26﹣17﹣6﹣33=26﹣56=﹣30;(2)原式=﹣1﹣×(﹣6)=﹣1+1=0.20.(8分)解方程:(1)4=5﹣5(2)﹣1=.【解答】解:(1)4=5﹣54﹣5=﹣5,则﹣=﹣5,解得:=5;(2)﹣1=去分母得:3(+2)﹣12=2(2﹣3),则3+6﹣12=4﹣6,3﹣4=﹣6﹣6+12,解得:=0.21.(5分)先化简,再求值:2ab2﹣3a2b﹣2(a2b+ab2),其中a=1,b=﹣2.【解答】解:原式=2ab2﹣3a2b﹣2a2b﹣2ab2=﹣5a2b;当a=1,b=﹣2时,原式=﹣5×12×(﹣2)=10.四、解答题(二)(本大题共18分)22.(6分)一只船从甲码头到乙码头是顺流行驶,用了2小时;从乙码头返回到甲码头是逆流行驶,用了2.5小时.如果水流的速度是3千米/小时,求船在静水中的速度?【解答】解:设船在静水中的速度为m/h.2(+3)=2.5(﹣3)﹣0.5=﹣13.5=27.答:船在静水中的平均速度是27千米/小时.23.(6分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°(1)求∠AOB的度数;(2)∠COD的度数.【解答】解:(1)∵∠BOC=2∠AOC,∠AOC=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=120°;(2)∵OD平分∠AOB,∴∠AOD=∠AOB=60°,∴∠COD=∠AOD﹣∠AOC=20°.24.(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物元(>300).(1)请用含代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?【解答】解:(1)设顾客在甲超市购物所付的费用为y,顾客在乙超市购物所付的费用为y甲,乙0.8(﹣300)=0.8+60;y乙=200+0.85(﹣200)=0.85+30.根据题意得:y甲=300+(2)他应该去乙超市,理由如下:60=460,y乙=0.85+30=455,当=500时,y甲=0.8+∵460>455,∴他去乙超市划算.0.8+60=0.85+30,(3)令y甲=y乙,即解得:=600.答:李明购买600元的商品时,到两家超市购物所付的费用一样.五、解答题(三)(本大题共7分)25.(7分)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?【解答】解:(1)OB=3OA=30.故B对应的数是30;(2)设经过秒,点M、点N分别到原点O的距离相等①点M、点N在点O两侧,则10﹣3=2,解得=2;②点M、点N重合,则3﹣10=2,解得=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等;(3)设经过y秒,恰好使AM=2BN.①点N在点B左侧,则3y=2(30﹣2y),解得y=,3×﹣10=;②点N在点B右侧,则3y=2(2y﹣30),解得y=60,3×60﹣10=170;即点M运动到或170位置时,恰好使AM=2BN.故答案为:30.。
韶关市七年级上册数学期末试卷(含答案)一、选择题1.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 2.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线3.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73 D .5或734.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4 B .﹣5 C .﹣6D .﹣7 6.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 7.方程3x +2=8的解是( )A .3B .103C .2D .128.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣3 9.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y 10.下列各数中,有理数是( )A .2B .πC .3.14D .37 11.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.已知单项式245225n m x y x y ++与是同类项,则m n =______.16.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.18.若∠1=35°21′,则∠1的余角是__.19.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).21.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.22.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.23.若523m x y +与2n x y 的和仍为单项式,则n m =__________.24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、解答题 25.微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?26.如图,已知180AOB ∠=︒,射线ON .()1请画出BON ∠的平分线OC ;()2如果70AON ∠=︒,射线OA OB 、分别表示从点O 出发东、西两个方向,那么射线ON 方向,射线OC 表示 方向.()3在()1的条件下,当60AON ∠=︒时,在图中找出所有与AON ∠互补的角,这些角是_ .27.解方程:(1)3524x x -=- (2)4132y y -+= 28.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.29.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?30.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34)四、压轴题31.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.33.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.2.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A.连接两点的线段的长度叫做两点间的距离,错误;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C.对顶角相等,正确;D.线段AB的延长线与射线BA不是同一条射线,错误.故选C.【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.3.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.4.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.5.A解析:A【解析】【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.6.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.7.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】解:移项、合并得,36x =,化系数为1得:2x =,故选:C .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.B解析:B【解析】【分析】将1x =-代入2ax x -=,即可求a 的值.【详解】解:将1x =-代入2ax x -=,可得21a --=-,解得1a =-,故选:B .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.9.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x ﹣3y ﹣12x +6y=﹣10x +3y .故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.10.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.11.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD ,∵∠AOB=155°,∴∠COD 等于25°.故选B .【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.12.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=31a -,因为无解,所以a ﹣1=0,即a=1. 故选A . 点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.14.684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 16.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.17.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.18.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.19.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.22.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC ,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.23.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.24.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、解答题25.(1)2.6元;(2)7000步.【解析】【分析】(1)用步数×每步捐的钱数0.0002元即可;(2)设丙走了x 步,则甲走了3x 步,乙走了3x 步,分两种情况讨论即可.【详解】(1)13000×0.0002=2.6元,∴他当日可捐了2.6元钱;(2)设丙走了x 步,则甲走了3x 步,乙走了3x 步,由题意得若丙参与了捐款,则有0.0002(3x +3x +x )=8.4,解之得:x =6000,不合题意,舍去;若丙没参与捐款,则有0.0002(3x +3x )=8.4,解之得:x =7000,符合题意,∴丙走了7000步.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题也考查了分类讨论的数学思想.26.(1)详见解析;(2)北偏东20°,北偏西35°;(3),BON AOC ∠∠【解析】【分析】(1)以点O 为圆心,以任意长为半径画弧,与OB 、ON 相交于两点,再分别以这两点为圆心,以大于它们12长度为半径画弧,两弧相交于一点,然后过点O 与这点作射线OC 即为所求;(2)过点O 作OE ⊥AB ,根据垂直的定义以及角平分线的定义求出∠EON 与∠COE ,然后根据方位角的定义解答即可;(3)根据∠AON=60°,利用平角的定义可得∠BON ,利用角平分线的定义求出∠CON=60°,然后求出∠AOC=120°从而得解.【详解】解:(1)如图所示,OC 即为∠BON 的平分线;(2)过点O 作OE ⊥AB ,∵∠AON=70°,∴∠EON=90°-70°=20°,∴ON 是北偏东20°,∵OC 平分∠BON ,∴∠CON=12(180°-70°)=55°, ∴∠COE=∠CON-∠EON=55°-20°=35°,∴OC 是北偏西35°;故答案为:北偏东20°;北偏西35°.(3)∵∠AON=60°,OC 平分∠BON ,∴∠CON=12(180°-60°)=60°, ∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又根据平角的定义得,∠BON+∠AON=180°,∴与∠AON 互补的角有∠AOC ,∠BON ;故答案为:∠AOC ,∠BON.【点睛】本题考查了复杂作图,角平分线的定义,方位角,以及余角与补角,比较简单,作角平分线是基本作图,一定要熟练掌握.27.(1)1x =;(2)1y =.【解析】【分析】(1)先移项,再合并同类项,最后化系数为1即可;(2)先去分母,再去括号并移项与合并同类项,最后化系数为1即可.【详解】解:(1)3524x x -=-移项得:3425x x +=+合并同类项得:77x =化系数为1得:1x =.(2)4132y y -+= 去分母得:2(4)3(1)y y -=+ 去括号得:8233y y -=+移项得:2338y y --=-合并同类项得:55y -=-化系数为1得:1y =.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的解题步骤是解题关键.28.(1)每辆小客车能坐20人,每辆大客车能坐45人;(2)①租车方案有三种:方案一:小客车20辆、大客车0辆;方案二:小客车11辆,大客车4辆;方案三:小客车2辆,大客车8辆;②最省钱的是租车方案三,最少租金是4600元.【解析】【分析】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人根据题意可得等量关系:2辆小客车座的人数+1辆大客车座的人数=85人;3辆小客车座的人数+2辆大客车座的人数=150人,根据等量关系列出方程组,再解即可(2)①根据题意可得小客车m 辆运的人数+大客车n 辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金300元,大客车每辆租金500元分别计算出租金即可【详解】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人,据题意;28532150x y x y +=⎧⎨+=⎩, 解得:2045x y =⎧⎨=⎩, 答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:2045400m n +=, ∴8049m n -=, ∵m 、n 为非负整数, ∴200m n =⎧⎨=⎩或114m n =⎧⎨=⎩或28m n =⎧⎨=⎩, ∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300206000⨯=(元),方案二租金:3001150045300⨯+⨯=(元),方案三租金:300250084600⨯+⨯=(元),∴最省钱的是租车方案三,最少租金是4600元.【点睛】此题考查二元一次方程组的应用和二元一次方程的应用,解题关键在于列出方程29.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【解析】【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案②比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.30.-3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣1+12﹣18+4=﹣3.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16, ∵CE=8,CF=1,∴EF=7, ∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)10;(2)212±;(3)288. 5±±, 【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a 的值为10.(2)分两种情况,点A 在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a 的值.同理可求出当点A 在原点的左侧时,a 的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b =-4,则a 的值为 10(2)解:当A 在原点O 的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.33.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.。
2020-2021学年广东韶关七年级上数学期末试卷一、选择题1.如图,将长方形绕边旋转一周,得到的几何体是( )A.棱柱B.圆锥C.圆柱D.棱锥2. 若是关于的方程的解,则的值为( )A.B.C.D.3. 物体的形状如图所示,则从上面看此物体得到的平面图形是( )A.B.C. D.4. 如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于( )A.B.C.D.5. 根据等式的性质,下列变形正确的是( ) A.如果,那么B.如果,那么C.如果,那么D.如果,那么6. 如图,,,平分.则是()A.B.C.D.7. ,,三点在同一直线上,线段,,那么,两点的距离是( )A.B.C.或D.以上答案都不对8. 如下图,线段,点为线段上一点,,点,分别为和的中点,则线段的长为( )A. B. C. D.9. 某工艺品车间有名工人,平均每人每天可制作个大花瓶或个小饰品,已知个大花瓶与个小饰品配成一套,则要安排名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套,方程正确的是( )A. B. C.D.10. 小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是·,怎么办呢?他想了想便翻看书后的答案,方程的解是,请问这个被污染的常数是A. B. C. D.二、填空题11. 计算:________,用度分秒表示________________________.12. 关于的方程是一元一次方程,则值为________.13. 校园大道两旁种植树木,确定了两棵树的位置就能确定一排树的位置,利用我们学过的数学知识说明,这是因为________. 14.已知是,则的余角为________.15. 由一个两位数,十位上的数字比个位上的数字大,把个位数字与十位数字对调之后所得新数与原数之和是,这个两位数为________.16.如图,点在点的北偏西的方向上,点在点的南偏东的方向上,那么的大小为________.17. 若方程与方程的解相同,则三、解答题18. 解下列方程:;.19. 填空,完成下列说理过程 如图,,,平分,若,求的度数. 解:,(已知),,..(________),,平分,∴________________°.(________),________20. 已知线段,,利用尺规作线段,使.21.如图,已知四点,,,,请按要求画图画直线,射线交于点连接,交于点连接,并延长至点,使.22.如图,点,,在同一条直线上,,分别平分和.求的度数;如果,求的度数.23. 一项工作,甲单独做需天,乙单独做需天,如果两人合做天后,余下的工作再由甲做.则这项工作需要甲做多少天完成?24. “元旦”期间,某文具店购进只两种型号的文具进行销售,其进价和售价如下表:型号进价(元只)售价(元只)型型该店用元可以购进,两种型号的文具各多少只?总利润是多少?参考答案与试题解析2020-2021学年广东韶关七年级上数学期末试卷一、选择题1.【答案】C2.【答案】A3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】C8.【答案】C9.【答案】D10.【答案】B二、填空题11.【答案】,,,12. 【答案】13.【答案】两点确定一条直线14.【答案】15.【答案】16.【答案】17.【答案】三、解答题18.【答案】解:,去括号,得,移项、合并同类项,得,系数化为,得.,去分母,得, 去括号,得,移项、合并同类项,得,系数化为,得.19.【答案】解:(已知),,..(同角的余角相等),.平分,(角平分线的定义).20.【答案】解:如图:第一步:作射线,第二步:在射线上依次截取线段,第三步:在线段上截取则线段为所求作的线段.21.【答案】解:如图所示,如图所示,如图所示,22.【答案】解:如图,因为是的平分线,答:该店购进种型号的文具只,则购进种型号的文具只,总利润为元.所以.因为是的平分线,所以.所以.由可知,,所以.23.【答案】解:设甲还需天完成这项工作,由题意得,,解得:,共需要(天).答:甲需要天才能完成这项工作.24.【答案】解:设该店购进种型号的文具只,则购进种型号的文具只.依题意得,解得,∴,利润为:(元),。
七年级上册韶关数学期末试卷综合测试(Word 版 含答案)一、选择题1.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1- 2.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是() A . B . C . D .3.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D . 4.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是( )A .B .C .D .5.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D 6.国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为( ) A .25.8×105B .2.58×105C .2.58×106D .0.258×107 7.在 3.14、227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个 B .2 个 C .3 个 D .4 个8.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( )A .-3B .3C .-2D .2 9.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小 10.如果向北走2 m ,记作+2 m ,那么-5 m 表示( )A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m 11.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( )A .m n =B .0.91n m =C .30%n m =-D .30%n m =-12.-5的相反数是( )A .15B .±5C .5D .-1513.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒14.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒ 15.关于零的叙述,错误的是( ) A .零大于一切负数 B .零的绝对值和相反数都等于本身C .n 为正整数,则00n =D .零没有倒数,也没有相反数. 二、填空题16.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.17.写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是负数__.18.请写出一个系数是-2,次数是3的单项式:________________.19.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .20.2018年12月8日2时23分,我国的探月卫星“嫦娥四号”由长征三号乙运载火箭在西昌卫星发射中心成功发射,并成功飞向距地球约384400000m 月球.384400000用科学记数法可表示为______.21.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.22.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.23.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .24.若关于x 的方程1322020x x b +=+的解是2x =,则关于y 的方程1(1)32(1)2020y y b -+=-+的解是__________. 25.计算:32--=________.三、解答题26.如图是由6个棱长都为1cm 的小正方体搭成的几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;(2)该几何体的表面积为___________2cm ;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图 和俯视图不变,那么最多可以添加___________个小正方体.27.如图,点O 是直线AB 上一点, OC ⊥OE ,OF 平分∠AOE ,∠COF =25°,求∠BOE 的度数.28.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++=探索以上等式的规律,解决下列问题:(1) 13549++++=…( 2);(2)完成第n 个等式的填空: 2135()n ++++=…;(3)利用上述结论,计算51+53+55+…+109 .29.计算(1)48(2)(4)-+÷-⨯- (2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭30.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A =80°,则∠A 的半余角的度数为 ;(2)如图1,将一长方形纸片ABCD 沿着MN 折叠(点M 在线段AD 上,点N 在线段CD 上)使点D 落在点D ′处,若∠AMD ′与∠DMN 互为“半余角”,求∠DMN 的度数;(3)在(2)的条件下,再将纸片沿着PM 折叠(点P 在线段BC 上),点A 、B 分别落在点A ′、B ′处,如图2.若∠AMP 比∠DMN 大5°,求∠A ′MD ′的度数.31.计算:(1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(2)23151(32)21428⎛⎫---⨯-+⎪⎝⎭ 32.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯-- 33.解方程:(1)523(2)x x -=--(2)321143x x ---= 四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
广东省韶关市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共20题;共40分)1. (2分)如果一个数的相反数是负数,那么这个数一定是()A . 正数B . 负数C . 零D . 正数、负数、零都有可能2. (2分)下列四个关系式:①y=x;②y=x2;③y=x3;④|y|=x ,其中y不是x的函数的是()A . ①B . ②C . ③D . ④3. (2分)(2017·西安模拟) 如图,1﹣4月份,甲、乙两工厂月生产增长量的变化情况,则甲工厂和乙工厂生产增长量差值最大的月份是()A . 1月份B . 2月份C . 3月份D . 4月份4. (2分)下列结论中,正确的有().①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。
A . 2个B . 3个C . 4个D . 5个5. (2分)(2018·仙桃模拟) 如图一枚骰子抛掷三次,得三种不同的结果,则写有“?”一面上的点数是()A . 1B . 2C . 3D . 66. (2分) 2011年3月11日13:46日本发生了震惊世界的大地震,近期国际机构将日本核电事故等级上调至国际核能事件分级表(INES)中最严重的7级,据估算其向大气排放的放射性物质量约为630000太贝克,用科学记数法表示为:()A .B .C .D .7. (2分) (2020七上·武昌期末) 如图,D、E顺次为线段AB上的两点,AB=19,BE-DE=7,C为AD的中点,则AE-AC的值为()A . 5B . 6C . 7D . 88. (2分)如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为()A . 50°B . 100°C . 130°D . 150°9. (2分) (2019七上·余杭期中) 有理数a , a+2,-a-3(a>0)的大小顺序是()A . -a-3<a<a+2B . -a-3<a+2<aC . a<a+2<-a-3D . a<-a-3<a+210. (2分) (2018七上·阜宁期末) 如果一个角的度数为13°14',那么它的余角的度数为()A . 76°46'B . 76°86'C . 86°56'D . 166°46'11. (2分)下列计算正确的是()A . a3•a2=a6B . 6a2÷2a2=3a2C . x5+x5=x10D . y7•y=y812. (2分) (2018八上·海淀期末) 下列计算正确的是()A .B .C .D .13. (2分)下列:① =25;②(﹣2016)0=1;③(a﹣b)2=a2﹣b2;④(﹣2ab3)3=﹣8a3b9;⑤5x2﹣6x=﹣x.其中计算正确的是()A . ①②③B . ①②④C . ③④⑤D . ②④⑤14. (2分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A . 1B . 2C . 3D . 415. (2分)学在方程5x-1=□x+3时,把□处的数字看错了,解得x=-4/3,该同学把□看成了()A . 3B . -8C . 8D . -316. (2分) (2016七上·六盘水期末) 解方程时,去分母得()A . 4(x+1)=x-3(5x-1)B . x+1=12x-(5x-1)C . 3(x+1)=12x-4(5x-1)D . 3(x+1)=x-4(5x-1)17. (2分) (2020七上·安陆期末) 一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a,则这三个数中最大的数与最小的数的差为()A . aB . |a|C . |a|D . a18. (2分)用“&”定义新运算: 对于任意实数a,b都有a&b=2a-b,如果x&(1&3)=2,那么x等于().A . 1B .C .D . 219. (2分)某报亭老板以每份0.5元的价格从报社购进某种报纸500份,以每份0.8元的价格销售x份(x<500),未销售完的报纸又以每份0.1元的价格由报社收同,这次买卖中该老板赚钱()A . (0. 7x-200)元B . (0. 8x-200)元C . (0. 7x-180)元D . (0. 8x-250)元20. (2分)某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A . (1+50%)x•80%﹣x=8B . 50%x•80%﹣x=8C . (1+50%)x•80%=8D . (1+50%)x﹣x=8二、填空题 (共4题;共4分)21. (1分)在﹣1,2,﹣3,0,5这五个数中,任取两个相除,其中商最小的是________ .22. (1分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图如图所示,则抽查的学生中户外活动时间为1.5小时的人数________ .23. (1分)(2017·蒸湘模拟) 某商品货物进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,保证利润为5%,则该店应降价________元出售.24. (1分) (2018九上·洛阳期末) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为________.三、解答题 (共3题;共25分)25. (10分) (2018七上·北部湾期末) 已知下列式子:,,,,,.(1)写出这些式子中的同类项;(2)求(1)中同类项的和.26. (10分) (2018七上·山东期中) 如果单项式5mxay与-5nx2a-3y是关于x,y的单项式,且它们是同类项.求:(1) (7a-22)2018的值;(2)若5mxay-5nx2a-3y=0,且xy≠0,求(5m-5n)2018的值.27. (5分) (2017七下·重庆期中) 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.每台电脑机箱、液晶显示器的进价各是多少元?参考答案一、单选题 (共20题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、填空题 (共4题;共4分)21-1、22-1、23-1、24-1、三、解答题 (共3题;共25分) 25-1、25-2、26-1、26-2、27-1、。
七年级上册韶关数学期末试卷综合测试(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.2.已知:O是直线AB上的一点,是直角,OE平分.(1)如图1.若.求的度数;(2)在图1中,,直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究和的度数之间的关系.写出你的结论,并说明理由.【答案】(1)解:∵是直角,,,,∵OE平分,,.(2)解:是直角,,,,∵OE平分,,(3)解:,理由是:,OE平分,,,,,即【解析】【分析】(1)根据平角的定义得出∠BOD,∠COB的度数,根据角平分线的定义得出∠BOE=∠BOC=75°,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(2)根据平角的定义得出∠BOD90°−a ,∠COB180°−a ,根据角平分线的定义得出∠BOE=∠BOC=90°−a,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(3)∠AOC=2∠DOE ,根据平角的定义得出∠BOC=180°−∠AOC,根据角平分线的定义得出∠BOE=∠BOC=90°−∠AOC ,根据角的和差得出∠BO D=90°−∠BOC=90°−(180°−∠AOC)=∠AOC−90° ,∠DOE=∠BOD+∠BOE,再整体替换即可得出答案。
韶关市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·长春期末) 某省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A . 45×103B . 4.5×104C . 4.5×105D . 0.45×1032. (2分) (2020七上·兰州期末) 如图是一个表面写有数字的正方体,其表面展开图可能是()A .B .C .D .3. (2分) (2020七上·兰州期末) 下列方程中是一元一次方程的是()A . x2+x=5B . 3x-y=2C . 2x=xD . +1=04. (2分) (2020七上·兰州期末) 式子-22+(-2)2-(-2)3-23的值为()A . -2B . 6C . -18D . 05. (2分)(2017·重庆) 若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A . ﹣10B . ﹣8C . 4D . 106. (2分)下列说法正确的是()A . 射线PA和射线AP是同一条射线B . 射线OA的长度是12cmC . 直线AB、CD相交于点MD . 两点确定一条直线7. (2分) (2020七上·兰州期末) 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是()A . ∠AOD>∠BOCB . ∠AOD<∠BOC;C . ∠AOD=∠BOCD . 无法确定8. (2分)(2017·辽阳) 下列事件中适合采用抽样调查的是()A . 对乘坐飞机的乘客进行安检B . 学校招聘教师,对应聘人员进行面试C . 对“天宫2号”零部件的检査D . 对端午节期间市面上粽子质量情况的调查9. (2分) (2020七上·兰州期末) 解方程-3x+4=x-8,下列移项正确的是()A . -3x-x=8-4B . -3x-x=-8+4C . -3x-x=-8-4D . -3x+x=-8+410. (2分) (2016七上·昌邑期末) 森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A . 28.3×107B . 2.83×108C . 0.283×1010D . 2.83×10911. (2分) (2020七上·兰州期末) 下列运用等式性质进行的变形,正确的是()A . 如果a=b,那么a+c=b﹣cB . 如果a2=3a,那么a=3C . 如果a=b,那么D . 如果,那么a=b12. (2分)在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是()A . 1.6秒B . 4.32秒C . 5.76秒D . 345.6秒二、填空题 (共4题;共5分)13. (1分) (2019八下·辽阳月考) 用不等式表示“ 与的和的倍不大于的”为________14. (1分) (2020七上·兰州期末) 从十边形的一个顶点出发可以画出________条对角线,这些对角线将十边形分割成________个三角形.15. (1分) (2020七上·兰州期末) 点 A、B、C在直线 l 上, AB=4cm, BC=6cm,点 E 是 AB 中点,点F 是 BC 的中点, EF= ________.16. (2分) (2020七上·兰州期末) 用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖________块;(2)第n个图案有白色地面砖________块.三、解答题 (共12题;共79分)17. (5分) (2020八上·遂宁期末) 分解因式:.18. (10分)(2017·义乌模拟) 根据要求进行计算:(1)计算:(﹣2)2+2tan45°+(π﹣3.14)0;(2)解方程: + =2.19. (5分)(2019·绍兴)(1)计算:4sin60°+(π-2)0-()-(2) x为何值时,两个代数式x2+1,4x+1的值相等?20. (5分) (2020七上·兰州期末) 有一根钢管长12米,要锯成两段,使第一段比第二段短2米,每段各长多少米?21. (2分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.22. (5分) (2020七上·兰州期末) 如图,已知C为AB上一点,AC=12cm,CB= AC,D,E分别为AC,AB的中点,求DE的长.23. (5分) (2020七上·兰州期末) 有这样一道题:当a=0.35,b=﹣0.28时,求7a3﹣6a3b+3a3+6a3b﹣3a2b ﹣10a3+3a2b+1的值.小明说:本题中a=0.35,b=﹣0.28是多余的条件,小强马上反对说:这多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.24. (5分) (2020七上·兰州期末) 已知(m+1)x|m|+2=0是关于x的一元一次方程,求m的值;25. (6分) (2020七上·兰州期末) 如图所示,已知直角三角形纸板ABC,直角边AB=4 cm,BC=8 cm.(1)将直角三角形纸板ABC绕三角形的边所在的直线旋转一周,能得到________种不同的几何体;(2)分别计算绕三角形直角边所在的直线旋转一周,得到几何体的体积.(取3)26. (10分) (2020七上·兰州期末) 如图,已知线段a,直线AB和CD相交于点O.利用尺规按下列要求作图:(1)在射线OA、OB、OC、OD上作线段OA′、OB′、OC′、OD′,使它们分别与线段a相等;(2)连接A′C′、C′B′、B′D′、D′A′.你得到了一个怎样的图形?27. (6分) (2020七上·兰州期末) 今年某网上购物商城在“双11购物节”期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款________元;(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)28. (15分) (2020七上·兰州期末) 某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、16-2、三、解答题 (共12题;共79分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、22-1、23-1、24-1、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
韶关市2020版七年级上学期期末数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·萝北期末) 解方程的最佳方法是A . 去括号B . 去分母C . 移项合并项D . 以上方法都可以2. (2分) (2020七上·蜀山期末) 2020的倒数是()A . ﹣2020B . 2020C .D . -3. (2分) (2019七上·克东期末) 下列说法正确的是()A . 单项式﹣的系数是﹣B . 0是最小的有理数C . 连接两点的线段叫两点间的距离D . 若点C是线段AB的中点,则AC=BC4. (2分) (2016七上·龙湖期末) 如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A . 祝B . 考C . 试D . 顺5. (2分) (2016七上·龙湖期末) 单项式﹣的系数与次数分别是()A . ﹣3,3B . ,3C . ﹣,2D . ﹣,36. (2分) (2016七上·龙湖期末) 下列变形正确的是()A . 从7+x=13,得到x=13+7B . 从5x=4x+8,得到5x﹣4x=8C . 从9x=﹣4,得到D . 从,得x=27. (2分) (2016七上·龙湖期末) 如图所示的四条射线中,表示北偏西30°的是()A . 射线OAB . 射线OBC . 射线OCD . 射线OD8. (2分) (2016七上·龙湖期末) 下列式子中,不能成立的是()A . ﹣(﹣2)=2B . ﹣|﹣2|=﹣2C . 23=6D . (﹣2)2=49. (2分) (2016七上·龙湖期末) 下列说法中,正确的是()A . 两条射线组成的图形叫做角B . 直线l经过点A,那么点A在直线l上C . 把一个角分成两个角的射线叫角的平分线D . 若AB=BC,则点B是线段AC的中点10. (2分)一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x元,根据题意,可得到的方程是()A . x(1+50%)×80%=x﹣250B . x(1+50%)×80%=x+250C . (1+50%x)×80%=x﹣250D . (1+50%x)×80%=250﹣x二、填空题 (共6题;共7分)11. (1分)(2018·官渡模拟) 将一些半径相同的小圆按如图所示的规律摆放:第1上图形有6个小圆,第2个图形有10个小圆,和3个图形有16个小圆,第4个图形有24个小圆,…依此规律,第8个图形的小圆的个数是________.12. (2分)(2017·冷水滩模拟) 在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.C 点的坐标是________,△ABC的面积为________.13. (1分)(2017·峄城模拟) 如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1 ,作正方形A1B1C1B2 ,延长C1B2交直线l于点A2 ,作正方形A2B2C2B3 ,延长C2B3交直线l于点A3 ,作正方形A3B3C3B4 ,…,依此规律,则A2016A2017=________.14. (1分) (2019八上·金坛月考) 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为________.15. (1分)已知x , y , z均为正数,且|x﹣4|+(y﹣3)2+ =0,若以x , y , z的长为边长画三角形,此三角形的形状为________三角形.16. (1分) (2017七下·东城期中) 下列叙述正确的有________.()若,则;()的平方根是;()任何数都有立方根;()两个无理数的和有可能是有理数;()过一点有且只有一条直线与已知直线平行;()从直线外一点到这条直线的垂线段叫做这点到这条直线的距离.三、解答题 (共9题;共69分)17. (5分) (2016八上·绵阳期中) 先化简,再求值:(2x+3)(2x﹣3)﹣3x(x﹣1)﹣(3x﹣1)2 ,其中x=﹣1.18. (5分)已知a,b满足 ,求的值.19. (5分) (2016七上·龙湖期末) 如图,已知线段a、b,请你用直尺和圆规画一条线段,使它等于2a﹣b.20. (5分) (2016七上·龙湖期末) 先化简,再求值:a2+(5a2﹣2a)﹣2(a2﹣3a),其中a=﹣5.21. (5分) (2016七上·龙湖期末) 如图,已知线段AB=6,BC=2AB,点D是线段AC的中点,求线段BD的长.22. (10分) (2016七上·龙湖期末) 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?23. (13分) (2016七上·龙湖期末) 已知一个由50个偶数排成的数阵,请你观察框内的四个数之间的关系并解答下列问题:在数阵中任意作一个类似图中的框.(1)设框内左上角的数为x,那么其他三个数分别是:________,________,________(2)如果框内四个数的和是172,这四个数分别是什么?(3)框内四个数的和有没有可能是322,为什么?24. (11分) (2016七上·龙湖期末) 如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)与∠AOE互补的角是________.(2)若∠AOC=72°,求∠DOE的度数;(3)当∠AOC=x时,请直接写出∠DOE的度数.25. (10分) (2016七上·龙湖期末) 如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b 满足|a+3|+(b﹣2)2=0.(1)求A、B两点的坐标;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共69分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。
广东省韶关市2020版七年级上学期数学期末考试试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共5题;共10分)
1. (2分)下列单项式中,与a2b是同类项的是()
A . -ba2
B . a2b2
C . ab2
D . 3ab
2. (2分)(2016·徐州) 如图,数轴上A,B两点表示的数分别为-1和,点B关于点A的对称点为C,则点C所表示的数为()
A .
B .
C .
D .
3. (2分)如图,∠1=∠B,∠2=25°,则∠D=()
A . 25°
B . 45°
C . 50°
D . 65°
4. (2分) (2020七上·南召期末) 如图,已知,,平分,平分,则的度数是()
A .
B .
C .
D .
5. (2分)法国的“小九九”从“一一得一” 到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
右面两个图框是用法国“小九九”计算7×8和8×9的两个示例。
若用法国“小九九”计算7×9,左右手依次伸出手指的个数是()
A . 2,3
B . 3,3
C . 2,4
D . 3,4
二、填空题 (共12题;共13分)
6. (2分) (2019七上·盐津月考) 化简:-[-(+8)]=________,﹣(+7)=________ , -∣
∣=________.
7. (1分) (2018九上·长春开学考) 某种病毒的长度约为 ,若请你用科学记数法表示这个数,则可以表示为________mm.
8. (1分) a-(-a)=________。
9. (1分) (2018七上·云南期中) 如果x=5是方程ax+5=10-4a的解,那么a=________.
10. (1分) (2019七上·滨江期末) 一标志性建筑的底面呈正方形,在其四周铺上花岗石,形成一个边宽为3.2米的正方形框(如图所示中阴影部分).已知铺这个框恰好用了144块边长为0.8米的正方形花岗石(接缝忽略不计),设标志性建筑的底面边长为米,则可列方程得________ (方程不用化简)。
11. (1分)如图,若要使图中平面展开图折叠成正方体后,相对面上两个数字之和为6,则x﹣y=________ .
12. (1分)下面是一些立体图形的三视图(如图),•请在横线上填上立体图形的名称.
________ ________
13. (1分) (2015七上·莆田期末) 如果一个角的余角是30°,那么这个角是________.
14. (1分) (2018七上·揭西月考) 如图,将一个直角三角板的直角顶点C放在直线EF上,若∠ACE=59°39′,则∠BCF的大小是________.
15. (1分) (2016七上·莘县期末) 两根细木条,一根长80厘米,另一根长130厘米,将它们其中的一端重合,放在同一条直线上,此时两根细木条的中点间的距离是________.
16. (1分) (2019七下·遂宁期中) 已知方程mx-2=3x的解为x=-1,则 ________.
17. (1分) (2019七上·丹东期末) “*”是规定的一种运算法则:a*b=a2﹣ab﹣3b.若(﹣2)*(﹣x)=
7,那么x=________.
三、解答题 (共9题;共62分)
18. (10分) (2020七上·临颍期末) 计算与化简
(1)计算:
(2)先化简,再求值:,其中,
19. (10分) (2020七上·三门峡期末) 解下列方程.
(1) 2(x﹣2)﹣3(4x﹣1)=9(1﹣x);
(2);
(3);
(4);
20. (5分) (2015七上·龙岗期末) 某种商品因换季准备打折出售,如果按标价的7.5折出售将赔25元,而按标价的9折将赚20元,问这种商品的标价是多少元?
21. (7分)按要求画下列立体图形的视图.
22. (10分) (2019八下·武昌月考) 如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:
(1)在网格中画出长为的线段AB.
(2)在网格中画出一个腰长为、面积为3的等腰 DEF.
(3)利用网格,可求出三边长分别为,,的三角形面积为________;
23. (7分) (2019七上·防城港期末) 如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.
(1)求线段MN的长度;
(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;
(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?
24. (5分) (2018七上·营口期末) 如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.
25. (6分) (2019八下·博罗期中) 如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C、D不重合).
(1)如图①,当α=90°时,求证:DE+DF=AD.
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论
变为,请给出证明.
(3)在(2)的条件下,将∠QPN绕点P旋转,若旋转过程中∠QPN的边PQ与边AD的延长线交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
26. (2分) (2019七上·港南期中) 如图:在数轴上点表示数,点表示数,点表示数,
是最大的负整数,且、满足与互为相反数.
(1) ________, ________, ________.
(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;
(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和
点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .
①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.
②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.
参考答案一、单选题 (共5题;共10分)
1-1、
2-1、
3-1、
4-1、
5-1、
二、填空题 (共12题;共13分)
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13、答案:略
14-1、
15-1、
16-1、
17-1、
三、解答题 (共9题;共62分)
18-1、
18-2、19-1、19-2、19-3、19-4、
20-1、
21-1、
22-1、
22-2、
22-3、
23-1、23-2、23-3、24-1、
25-1、
25-2、
25-3、
26-1、26-2、
26-3、。