数学文化之悖论
- 格式:ppt
- 大小:2.79 MB
- 文档页数:27
引言数学常被视为严格、和谐、精确的学科.但纵观数学发展史的,数学的发展从来不是完全直线式的,它的体系不是永远和谐的,常常出现悖论. “悖论”一词来自希腊语“para+dokein”,意思是“多想一想”. 这个词的意义比较丰富,是指在某一一定的理论体系的基础上,根据合理的推理原则推出了两个互相矛盾的结论.数学悖论在数学发展史中占据了重要的地位,可以这样说:数学也正是在不断消除悖论,解决矛盾中向前发展的,这体现了矛盾是事物发展的基本动力这一原理.这里,首先对数学悖论进行一个概述,然后介绍数学史中三个著名的悖论产生、消除及其对数学发展的历史意义.1 数学悖论的概述值得注意的是,我们所说的悖论与通常的诡辩或谬论的含义是不同的,诡辩或谬论不仅从公认的理论明显看出它的错误,而且一般地还可以运用已有的理论、逻辑论述其错误的原因;而悖论就与此不同了,悖论虽然感到它是不妥的,但是从它所在的理论体系中,却不能自圆其说.1.1 悖论的产生背景及定义悖论问题是一个古老而又常新的话题.“悖论”由来已久,它的起源可以追溯到古希腊和中国的先秦时代.但严格意义下的悖论是在19世纪末、20世纪初的数学家在研究数学基础过程中发现的.当集合论成为数学的基础之后,随着人类对无穷集合认识的不断深入,就产生了许多悖论.1897年意大利数学家不拉里——弗蒂在超穷序数理论中发现了第一悖论,接着,集合论的创始人康托尔于1899年在基数理论中又发现了另一个悖论,1902年罗素在集合论概括原则的基础上又引出著名的“罗素悖论”.1918年,罗素在此基础上又提出一种通俗形式的悖论,即“理发师悖论”.由于一连串悖论的出现,使得许多科学家、数学家忧心忡忡.那么,究竟什么是悖论呢?对此,当前流行的说法是:“悖论是一种导致逻辑矛盾的命题.这种命题,如果承认它是真的,那么它又是假的,如果承认它是假的,那么它又是真的.”又如“一个命题构成一个悖论,如果由它的真可以推出它的假,而由它的假又可以推出它的真.”诸如此类的定义法,有它合理的一面,又有不够全面的一面.这里认为,在研究悖论的准确定义时,以下几点必须加以明确:(1)任何悖论总是相对于一定的理论系统而言的.例如,罗素悖论和说谎者悖论,就是分别相对朴素集合论和真理性理论而言的;(2)悖论的最终表现总是体现为一定逻辑矛盾的揭示.这里所说的“逻辑矛盾”包括两种情况:一种是借助于语义学上的概念(真、假)而构成的,称为“语义学悖论”;另一种是借助于数学和逻辑符号得到的,称之为“逻辑-数学悖论”.例如:古代的说谎者悖论,现代集合论中的理查德悖论、格里林悖论等就属于第一类悖论;而康托尔悖论、罗素悖论就属于第二类悖论;(3)对于悖论,不能仅从字面上把它理解为“悖理”或“诡辩”.因为悖论与诡辩有含义上的不同.后者不仅从公认的理论明显看出是错误的,而且通过已有的理论逻辑可以论述其错误的原因,而前者虽感到其是不妥的,却不能阐明其错误的原因.我们认为,布拉里——弗蒂与希尔伯特关于悖论的陈述是精确的,如果某一理论的公理和推理规则看上去是合理的,但是这个理论中推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,那么,我们就说这个理论包含一个悖论.数学悖论也叫“逆论”或“反论”,它包括一切与人的直觉和日常经验相矛盾的数学悖论.这些结论会让你无比的惊讶:他们有的看起来肯定是错了,但实际却是对的;有的看起来是对的,但实际是错的;还有的会让你陷入对也不是、错也不是的困境.数学悖论的出现,开始引起一些人们的好奇与思考,以后的逐步发展又动摇了某些数学基础,由于萌发了其内部的矛盾,进而引起人们的争辩.历史上人民对于数学危机的一次又一次解决或克服,往往给数学带来了新的内容,甚至引起革命性的变革.1.2研究数学悖论的意义数学科学历来视为严格、和谐、精确的典型学科,但是数学的发展从来不是直线式的,它的体系并不是永远和谐的,而常常出现悖论,特别是一些重要悖论的产生,自然引起人们对数学基础的怀疑以及对数学可靠信仰的动摇.数学史上的三次数学危机皆由数学产生悖论而引起.悖论虽然看似荒诞,但却在数学史上产生过重要影响,一些著名的悖论曾使那些著名数学家和逻辑学家为之震惊,并引发人们长期艰难而深入的思考.可以说是悖论的研究对促进数学科学的发展是立过汗马功劳的.悖论是一种思辨的方法,是研究问题的一种方式,也是历史上一种旧理论被新理论替代的前奏,数学少不了悖论,数学公理系统没有悖论就是不完备的,我们不是去容忍悖论,而是去消除悖论,在消除悖论的过程中提高认知水平.消除悖论的过程常常是完善、发展原有理论的过程.悖论是一个涉及数理科学、哲学、逻辑学、语义学等非常广泛的论题,对科学发展的意义不言而喻.从数学方面来看,悖论对数学发展的影响是深刻的、巨大的.因而研究悖论的定义、悖论产生背景、解决方案以及对数学发展是非常必要的.数学悖论是一种特殊的逻辑矛盾,它的形成与客观对象的复杂性、多样性,每一代人认识的有限性和局限性,以及人类的主观认识与客观现实的不一致性相关.在数学发展的过程中,人的认识是不断深化的.在不同的历史阶段,人的认识具有一定的片面性和相对性,就会出现“悖论”.因此,它的发生是必然的、不可避免的.数学悖论的发现改变了人们以往的思维方式,迫使人们重新构建理论,从而,在数学认识史中具有积极的意义.2 数学史上三个著名的悖论出现、消除及历史意义数学拥有“美”的内容,也存在着“丑”的东西,数学悖论就是一种“丑”的表现,追求数学美能促进数学发展,同样的,为了消除它的“丑”必然也能推动数学自身的发展,数学三次危机的克服对数学发展的推动作用,就是历史事实.数学发展是矛盾运动的结果.爱因斯坦指出:“提出问题比解决问题更重要.”问题就是矛盾,解决问题就是促使矛盾转化.数学探索与研究起源于数学问题,数学问题的源泉存在于自然科学、社会科学及数学自身的矛盾运动.数学问题一经提出,数学家一般要先经过各种尝试(如类比、归纳、演绎、分析、综合、试验等),经过长时期(甚至几代人)的不懈努力,最终目的促使数学问题得以解决,或说促使数学矛盾得以转化,从而创造出新的数学理论、新的数学成果及新的数学思想方法.数学的历史,就是不断解决数学矛盾又产生新的数学矛盾的过程.从哲学上看,数学是现实世界量的侧面在人们头脑中的反映,因为现实世界是充满着矛盾的,所以数学也必然充满了矛盾.正像恩格斯所指出的:不仅高等数学充满着矛盾,连初等数学也充满着矛盾.比如:正与负、直与曲、平行与相交、已知与未知、常量与变量、有限与无限、连续与不连续、精确与近似、必然与或然、加法与减法、乘法与除法、乘方与开方、微分与积分、几何变换与其逆变换、数学算子与逆算子、实在的与虚构理性的,等等.当然在整个数学发展过程中还有许多深刻的矛盾.例如:有穷与无穷、连续与离散,乃至存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算,等等.他们可以说贯穿了整个数学发展史,而这些大大小小矛盾的产生,发展到激化,到解决,总是不断为数学产生新的概念、新的方法、新的理论,也可能产生新的概念、新的方法、新的理论,也可能产生新的危机.危机实际上是一种激化的、非解决不可的矛盾,而这些矛盾的消除、危机的解决,往往给数学带来新的内容、新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力的基本原理.纵观数学与数学文化的发展史,数学问题是数学中的一种疑难和矛盾,它的提出和解决是推动数学发展的重要力量.2.1“毕达哥拉斯悖论”与第一次数学危机的化解2.1.1“毕达哥拉斯悖论”与第一次数学危机的出现在古希腊毕达哥拉斯时期,数学思维尚处于刚刚形成有理数观念的早期阶段.由于数量概念源于测量,而测量得到的任何量在任何精确度的范围内都可以表示成有理数,所以,人们普遍相信一切量均可用有理数表示.这种认识反映到历史上第一个数学共同体——毕达哥拉斯学派的理论体系中,便凝练为可公度原理,即“一切量均可表示为整数与整数之比”.毕氏学派深信数的和谐与数是万物的本源,而宇宙间的一切现象都归纳为整数和整数比的信条.然而,毕达哥拉斯定理(勾股定理)却成了毕达哥拉斯学派数学信仰的“掘墓人”.毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新的数来表示.希帕索斯的发现的诞生.这却在当时的数学界掀起了一场巨大风暴.它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌.实际上,这一伟大发现不但对毕达哥拉斯学派是致命打击,对于当时所有古希腊人的观念也是一个极大的冲击.这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数.这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它竟然把以前所知道的事情从根本上推翻了.更糟糕的是,面对这一“荒谬”人们竟然毫无办法.这在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”.也就是著名的“毕达哥拉斯悖论”.2.1.2 第一次数学危机的解决第一次数学危机出现后,古希腊人陷入了“失乐园”的彷徨之中.为了摆脱危机,当时的学者作了种种努力.在这方面贡献最大的是柏拉图、欧多克索斯、欧几里得.在大约公元前370年,这个矛盾被希腊数学家欧多克索斯给出的两个比相等的新定义所解决,当然从理论上彻底克服这一危机还有待于实数理论的建立.欧几里得则在柏拉图、欧多克索斯、亚里士多德等人工作的基础上,总结了以前全部几何学知识,建立起第一个几何公理系统,并编写出《几何原本》一书.这无疑是数学思想上的一次巨大革命,古典逻辑与欧氏几何就是第一次数学危机的产物.第一次数学危机后承认除了整数和分数外还存在另外的数.由于对这种“怪数”的接受很不情愿,于是就给它起了一个难听的名字—无理数.不可通约量(即无理数)的发现引起人们思想上的困惑.甚至直到十九世纪,无理数也没有一个名正言顺的地位,但随着分析学的飞速发展,它(或整个实数理论)已不得不被人们摆在前台,到十九世纪下半叶,数学分析的进一步发展需要有逻辑严谨的实数理论作为其基础,于是两种实数理论几乎在同一时期产生了,这两种实数理论分别是由戴德金与康托尔建立的,它有一个共同点,即都是将实数定义为有理数的某些类型的“集合”.戴德金方法可以称为序完备化方法,康托尔方法可以称为度量完备化方法.这些方法在近现代数学中都已成为典型的构造方法,被后人不断推广发展成为数学理论中的有力工具.第一次数学危机也随之化解.这一危机的化解,使“数”真正具有了表达一切量的可能,不仅是无理数,还使数的概念不断扩大和发展.复数、四元数、超限数、理想数、非标准数等各种各样的数都被创造出来了.第一次数学危机持续了两千多年. 1872年,数学家戴德金通过他的“戴德金分割”从有理数扩展到实数,建立起无理数理论.十分有趣的是,在同一年,维尔斯特拉斯通过有界单调序列理论、康托尔通过有理数序列理论完成了同一目标:他们都从有理数出发定义出无理数,从而建立起了实数理论.实数的这三大派理论,从不同方面深刻揭示了无理数的本质.实数域的构造成功,使得2000多年来存在于算术与几何之间的鸿沟得以完全填平,无理数不再是“无理的数”了.直到此时,我们才可以说由毕达哥拉斯悖论引发的第一次数学危机圆满而彻底地解决了!2.1.3 “毕达哥拉斯悖论”的历史意义这次危机导致了数学史上第一个无理数的诞生,之后,许多数学家正式研究了无理数,直到19世纪下半叶,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论.无理数本质才被彻底搞清,无理数在数学中的合法地位才被真正确立,同时也为数学分析的发展奠定了基础.第一次数学危机还表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示.反之,数却可以由几何量表示出来.整数的尊崇地位受到挑战,古希腊的数学观点受到极大的冲击.于是,几何学开始在希腊数学中占有特殊地位.同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的,证明的思想在希腊人的心中扎下了根.进一步,古希腊人发展了逻辑思想并加深了对数学抽象性、理想化等本质特征的认识,古典逻辑学应运而生.从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系.这是数学思想上的一次革命,是第一次数学危机的自然产物.第一次数学危机的影响是巨大的.首先,它推动了数学及相关学科的发展.例如,欧几里得几何就是在第一次数学危机中产生的.其次,虽然第一次数学危机在一定程度上引发了数学思想上的混乱,但数学并没有在危机面前停滞,反而在克服危机的过程中产生了逻辑学和公理几何学,极大地促进了几何学的发展,使几何学在此后两千年间几乎成为是全部严密数学的基础,这不得不说是数学思想史上的一次巨大革命.当然,这种将整个数学捆绑在几何上的狭隘做法,对数学的发展也产生了不利的影响.不可公度量的发现,使希腊人把几何看成了全部数学的基础,在数的研究过程中割裂了它们之间的密切关系.这样做的最大弊端是放弃了对无理数本身的研究,使算术和代数的发展受到很大的限制,从而导致了基本理论变的十分薄弱.这种畸形发展的局面在欧洲持续了2000多年.总而言之,第一次数学危机的结果是产生了无理数概念,并取得重大飞跃,使人们对实数有了完整的认识,同时,这也为后来欧几里得、阿基米德等人在数学上取得杰出成就,甚至牛顿、莱布尼兹创建微积分奠定了数的基础.2.2“贝克莱悖论”与第二次数学危机的化解2.2.1 “贝克莱悖论”与第二次数学危机的出现在希腊的后期,除了研究直线、折线的长度、直线形的面积外,还讨论过曲线的长度和曲线形的面积问题.经过中世纪和文艺复兴,直到十七、八世纪,人们发现下列问题需要处理:(1)知路程函数,求速度以及它的逆问题;(2)求——曲线的切线;(3)求——函数的极值.在研究上述问题过程中逐步产生了微积分.牛顿和莱布尼茨是微积分的创立者,他们把有关运动、切线、极值和求积等各种问题的解决统一成微积分方法,有计算微分的明确步骤,确立它是(不定)积分的逆运算,得到牛顿——莱布尼茨公式,这一新生而有力的数学方法,受到数学家们的欢迎,解决了大量过去无法解决的问题,同时,微积分基础的问题也越来越严重了.这就是如何解释“无穷小”的问题,牛顿给出瞬时速度的定义,又给出有效的计算方法:第一步,他用无穷小作分母进行除法运算;第二步,他又把无穷小看作零,以去掉那些包含着它的项,而得到所要的公式.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数n y x =的导数的:()()()212()12nn n n n x x x n x x n n x x x --+∆=+⋅⋅∆+-⋅⋅∆+⋅⋅⋅+∆ 然后把函数的增量△y 除以自变量的增量△x ,得到:()()()()211212n n n n n n x x x y x x n n x x nx x x x x ----+∆-∆==⋅+-⋅⋅∆+⋅⋅⋅+∆+∆∆∆ 最后,扔掉其中所有含 x ∆的项,就得到函数n y x =的导数为1n nx - .“无穷小”在逻辑推理上是零与非零的矛盾,而牛顿却不能在逻辑上说清楚,他说:“量在其中消失的终极比,严格地说来,不是终极量的比,而且它与无限减小的这些量所趋近的极限之差虽然能比任意给出的差更小,但是在这些量无限缩小以前即不能超越也不能达到这个极限.”无论牛顿用数学语言,还是利用物理意义,他都没有说清楚无穷小量是什么.科学家们相信它,因为它使用起来十分有效,得出的结果总是对的,但是由于逻辑上的漏洞,遭到一些人指责,甚至嘲讽与攻击.如1695年,荷兰数学家纽汶蒂在其著作《无限小分析》中指责牛顿的流数术叙述“模糊不清”,莱布尼茨的高阶微分“缺乏根据”等.法国数学家罗尔(罗尔中值定理以他的名字命名)也对微积分表示怀疑.然而,对新生的微积分攻击得最厉害的是爱尔兰主教贝克莱,他的观点是“存在即被感知”,认为一切事物不过是人的感知的综合,他的哲学目的是论证上帝的存在.贝克莱在1734 年写了题为《分析学家》,副标题“致不信神的数学家”一书,该书对微积分大肆攻击:“既不是有限量,也不是无穷小,但又不是无”、“是消失了的量的鬼魂”.尽管一些数学家对贝克莱的攻击进行反驳,但没有在逻辑上说清楚无穷小量引起的数学逻辑基础的混乱.贝克莱是出于恐惧当时自然科学发展所造成对宗教信仰的威胁,也是由于当时的微积分理论缺乏牢固基础,所以当时的微积分遭到攻击和非难在所难免. 历史上,人们就把微积分自诞生以来数学界出现的混乱情形叫做“第二次数学危机”,也把贝克莱的攻击称为“贝克莱悖论”.2.2.2 第二次数学危机的解决贝克莱悖论的提出与第二次数学危机的出现,使微积分基础问题引起了更大的重视.十七、十八世纪,数学家们不顾贝克莱们的挑剔和攻击,受微积分有大用的鼓舞,继续在不牢固的基础上建筑微积分的大厦.在英国,数学家马克劳林对贝克莱悖论做出最重要的回应.虽然马克劳林巨大的努力回答了贝克莱的质疑,但十八世纪的大多数数学家对他这种用几何方法严格论证微积分的工作并不欣赏.后来欧拉、达朗贝尔、拉格朗日等为微积分的基础严密化做了重大贡献,但是微积分逻辑基础在十八世纪结束的时候仍然是一个悬而未决的问题.十九世纪初,许多迫切的问题基本上得到解决,一种追求严密性的风尚开始在数学界蔓延开来.一些数学家开始沿着正确的途径建立微积分的严格基础.例如波尔查诺、阿贝尔、柯西、魏尔斯特拉斯等,波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西抓住极限的概念,指出无穷小量和无穷大量都不是固定的量,而是变量,无穷小量是以零为极限的变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义.在这些工作的基础上,魏尔斯特拉斯消除了其中不确切的地方,完成了一套被认为是天衣无缝的()N ξξσ--语言,严格刻画了极限的定义.人们放弃了无穷小,而以一个无限过程刻画的极限理论统一了导数和积分概念.由于这个理论用不着“无穷小”,一切都按程序操作,“无穷小”引起的混乱被消除了.十九世纪八十年代初,魏尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限理论的基本定理,这样,数学分析中微积分的理论基础——严格的极限理论建立起来了,微积分的发展从此进入了一个新的阶段.原有的悖论在新的体系下可以圆满地予以清除,第一次数学危机和第二次数学危机几乎同时在十九世纪消除.第二次数学危机的消除,与第一次数学危机的消除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除.2.2.3 “贝克莱悖论”的历史意义“贝克莱数学上的悖论”源于他的哲学上的悖论认知.比如,他的著名观点“存在就是被感知”,就包含了存在、感知、观念、精神以及上帝.这里就潜藏着悖论因子:如果从上帝开始,那么,那是《创世纪》的方向,一切以经文为准,即“信仰之道”;相反,如从观念开始,就成了逆式的“哲学之路”了.这样他就混淆了这两条路:论证的路一再被信仰打破;而论证的困境一次又一次地因信仰而解决.事实上,贝克莱的思想处处充满逻辑悖论.对于他的“物质”观念化,我们就有理由追问:他的上帝似乎在虚无中创世,而创造的也是虚无.尽管作为抽象概念的物质并不存在,但在感知的另一头,是否会有某些不可名状的东西?但如果没有被动的观念,哪来主动的精神?既然没有物质实体,精神实体又在何处?如果没有精神实体,无限精神又当如何?最后的归宿就是:没有上帝,他的哲学注定漂无定所,假设有上帝,哲学又将变得可疑;如果哲学的虚拟性贯穿始终,则上帝将止于空洞的说词.可见,他的矛盾式的、悖论式的哲学思想就为微积分的缺口的批判——无穷小悖论做了伏笔.虽然从贝克莱本人的目的来看,他试图通过对微积分的批判,曲解数学而为神学辩护.但从客观上看,微积分的理论体系还是具有高度的精确性(虽然不十分严谨)和广泛的应用性.贝克莱悖论的出现只是从一个更高层次上对新生的微积分理论体系所提出的更高的要求,这样迫使数学家认真对待这一悖论:柯西用极。
什么是数学文化数学文化,是数学作为人类认识世界和改造世界的一种工具、能力、活动、产品,在社会历史实践中所创造的物质财富和精神财富的积淀,是数学和人文的结合。
什么是数学数学是研究数量、结构、变化以及空间模型等概念的一门学科。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
什么是数学素养数学素养属于认识论和方法论的综合性思维形式,它具有概念化、抽象化、模式化的认识特征。
具有数学素养的人善于把数学中的概念结论和处理方法推广应用于认识一切客观事物,具有这样的哲学高度和认识特征。
(具体说,一个具有“数学素养”的人在他的认识世界和改造世界的活动中,常常表现出三个特点。
在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件;在观察问题时,习惯于抓住其中的(函数)关系;在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。
)数学与科学世界观有什么关系科学世界观就是人们对整个世界以及人与世界关系的科学看法和根本观点。
科学揭示的是自然和思维某一具体领域的规律和奥秘。
数学是研究数量、结构、变化以及空间模型等概念的一门学科,属于科学的一部分,所以,数学与科学世界观是辩证统一的关系,相互依赖,相互联系。
什么叫位值制记数法?谈谈数字概念的起源与位值制记数法的重要性。
位值制即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。
数字是古代印度人在生产和实践中逐步创造出来的。
在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,就需要一种记数方法来使数字运用在生活实践中,而位置记数法的产生,就起到了关键的作用,运用在时间,年代以及生产生活的方方面面,推动了历史进程。
介绍毕达哥拉斯及毕达哥拉斯学派的宇宙观,对数学的主要观点和主要贡献。
中学数学知识的历史背景《数学史》课程的学习,是为了帮助中学数学教师或将来的数学教师更科学、更有效地开展中学数学教学。
而如今中学数学教师的一个重要任务是如何适应并积极地推动中学数学课程的改革。
所以在本课程的学习中,学员们也有必要密切关注、认真研究新课程中与数学史相关的一些基本理念以及教学内容。
因而,本学习指导中也补充了一些新课程改革方面的内容,以及《义务教育数学课程标准》、《高中数学课程标准》中新增加的一些教学内容,如“中国剩余定理”、“数论与密码技术”等。
这些材料也是中学数学教师需要认真学习并加以掌握的。
第1章HPM的理论与实践现在的课程改革开始重视对数学史的利用,高中数学课程标准中就安排了数学史方面的学习内容。
体现数学文化是新课程的一个重要特色,而数学史便是数学文化的一个重要组成部分。
国外的中学数学教材都比较重视数学史、数学发现的故事、数学家的故事等这些素材的使用。
如:太极图在德国教材中、曹冲称象在日本数学教材中出现。
日本的中学数学教材特别重视数学史,中学三年级教材中就有:无理数的故事、二次方程的故事、圆周率的故事、勾股定理的证明、π值的测定、黄金分割、伽利略与概略等许多数学历史故事,日本人认为,重视数学史的处理,有利于促使学生形成数学的思维方法并使之认识到数学的优越性。
我国原教材中:侧重用来进行爱国主义教育,且介绍极为简单,勾股定理、祖冲之的圆周率、扬挥三角等,教材中都是一笔带过。
新教材有了明显的变化,国内外各种数学发展的史料增加了不少,如何合理使用便是中学数学教师需要研究的问题。
如教材中所述,对数学史在数学教育中的重要作用,国内外的一些大数学家和数学教育家有许多精辟的阐述。
还成立了专门研究数学史与数学教育的国际研究机构HPM,从而极大地推动了将数学史知识应用于中学数学教学的理论和实践研究。
数学史知识在中学数学教学中的作用主要体现在如下方面(1)增加人文价值,增加教材的趣味性和可读性,从而激发学生学习数学的兴趣;(2)数学发现发展的历史包含着丰富的数学思想,学生了解一些数学史,有助于拓宽视野、领会这些数学思想;(3)激励作用。
数学悖论及其对数学发展的影响摘要:数学悖论,曾经引起了数学界的无数争端,它使得数学前进的脚步一次次陷入迷途。
然而,每一次数学悖论的解决、澄清,又会对数学前进的脚步加快,产生许多新的思想、新的学科,它又使得数学飞翔,毕答哥拉斯悖论的解决,使得数学向公理化、演绎化的方向发展。
贝克莱悖论引起的第二次数学危机的解决以及微积分的发现,使人们的眼睛从有限走向无限,微积分在这一时期的到了完善。
罗素悖论引起的第三次数学危机,又使人们对集合论的基础产生了怀疑,逻辑主义、直觉主义和形式主义之间激烈的争论,最终,哥德尔25岁时的发现又使得数学走向了新的纪元。
1毕答哥拉斯悖论与第一次数学危机1.1毕答哥拉斯悖论毕答哥拉斯悖论,又称希帕索斯悖论。
大约公元前580年到公元前500年左右,产生在撒摩斯岛的著名哲学家、数学家、天文学家、音乐家、教育家毕答哥拉斯(与我国孔子,印度释迦牟尼基本同时)。
这位伟大的天才创办了以其名字命名的学派——毕答哥拉斯学派,这个学派当时对数学做了大量的研究并且有突出的贡献。
毕答哥拉斯及其学派把“万物皆数”作为基本信念。
也就是说,在他们眼里,一切事物和现象可以归结为整数与整数的比,这就是所谓的“数的和谐”。
而他们相信宇宙的本质就是这种“数的和谐”,在这种情况下,他们对几何量做了大量的研究。
换句话说,有理数可以充满整个数轴。
他们通过实验的方式证实了,任何两条线段都是可通约的。
着一命题显然是正确的。
于是,我们可以明白,当毕答哥拉斯学派提出“任何两个量都是可通约的”时,古希腊人是如何坦然地接受这一似乎是无可怀疑的结论,怀疑可作为共同公度量的第三条线段的存在,似乎是十分荒谬的,不是吗?答案竟是:就不是!毕答哥拉斯的一个学生希帕索斯,他发现的###就是人类历史上诞生的第一个无理数,不可通约量或无理数的发现,是毕答哥拉斯学派的最重大的贡献。
1.2第一次数学危机的解决1.2.1欧多克索斯的解决方案毕答哥拉斯悖论,曾使希腊数学的发展陷入迷途、陷入困境。
数学文化题目及解答数学文化题目及解答(一)1、毕达哥拉斯学派发现第一个不能被整数比的数是根号二2、数学是研究现实世界中的数量关系和空间形式:恩格斯3、四色猜想的提出者:英国人古德里4、不属于数学起源的河谷地带:密西西比河5、平面图形对称中用到的三种运动:平移折叠旋转7、现代数学起源于:19世纪20年8、相容的体系一定是不完全的,得出这个结论的是:哥德尔第一定理9、高等数学的研究范围不包括:常量10、反证法是依据逻辑学中的:排中律11、被称为理发师悖论的悖论是:罗素悖论12:、上海路佳明发现的元朝玉桂:1986年13、1993年,经哥德尔证明,把“连续统假设”加紧急合论的zf 系统中是相容的,不会导致矛盾:康托集合论14、被积函数不连续,其定积分也可能存在的理论的提出者:黎曼15、根据两个事物之间的相同或相拟之处,推知她们在其他方面也有可能相同或相拟的推理方法:类比16、极限理论的创立者:柯西18、.下列不属于黄金分割点的是(C)A.印堂 B. 膝盖 C.鼻子D都不对19、5个平面分空间,最多可分为(C)A22 B25 C26 D2820、.S(N)中任意两个元素,相继作用的结果仍保持N整体不变,仍在S(N)中,称之为S(N)中的运算满足(B)A幺元律B封闭率C结合律D都不对21、南开大学每年出的杂志,收录数学文化课的学生优秀读书报告:数学之美22、下列公式中不对称的是(A)A.勾股定理B海伦定理C正玄定理D都不对23、为了庆祝毕达哥拉斯定理的发现,当时的毕达哥拉斯学派宰了什么:牛24、《几何学》的作者是:笛卡尔25、直角三角形的两直角边的平方和等于斜边的平方这一定理在西方叫做毕达哥拉斯定理26、1820-1870年是现代数学的(C)A.形成阶段 B.繁荣阶段 C.酝酿阶段 D.衰落阶段27、下列不属于形式的公理化方法在逻辑上所要满足的要求的是:客观性28、数学文化这个词最早出现于(C)A.1986 B. 1974 C.1990 D.199629、大多数植物的花瓣数都符合(C)A.黄金分割 B.素数分割C裴波那契数列 D.都不对1、保持平面上任意两点间距离不变的运动是保距变换:对2、父女关系与夫妻关系是一种对称关系:不是,错3、之有数学专业的人在需要数学素养:错4、不懂数学的人也可以搞社会学:错5、数学的研究对象和具体的自然科学的研究对象很不一样,具有、、、:对6、近代数学时期是公元17世纪到19世纪,和工业革命、天文、航天业的发展有关。
有趣的数学悖论有趣的数学悖论§有趣的数学悖论一、悖论与数学悖论悖论:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B为前提,亦可推得B。
那么命题B就是一个悖论。
数学悖论:是指数学领域中有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。
数学中有许多著名的悖论,伽利略悖论、贝克莱悖论外,还有康托尔最大基数悖论、布拉里――福蒂最大序数悖论、理查德悖论、基础集合悖论、希帕索斯悖论等。
数学史上的危机,指数学发展中危及整个理论体系的逻辑基础的根本矛盾。
这种根本性矛盾能够暴露一定发展阶段上数学体系逻辑基础的局限性,促使人们克服这种局限性,从而促使数学的大发展。
数学史上的三次危机都是由数学悖论引起的二、数学悖论引发的三次数学危机第一次数学危机毕达哥拉斯学派主张“数”是万物的本原、始基,而宇宙中一切现象都可归结为整数或整数之比,人们仅认识到自然数和有理数,有理数理论成为占统治地位的数学规范。
公元前5世纪,毕达哥拉斯学派的成员希帕索斯(470B.C.前后)发现:等腰直角三角形斜边与一直角边是不可公度的,它们的比不能归结为整数或整数之比。
这一发现不仅严重触犯了毕达哥拉斯学派的信条,同时也冲击了当时希腊人的普遍见解,因此在当时它就直接导致了认识上的“危机”。
希帕索斯的这一发现,史称“希帕索斯悖论”,从而触发了数学史上的第一次危机。
因而推动了亚里士多德的逻辑体系和欧几里德几何体系的建立。
第二次数学危机牛顿在1671年写的《流数术和无穷级数》提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
1686年,德国的莱布尼茨创设了微积分符号,远远优于牛顿的符号,并推动微分学的发展。
英国大主教贝克莱在1734年发表了《分析学者,或致一个不信教的数学家。
其中审查现代分析的对象、原则与推断是否比之宗教的神秘与教条,构思更为清楚,或推理更为明显》一书, 说牛顿先认为无穷小量不是零,然后又让它等于零,这违背了背反律,并且所得到的流数实际上是0/0,是“依靠双重错误你得到了虽然不科学却是正确的结果”, 因为错误互相抵偿的缘故, 称之为“贝克莱悖论, 导致了数学史上的第二次危机。
悖论及其作用悖论看似自相矛盾,其实往往揭示了真实。
印象里大多数悖论都只是无法成立的争论,但是对于提高批判思维能力,悖论确实具有一定价值。
悖论之一:伽利略悖论 [维基]不是所有的数都是平方数,所有数的集合不会超过平方数的集合伽利略悖论让人见识了无限集合的惊人特性。
在他最后的科学著作《两种新科学》里,伽利略写出了这个关于正整数的矛盾陈述。
首先,部分数属于平方数,其它则不是;因此,所有数,包含平方数和非平方数的集合必定大于单独的平方数。
然而,对于每个平方数有且只有一个对应的正数平方根,切对于每个数都必定有一个确定的平方数;所以,数和平方数不可能某一方更多。
这个悖论虽然不是最早但也是早在无限集合中运用一一对应的例子。
伽利略在书中总结说,少、相等和多只能描述有限集合,却不能描述无限集合。
19世纪德国数学家格奥尔格·康托尔,也是数集理论的开创者,使用了相同的手法否定了伽利略的这条限制条件的必要性。
康托尔认为在无限数集中进行有意义的比较是可行的(康托尔认为数和平方数这两个集合的大小是相等的),在这种定义下,某些无限集合肯定是比另一些无限集合大。
伽利略对后继者在无穷数上的突破的预测惊人的准确,伽利略在书中写到,一条线段内所有点的数目和比此更长的线段上点的数目相等,但是伽利略没有想出康托尔的证明法,即线段上所有点的数比整数大。
悖论之二:节约悖论假设经济衰退,全社会所有人都选择把钱存进银行,社会总需求因此下降,社会总资产反而更少。
节约悖论是指在经济萧条时期所有人都把钱存进银行,社会总需求会下降,反过来全社会的消费水平下降、经济增速减缓,全社会的资产总数也就下滑。
悖论认为个人资产增值的同时,全社会资产反而减少,或者再放开了说,储蓄额的增加在荼毒经济,因为传统认为个人储蓄有益社会,但是节约悖论认为大规模的储蓄会对经济造成伤害。
如果所有人都把钱存进银行,账面上个人的资产会增值,但是全社会总体的宏观经济趋势会下降悖论之三:生日问题 [维基]这么几个人里就有两个人同天生日,怎么可能?生日问题提出了一种可能性:随机挑选一组人,其中会有两人同天生日。
数学史上的三次危机第一次危机:希腊数学危机希腊数学家们是数学历史上的伟大人物,他们创造了许多数学概念和理论,如欧几里得几何、三角学、锥曲线等。
但在公元前4世纪到公元前3世纪的时期,希腊数学发生了危机。
这一时期的希腊数学家纷纷开始关注无穷大和无穷小的概念。
然而,这些概念并不符合当时的逻辑和数学标准,他们甚至不能用现代的数学符号来表示。
因此,这些数学家的理论并没有得到广泛的认可和接受。
在这一时期,希腊数学的道路出现了两条分支。
一条是传统的代数学派,他们注重整数、有理数和分数的研究;另一条是几何学派,他们将一切几何测量归纳为单个不可减少的点。
两个学派的意见相左,争论不断,导致了希腊数学的危机。
这一时期的数学发展为数学的发展带来了许多思考,但也让希腊数学陷入了停滞和分化的境地。
第二次危机:19世纪末的非欧几何危机19世纪末期,非欧几何成为了当时的热门话题。
在欧几里得几何中,平行公设是一项基本性质,两条不重合的直线在平面上永远不会相交。
然而,非欧几何学派质疑这一性质,提出了一种名为反射性的新性质,也就是说,两条不重合的直线在特定的情况下是可以相交的。
这种观点的提出,引起了数学界的强烈反响和激烈争议。
欧几里得几何是基础数学,因此许多人认为非欧几何在一定程度上是在否认这一基础。
在这种文化和学术背景下,非欧几何的认可难以达成,成为了数学史上的一次危机。
第三次危机:20世纪初的集合论危机20世纪初,集合论成为了数学的新话题。
然而,当时对于集合论的探讨往往涉及到关于无限的思考,这些思考往往与人的直觉相悖,甚至有些违反逻辑。
其中最著名的例子就是悖论:一个包含所有时空中的点的集合是否存在?如果存在,那么这个集合中是否包含它自身?如果不包含,那么就不能称其为包含所有时空中的点的集合;如果包含,那么这个集合就非常巨大,超出了我们的想象。
这个悖论意味着个体和整体的关系无法解决,出现了数学中的自我矛盾。
这一数学危机的解决需要借鉴哲学和逻辑学的工具,很多数学家因此开始关注哲学基础和逻辑体系,试图建立一个完备的集合论,以应对数学的自我矛盾和前进。