当前位置:文档之家› 数学上的悖论谬论

数学上的悖论谬论

数学上的悖论谬论
数学上的悖论谬论

这篇关于数学上的悖论谬论的论证的文章是由北大中文系Matrix67所写,读来感觉很有意思,和大家一起分享,来一场头脑风暴。

1=2?史上最经典的“证明”

设a = b,则a·b = a^2,等号两边同时减去b^2就有a·b - b^2 = a^2 - b^2。注意,这个等式的左边可以提出一个b,右边是一个平方差,于是有b·(a - b) = (a + b)(a - b)。约掉(a - b)有b = a + b。然而a = b,因此b = b + b,也即b = 2b。约掉b,得1 =2。

这可能是有史以来最经典的谬证了。TedChiang在他的短篇科幻小说DivisionbyZero中写到:

引用

There is a well-known “proof” that demonstrates that one equals two. It begins with somedefinitions: “Let a = 1; let b = 1.” It ends with the conclusion “a = 2a,” that is, one equalstwo. Hidden inconspicuously in the middle is a division by zero, and at that point the proofhas stepped off the brink, making all rules null and void. Permitting division by zero allowsone to prove not only that one and two are equal, but that any two numbers at all—real orimaginary, rational or irrational—are equal.

这个证明的问题所在想必大家都已经很清楚了:等号两边是不能同时除以a - b的,因为我们假设了a = b,也就是说a - b是等于0的。

无穷级数的力量(1)

小学时,这个问题困扰了我很久:下面这个式子等于多少?

1 + (-1) + 1 + (-1) + 1 + (-1) + …

一方面:

1 + (-1) + 1 + (-1) + 1 + (-1) + …

= [1 + (-1)] + [1 + (-1)] + [1 + (-1)] + …

= 0 + 0 + 0 + …

= 0

另一方面:

1 + (-1) + 1 + (-1) + 1 + (-1) + …

= 1 + [(-1) + 1] + [(-1) + 1] + [(-1) + …

= 1 + 0 + 0 + 0 + …

= 1

这岂不是说明0 = 1吗?

后来我又知道了,这个式子还可以等于1/2。不妨设S = 1 + (-1) + 1 + (-1) + …,于是有S = 1 - S,解得S = 1/2。

学习了微积分之后,我终于明白了,这个无穷级数是发散的,它没有一个所谓的“和”。无穷个数相加的结果是多少,这个是需要定义的。无穷级数的力量(2)

同样的戏法可以变出更多不可思议的东西。例如,令

x = 1 + 2 + 4 + 8 + 16 + …

则有:

2x = 2 + 4 + 8 + 16 + …

于是:

2x -x = x = (2 + 4 + 8 + 16 + …)-(1 + 2 + 4 + 8 + 16 + …) =-1

也就是说:

1 +

2 + 4 + 8 + 16 + … =-1

平方根的阴谋(1)

定理:所有数都相等。

证明:取任意两个数a和b,令t = a + b。于是,

a +

b = t

(a + b)(a - b) = t(a - b)

a^2 - b^2 = t·a - t·b

a^2 - t·a = b^2 - t·b

a^2 - t·a + (t^2)/4 = b^2 - t·b + (t^2)/4

(a - t/2)^2 = (b - t/2)^2

a - t/2 =

b - t/2

a = b

怎么回事儿?

问题出在倒数第二行。

永远记住,x^2 = y^2并不能推出x = y,只能推出x = ±y。

平方根的阴谋(2)

1= √1 = √(-1)(-1) = √-1·√-1 = -1

嗯?

只有x、y都是正数时,√x·y = √x·√y才是成立的。

-1的平方根有两个,i和-i。√(-1)(-1)展开后应该写作i·(-i),它正好等于1。复数才是王道

考虑方程

x^2 + x + 1 = 0

移项有

x^2 = - x - 1

等式两边同时除以x,有

x = - 1 - 1/x

把上式代入原式中,有

x^2 + (-1 - 1/x) + 1 = 0

x^2 - 1/x = 0

x^3 = 1

也就是说x = 1。

把x = 1代回原式,得到1^2 + 1 + 1 = 0。也就是说,3 = 0,嘿嘿!

其实,x = 1并不是方程x^2 + x + 1 = 0的解。在实数范围内,方程x^2 + x + 1 = 0是没有解的,但在复数范围内有两个解。

另一方面,x = 1只是x^3 = 1的其中一个解。x^3 = 1其实一共有三个解,只不过另外两个解是复数范围内的。考虑方程x^3 - 1 = (x - 1)(x^2 + x + 1) = 0,容易看出x^3 = 1的两个复数解正好就是x^2 + x + 1的两个解。因此,x^2 + x + 1 = 0与x^3 = 1同时成立并无矛盾。

注意,一旦引入复数后,这个谬论才有了一个完整而漂亮的解释。或许这也说明了引入复数概念的必要性吧。

颇具喜剧色彩的错误

众所周知,

1 +

2 +

3 + … + n = n(n+1) / 2

让我们用n - 1去替换n,可得

1 +

2 +

3 + … + (n-1) = (n-1)n / 2

等式两边同时加1,得:

1 + 2+ 3 + … + n = (n-1)n /

2 + 1

也就是

n(n+1) / 2 = (n-1)n / 2 + 1

展开后有

n^2 / 2 + n / 2 = n^2 / 2 - n / 2 + 1

可以看到n = 1是这个方程的唯一解。

也就是说??1 + 2 + 3 + … + n = n(n+1) / 2仅在n = 1时才成立!

这个推理过程中出现了一个非常隐蔽而搞笑的错误。等式两边同时加1后,等式左边得到的应该是

1 +

2 +

3 + … + (n-2) + (n-1) + 1

1块钱等于1分钱?

我要用数学的力量掏空你的钱包!请看:

1元= 100分= (10分)^2 = (0.1元)^2 = 0.01元= 1分

用这个来骗小孩子们简直是屡试不爽,因为小学(甚至中学)教育忽视了一个很重要的思想:单位也是要参与运算的。事实上,“100分= (10分)^2”是不成立的,“10分”的平方应该是“100平方分”,正如“10米”的平方是“100平方米”一样。

数学归纳法的杯具(1)

下面这个“证明”是由数学家George Pólya给出的:任意给定n匹马,可以证明这n匹马的颜色都相同。

对n施归纳:首先,当n = 1时命题显然成立。若命题对n = k成立,则考虑n = k + 1的情形:由于{#1, #2, …, #k}这k匹马的颜色相同,{#2, #3, …, #k+1 }这k匹马也相同,而这两组马是有重叠的,可知这k+1匹马的颜色也都相同了。这个证明错在,从n = 1推不出n = 2,虽然当n更大的时候,这个归纳是正确的。这是数学归纳法出错的一个比较奇特的例子:基础情形和归纳推理都没啥问题,偏偏卡在归纳过程中的某一步上。

数学归纳法的杯具(2)

下面,我来给大家证明,所有正整数都相等。

为了证明这一点,只需要说明对于任意两个正整数a、b,都有a = b。

为了证明这一点,只需要说明对于所有正整数n,如果max(a, b) = n,那么a = b。

我们对n施归纳。当n = 1时,由于a、b都是正整数,因此a、b必须都等于1,所以说a = b。若当n = k时命题也成立,现在假设max(a, b) = k + 1。则max(a - 1, b- 1) = k,由归纳假设知a - 1 = b - 1,即a = b。

这个问题出在,a - 1或者b - 1有可能不是正整数了,因此不能套用归纳假设。

悖论的意思是什么

悖论的意思是什么 导读:我根据大家的需要整理了一份关于《悖论的意思是什么》的内容,具体内容:悖论的意思:悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐...悖论的意思: 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 英文解释 [数] antinomy;paradox ; [paradox] 逻辑学和数学中的矛盾命题 定义 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。

性质 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。 根源 悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 解悖 悖论与解悖只要运用对称逻辑,没有一个悖论无解。悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 用对称逻辑思维层次法解"说谎者悖论" 这个悖论即"我在说谎"这句话中所蕴含的悖论。这个悖论表面上由"我在说谎"和"我说实话"这两个对立的"命题"组成,实际上这两个"命题"并不等价——前一个命题包含思维内容,后一个"命题"只是前一个命题的语言表达式,因此后一个"命题"不是

圣彼得堡悖论概述

圣彼得堡悖论概述 圣彼得堡悖论是决策论中的一个悖论。 圣彼得堡悖论是数学家丹尼尔·伯努利(Daniel Bernoulli)的表兄尼古拉·伯努利(Daniel Bernoulli)在1738提出的一个概率期望值悖论,它来自于一种掷币游戏,即圣彼得堡游戏。设定掷出正面或者反面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2的n次方元,游戏结束。按照概率期望值的计算方法,将每一个可能结果的得奖值乘以该结果发生的概率即可得到该结果奖值的期望值。游戏的期望值即为所有可能结果的期望值之和。随着n的增大,以后的结果虽然概率很小,但是其奖值越来越大,每一个结果的期望值均为1,所有可能结果的得奖期望值之和,即游戏的期望值,将为“无穷大”。按照概率的理论,多次试验的结果将会接近于其数学期望。但是实际的投掷结果和计算都表明,多次投掷的结果,其平均值最多也就是几十元。正如Hacking(1980)所说:“没有人愿意花25元去参加一次这样的游戏。”这就出现了计算的期望值与实际情况的“矛盾”,问题在哪里? 实际在游戏过程中,游戏的收费应该是多少?决策理论的期望值准则在这里还成立吗?这是不是给“期望值准则”提出了严峻的挑战?正确认识和解决这一 矛盾对于人们认识随机现象、发展决策理论和指导实际决策无疑具有重大意义。 圣彼得堡问题对于决策工作者的启示在于,许多悖论问题可以归为数学问题,但它同时又是一个思维科学和哲学问题。悖论问题的实质是人类自身思维的矛盾性。从广义上讲,悖论不仅包括人们思维成果之间的矛盾,也包括思维成果与现实世界的明显的矛盾性。对于各个学科各个层次的悖论的研究,历来是科学理论发展的动力。圣彼得堡悖论所反映的人类自身思维的矛盾性,首先具有一定的哲学研究的意义;其次它反映了决策理论和实际之间的根本差别。人们总是不自觉地把模型与实际问题进行比较,但决策理论模型与实际问题并不是一个东西;圣彼得堡问题的理论模型是一个概率模型,它不仅是一种理论模型,而且本身就是一种统计的“近似的”模型。在实际问题涉及到无穷大的时候,连这种近似也变得不可能了。 实验的论文解释 丹尼尔·伯努利对这个悖论的解答在1738年的论文里,提出了效用的概念以挑战以金额期望值为决策标准,论文主要包括两条原理:1、边际效用递减原理:一个人对于财富的占有多多益善,即效用函数一阶导数大于零;随着财富的增加,满足程度的增加速度不断下降,效用函数二阶导数小于零。 2、最大效用原理:在风险和不确定条件下,个人的决策行为准则是为了获得最大期望效用值而非最大期望金额值。

悖论及其对数学发展的影响

悖论及其对数学发展的影响 【开场白:一个传说】一个讼师招收徒弟时约定,徒弟学成后第一场官司如果打赢,则交给师傅一两银子,如果打输,就可以不交银子。后来,弟子满师后却无所事事,迟迟不参与打官司。老讼师得不到银子,非常生气,告到县衙里,和这位弟子打官司。这位弟子却不慌不忙地说:“这场官司如果我打赢了当然不给您银子,如果打输了按照约定也不交给您银子,反正我横竖不交银子。”一句话把老讼师给气死了。 类似的: 1)我正在说谎?!! 2)鸡与鸡蛋何为先? 一、悖论的定义 “悖论”(英语:Paradox,俄语:Πарадокс)的字面意思是荒谬的理论,然而其内涵远没有这么简单,它是在一定理论系统前提下的看起来没有问题的矛盾。 关于悖论,目前并没有非常权威性1 的定义,以下的解释,在一定程度上是合理的。 通常认为,一个论断,如果不论是肯定还是否定它,都会导出一个与原始判断相反的结论,而要推翻它却又很难给出正当的根据时,这种论断称为悖论;或者,如果一个命题及其否定命题均可以用逻辑上等效的推理加以证明,而其推导又无法明确提出错误时,这种自相矛盾的命题叫做悖论。这种“定义”,比单纯从字面理解有所细化,也比较容易理解,但仍不够准确。 下述说法是A.A.富兰克尔给出的:如果某种理论的公理及其推理规则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,我们称这个理论包含了一个悖论。这里强调了悖论是依赖于一定的理论体系的,但是,只是说,某个理论体系包含了悖论,而没有言明什么是悖论。 悖论不同于通常的诡辩或谬论。诡辩、谬论可以通过已有的理论、逻辑论述其错误的原因,是与现有理论相悖的;而悖论虽感其不妥,但从它所在的理论体系中,不能阐明其错误的原因,是与现有理论相容的。悖论是(在当时)解释不了的矛盾。 悖论蕴涵真理,但常被人们描绘为倒置的真理; 悖论富有魅力,既让您乐在其中,又使您焦躁不安,欲罢不能; 数学历史中出现的悖论,为数学的发展提供了契机。 二、悖论的起源 起源之一:芝诺悖论(公元前五世纪) 芝诺(Zenon Eleates,约公元前490年——约公元前429年)出生于意大利南部的埃利亚(Elea)城,是古希腊埃利亚学派的主要代表人物之一。他是古希腊著名哲学家巴门尼德(Parmennides)的学生。他否定现实世界的运动,信奉巴门尼德关于世界上真实的东西只能是“唯一不动的存在”的信条。在他那个时代,人们对时间和空间的看法有两种截然不同的观点。一种观点认为,空间和时间无限可分,运动是连续而又平顺的;另一种观点则认为,时间和空间是由一小段一小段不可分的部分组成,运动是间断且跳跃的。芝诺悖论是针对上述二观点而提出的。他关于运动的四个悖论,被认为是悖论的起源之一。其中前两个悖论是针对那种连续的时空观而提出的,后两个悖论则是针对间断时空观提出的。 (1) 一物体要从A点到达B D点;而要到达D点,又必先抵达其1/8处之E点。如此下去,永无止境,因此,运动不可能存在。

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

数学上的悖论谬论

这篇关于数学上的悖论谬论的论证的文章是由北大中文系Matrix67所写,读来感觉很有意思,和大家一起分享,来一场头脑风暴。 1=2?史上最经典的“证明” 设a = b,则a·b = a^2,等号两边同时减去b^2就有a·b - b^2 = a^2 - b^2。注意,这个等式的左边可以提出一个b,右边是一个平方差,于是有b·(a - b) = (a + b)(a - b)。约掉(a - b)有b = a + b。然而a = b,因此b = b + b,也即b = 2b。约掉b,得1 =2。 这可能是有史以来最经典的谬证了。TedChiang在他的短篇科幻小说DivisionbyZero中写到: 引用 There is a well-known “proof” that demonstrates that one equals two. It begins with somedefinitions: “Let a = 1; let b = 1.” It ends with the conclusion “a = 2a,” that is, one equalstwo. Hidden inconspicuously in the middle is a division by zero, and at that point the proofhas stepped off the brink, making all rules null and void. Permitting division by zero allowsone to prove not only that one and two are equal, but that any two numbers at all—real orimaginary, rational or irrational—are equal. 这个证明的问题所在想必大家都已经很清楚了:等号两边是不能同时除以a - b的,因为我们假设了a = b,也就是说a - b是等于0的。 无穷级数的力量(1) 小学时,这个问题困扰了我很久:下面这个式子等于多少? 1 + (-1) + 1 + (-1) + 1 + (-1) + … 一方面: 1 + (-1) + 1 + (-1) + 1 + (-1) + … = [1 + (-1)] + [1 + (-1)] + [1 + (-1)] + … = 0 + 0 + 0 + …

色盲悖论

假设:有一个人,他有一种奇怪的色盲症。他看到的两种颜色和别人不一样,他把蓝色看成绿色,把绿色看成蓝色。 但是他自己并不知道他跟别人不一样,别人看到的天空是蓝色的,他看到的是绿色的,但是他和别人的叫法都一样,都是“蓝色”;小草是绿色的,他看到的却是蓝色的,但是他把蓝色叫做“绿色”。所以,他自己和别人都不知道他和别人的不同。 问:怎么让他知道自己和别人不一样? 注:有人说让他水彩画画,比如说画蓝天绿草,他画出来的肯定是绿天蓝草,而别人的是蓝天绿草。 这个回答是错误的,因为:画蓝天时,他脑中想的是绿色,而他拿起的笔也是他脑中的绿色,也就是别人眼中的蓝色,所以他画出来的仍然是大家眼中的蓝天绿草。———————————————————————————————————————— 下面是我见过的一些的解法,由浅到深一一罗列出来,逐个分析。注:为了方便区分,以下凡是用英语标出的颜色,是脱离概念的,是人眼中感觉到的颜色,例如他听到“蓝色”这个词,脑海中浮现的是Green,然后拿起了蓝笔。

1. 首先,这并不是某些人认为的“低水准问题”,以为拿个绿色的牌牌,告诉他“这是绿色”就OK了?人家本来就把绿色的牌牌叫做“绿色”,还用你告诉?像某安焱那种自以为是又到处鄙视别人的,大家无视。2. 有相当一部分人认为他画的就应该是“绿天蓝草”,认为题目的那个“注”是错的。所以我有必要把那个注解再解释一下: 题目说的很清楚,正常的“蓝色”在他眼中是“Green”,但由于这个倒霉蛋对颜色的认知是从别人得来,所以在他口中依然是“蓝色”。 也就是说,正常的“蓝色”,无论是颜色还是字符,他都称之为“蓝色”,只是在他眼中是Green。 结论来了,蓝色的天空、蓝色的画笔、“蓝”这个概念,在他眼里都是同一种颜色(Green)。 同样也有,绿色的草地、绿色的画笔、“绿”这个概念,在他眼里也是同一种颜色(Blue)。 所以让他画天,他心里想的是Green,当然就会拿蓝笔,口中说的也是“拿蓝笔”这句话。绿草也是一样,他画草的时候会拿绿笔。 3. 然后再排除部分人的那种相当不负责任的做法:“给他个绿色的东西,告诉他,这个其实叫做蓝色” 这根本不可行,他完全不知道自己与常人不同,也无法从眼中观察到。

几个有趣的悖论的数学辨析

几个有趣的悖论的数学辨析 数学悖论是数学发展过程中的一个重要的存在形态, 它是数学体系中出现的一种尖锐的矛盾, 对于这一矛盾的处理与研究, 丰富了数学的容, 促进了数学的发展。作为一名数学教师, 学习有关这方面的知识, 并进行研究, 既能提高自己的专业水平, 又能使授课容生动有趣; 作为学生了解这方面的容,不但能扩大知识面, 而且能提高学习兴趣 1 芝诺悖论 在西方的数学史上有一个非常有名的数学悖论——芝诺悖论。芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺本人既不是一位科学家, 更不是一位数学家, 芝诺的老师是埃利亚学派的创始人巴门尼德。巴门尼德是个一神论者, 他认为世界的本原是“不生不灭、完整、唯一和不动的”。但世界显然是丰富多彩、复杂纷繁的,怎么会是“唯一” 的呢?一个完全不动的世界怎么可能呢? 于是引起同时代人的反驳。芝诺为了捍为他老师的学说, 提出了一些论述。其中最有名的有四个, 历史上称为芝诺悖论。作为巴门尼德的继承人, 他力图证明, 如果承认“ 多” 和“ 运动” , 就会招致更加荒谬的结果。限于篇幅, 在此只辑录其二。 二分法: 你不能在有限的时间穿过无穷的点。在你穿过一定的距离的全部之前, 你必须穿过这个距离的一半。这样做下去就会陷入无止境, 所以在任何一定的空间中都有无穷个点, 你不能在有限的时间中一个接一个地接触无穷个点。

阿喀琉斯追不上大乌龟: 阿喀琉斯是古希腊《荷马史诗》中一个跑得最快的大英雄, 他怎么会跑不过大乌龟呢? 假定他的速度是乌 龟的10倍, 阿喀琉斯与乌龟赛跑的路程是1千米, 让乌龟先跑1 10 千 米, 然后让阿喀琉斯去追。于是问题来了。当阿喀琉斯追到1 10 千 米的地方, 乌龟又向前跑了 1 100千米, 当阿喀琉斯又追到 1 100 千米时, 乌龟又向前跑了 1 10000千米, … …, 这样一来, 一直追下 去, 阿喀琉斯会追上大乌龟吗? 之所以说这两个论证是悖论, 是因为我们知道, 无论是谁, 不管身高身低, 只要一迈步, 都可以在有限的时间越过无穷多个点; 无论是谁, 都不会相信大英雄阿喀琉斯竟会跑不过大乌龟。然而在当时的人们的知识围, 却找不出芝诺的论证错在什么地方。 1 . 1 芝诺悖论的数学意义 芝诺的“二分法” 和“ 阿喀琉斯追不上大乌龟”的论证, 本意是要用结论的荒谬性来否定其前提关于时空的可无限分割的观点, 该两个论证与另外两个论证(“ 飞箭” 与“ 运动场” ) 组合得出了时空既是不可无限分割, 又是可以无限分割的矛盾结论。“ 芝诺悖论” 促进了以严格的思维规律为研究对象的逻辑学和以严格的求证思想为基础的数学的发展。芝诺论证问题的方法是我们今天数学中仍在使用的反证法。可以说, 这是对反证法的最早的运用。大家知道, 当一个数学命题无法直接证明时, 我们就求助于反证法。

数学悖论与三大危机

数学悖论 默认分类2010-05-20 10:20:02 阅读20 评论0 字号:大中小订阅 数学的基础是什么? 1. 定义 2. 公理 3. 逻辑 首先说公理的陈述,这就是一个很麻烦的事情。在你的公理中一定会有很多名词,比如点,线,等等,因此似乎需要先定义这些最基本的名词。但当你尝试作这样的定义的时候,你会发现你还是无从下手,无论你怎么定义它们,你都会引入其它未定义的名词。其实在逻辑上,对最基本的名词的定义就是不可能的事情。我们采用的办法就是使用未经定义的最基本的名词来陈述公理,在公理中同时也就给出了这些对象的 属性。 再说逻辑,比如最基本,最有名的三段论。 大前提:人都会死。 小前提:亚里士多德是人。 结论:亚里士多德会死。 粗看,我们得到这个结论一点问题都没有。但你仔细想想,是什么原因我们可以使用这样的推导?我们采用这样的方法进行推导就一定不会出现问题吗?能否证明这样的推导过程就一定是正确的?其实这是一个没有办法证明的问题。但我们的实践经验告诉我们这样的推导是不会有问题的,是正确的。因此我们也同样采用公理的方法确定下来三段论的逻辑推导方法是正确的。在逻辑上,这样的例子还有很多。 由此,可以看出,数学的基础就是公理。数学只是公理集之上的推导和演绎。推导和演绎的基础仍然是公 理。 “……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。”——N·布尔巴基 一、悖论的历史与悖论的定义 悖论的历史源远流长,它的起源可以一直追溯到古希腊和我国先秦时代。“悖论”一词源于希腊文,意为“无路可走”,转义是“四处碰壁,无法解决问题”。 在古希腊时代,克里特岛的哲学家伊壁门尼德斯(约公元前6世纪)发现的“撒谎者悖论”可以算作人们最早发现的悖论。公元前4世纪的欧布里德将其修改为“强化了的撒谎者悖论”。在此基础上,人们构造了一个与之等价的“永恒的撒谎者悖论”。埃利亚学派的代表人物芝诺(约490B.C.—430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍 余波未息。 在中国古代哲学中也有许多悖论思想,如战国时期逻辑学家惠施(约370B.C.—318B.C.)的“日方中方睨,物方生方死”、“一尺之棰,日取其半,万世不竭”;《韩非子》中记载的有关矛与盾的悖论思想等,这些悖论式的命题,表面上看起来很荒谬,实际上却潜伏着某些辨证的思想内容。 在近代,著名的悖论有伽利略悖论、贝克莱悖论、康德的二律背反、集合论悖论等。在现代,则有光速悖论、双生子佯谬、EPR悖论、整体性悖论等。这些悖论从逻辑上看来都是一些思维矛盾,从认识论上 看则是客观矛盾在思维上的反映。 尽管悖论的历史如此悠久,但直到本世纪初,人们才真正开始专门研究悖论的本质。在此之前,悖论只能引起人们的惊恐与不安;此后,人们才逐渐认识到悖论也有其积极作用。特别是本世纪60、70年代以 来,出现了研究悖论的热潮。

浅析谎言悖论

浅析说谎者悖论 摘要:如今,解决悖论成了逻辑学界的一大热门课题。本文将追本溯源,对悖论及说谎者悖论作简要分析及说明,说谎者悖论是历史上最古老的悖论,又是最典型的语义悖论。历史上学者们提出很多解决方案,而这些解决方案的都是不成功的,本文将针对说谎者悖论的实质作简要探讨。 关键字:谎言悖论,悖论,说谎者悖论 一谎言悖论的现象 1引言 大多数人一天要遭遇将近两百个谎言。谎言的无处不在或已超出一般人的想象。人们说谎的动机至少有九种。概括为进攻性和防御性动机,如为自身谋求优势,保护隐私等。谎言的无处不在引起我的好奇,进而激起我想一探究竟的欲望。然而谎言本身是更倾向于实实在在的知识,我比较感兴趣的是谎言悖论这种奇奇怪怪的知识。 2对悖论的说明 悖论是英文paradox或antinomy的中译。它来自希腊文的“para”和“doxa”,意思是“难以置信”。从字面上理解,悖论指的是荒谬的理论或者自相矛盾的语句或命题。《中国百科全书·哲学卷》对“悖论”的定义是:“指由肯定它真,就推出它假,由肯定它假,就推出它真的一类命题”。这类命题也可以表述为:“一个命题A,A蕴涵非A,同时非A蕴涵A,A与自身的否定非等值。”《辞海》对“悖论”的定义是:“一命题B,如果承认B,又推得非B;反之。如果承认非B,又可推得B,则称命题B为——悖论。” 3对谎言悖论的界定 “谎言悖论”的表述形式,是要求断定语句“这句话是谎言”的“真”、“假”。而你只要试图完成这一任务,就会发现自己已经陷入了一个难以摆脱的矛盾怪圈:假如你断定该句为“真”,那便会推出该句是“假”;而倘若你断定该句为“假”,那便会据此推出该剧是“真”。

十大数学悖论

… 十大数学悖论 1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 2.说谎者悖论:公元前6世纪,古希腊克里特岛的

哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。:

公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 3.跟无限相关的悖论: {1,2,3,4,5,…}

是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗 4.伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB 上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么 5.预料不到的考试的悖论:一位老师宣布说,在下一星期的五天

集合论中罗素悖论问题

集合论中罗素悖论问题 1902年,英国数学家罗素提出了这样一个理论:以M表示是其自身成员的集合的集合,N表示不是其自身成员的集合的集合。然后问N是否为它自身的成员?如果N是它自身的成员,则N属于M而不属于N,也就是说N不是它自身的成员;另一方面,如果N不是它自身的成员,则N属于N而不属于M,也就是说N是它自身的成员。无论出现哪一种情况都将导出矛盾的结论,这就是著名的罗素悖论。 平时我们熟悉的大多数集合都不是自身的成员:例如自然数集合,有理数集合,实数集合,集合{1,2,3,4,5,6},N就表示所有这类集合作为元素的新集合. 而是自身成员的集合相对少见:例如所有集合的集合. 将所有集合分为两类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A} Q={A∣A?A} 问,Q∈P 还是Q∈Q?若Q∈P,那么根据第一类集合的定义,必有Q∈Q,但是Q中任何集合都有A?A的性质,因为Q∈Q,所以Q¢Q,引出矛盾.若Q∈Q,根据第一类集合的定义,必有Q∈P,而显然P∩Q=?,所以Q?Q,还是矛盾.这就是著名的“罗素悖论”. 1 有些集合以自己为元素,如“所有集合的集合”,自己是集合,所以也是自己的元素。【1】 2 可以把集合分为两类,凡不以自身为元素的集合称为第一类集合;凡以自身作为元素的集合称为第二类集合。显然每个集合或为第一类集合或为第二类集合。设A为第一类集合的全体组成的集合。如果A是第一类集合,由集合A的定义知: A应该是A的元素,这表明A是第二类集合。如果A是第二类集合,那么A不会是它自身的元素,这表明A是第一类集合。【2】 3 萨维尔村里有个理发匠。他给自己立了一条店规:他只给村子里自己不刮脸的人刮脸。请问:这位理发师该不该给自己刮脸?【3】 以上例子被认为是以自己为元素的集合,由此产生罗素悖论。我们分析一下。

十大数学悖论

十大数学悖论 1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 2.说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人

所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。 : 公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以

自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 3.跟无限相关的悖论: {1,2,3,4,5,…}是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有

一样多的元素吗? 4.伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么? 5.预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。 你能说出为什么这场考试无

数学悖论推理题

数学悖论推理题 1=2?史上最经典的“证明” 设?a = b?,则?a·b = a^2?,等号两边同时减去?b^2?就有?a·b - b^2 = a^2 - b^2?。注意,这个等式的左边可以提出一个?b?,右边是一个平方差,于是有?b·(a - b) = (a + b)(a - b)?。约掉?(a - b)?有?b = a + b。然而?a = b?,因此?b = b + b?,也即?b = 2b?。约掉?b?,得?1 = 2?。 这可能是有史以来最经典的谬证了。?Ted Chiang?在他的短篇科幻小说?Division by Zero?中写到: 引用 There is a well-known “proof” that demonstrates that one equals two. It begins with some definitions: “Let a = 1; let b = 1.” It ends with the conclusion “a = 2a,” that is, one equals two. Hidden inconspicuously in the mi ddle is a division by zero, and at that point the proof has stepped off the brink, making all rules null and void. Permitting division by zero allows one to prove not only that one and two are equal, but that any two numbers at all—real or imaginary, rational or irrational—are equal. 这个证明的问题所在想必大家都已经很清楚了:等号两边是不能同时除以?a - b?的,因为我们假设了?a = b?,也就是说?a - b?是等于?0?的。 无穷级数的力量?(1) 小学时,这个问题困扰了我很久:下面这个式子等于多少?

数学悖论、数学危机及其对数学的推动作用

数学悖论、数学危机及其对数学的推动作用 数学悖论、数学危机及其对数学的推动作用 悖论是让数学家无法回避的问题。悖论出现使得数学体系出现不可靠性和失真理性,这就逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了,因而悖论在推动数学发展中的巨大作用。现在我作如下简单阐述:毕达哥拉斯学派认为“万物皆数”,而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”.毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。这却在当时的数学界掀起了一场巨大风暴。这一伟大发现不但对毕达哥拉斯学派的致命打击,也对于当时所有古希腊人的观念这都是一个极大的冲击。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”. 二百年后,欧多克索斯提出的新比例理论暂时消除悖论。一直到18世纪,当数学家证明了圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建

立起来后,无理数本质被彻底搞清,无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。 伴随着人们科学理论与实践认识的提高,十七世纪微积分诞生,但是微积分理论是不严格的。理论都建立在无穷小分析之上,作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 数学史上把贝克莱的问题称之为“贝克莱悖论”.笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0.但从形式逻辑而言,这无疑是一个矛盾。这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。 十八世纪开始微积分理论获得了空前丰富。然而,与此同时十八世纪粗糙的,不严密的工作也导致谬误越来越多的局面。当时数学中出现的混乱局面了。尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。这样把分析重新建立在逻辑基础之上就成为数学家们迫在眉睫的任务。到十九世纪,批判、系统化和严密论证的必要时期降临了。 使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于1821年开始给出了分析学一系列基本概念的严格定义。后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所

悖论大全

老虎悖论是博弈论中一个著名的逻辑悖论。 故事 国王要处决一个囚犯,但给他一个生还的机会。囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。国王 对囚犯说:“你必须依次打开这些门。我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老 虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。因此,老虎肯定不在 第五扇门中。同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。” 悖论分析 如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步? 1.主张错在第一步 如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。错在囚犯把国王的思路作为论据。 首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推

理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。本例中不考虑没有老虎的情况,即 囚犯已知必有1老虎。作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门 里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。 然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理: 由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。 A.如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在 这个前提下不可能知道。囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。 B.如果相信国王是会错的: 囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢? 所以国王的思路就没法唯一的推测了。囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要 打开第一个门。 因此,国王应且只应放到第一个门中,则国王必胜。 推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。 2.主张错在第二步 故事中的囚犯最后决定相信“没有老虎”。但,国王并不知道囚犯是否会这样,所以的确不可能把老虎放在第五扇门。如果囚犯决定相信“一定有老虎”,那么在前四扇门都没有老虎之后,第五扇门后的老虎的确就变成“可预料的”了。 既然老虎在第五扇门的话,它一定是“可预料的”,那么当你已经开了三扇空门时,情况是怎么样?我们可以试着写成逻辑式子:前提一、老虎不可预料。前提二、老虎如果在第五扇门时,可预料。前提三、老虎不在第五扇门时,就一定在第四扇门。前提四、老虎如果在第四扇门时,可预料。结论:前提互相矛盾。 请注意:这时的逻辑推理中,既然前提互相矛盾,必定有一个以上不成立,那么可能性就是以下四个其中之一、 或是更多: A.老虎可预料。 B.老虎如果在第五扇门时,不可预料。 C.老虎不在第五扇门时,也不一定在第四扇门。 D.老虎如果在第四扇门时,不可预料。 二和四自身是矛盾命题,不考虑,三会导致老虎变成薛定谔的猫,也就是既存在亦非存在的状态(囚犯把老虎往 前门推是错误的,因为前提中包含“已经开了三扇空门”)。所以可能性只有一个:老虎可预料。但若老虎可预料,那么显示国王说谎,如果国王可能说谎,那么老虎也真的有可能消失。 这时的正确结论是:国王一定说谎,但他的谎言可能是“老虎可预料”,却也可能是“根本没老虎”,囚犯只是偏心于 一个可能性,结果帮国王圆谎罢了。 3.主张错在最后一步 如果“不可预料”并不是一种保证,而只意味“高机率”,“有老虎”才是保证,那么情况又整个改观。可以列成以下状况:

数学悖论和三次数学危机

数学悖论与三次数学危机 “……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。” ——N·布尔巴基 什么是悖论?笼统地说,是指这样的推理过程:它看上去是合理的,但结果却得出了矛盾。悖论在很多情况下表现为能得出不符合排中律的矛盾命题:由它的真,可以推出它为假;由它的假,则可以推出它为真。由于严格性被公认为是数学的一个主要特点,因此如果数学中出现悖论会造成对数学可靠性的怀疑。如果这一悖论涉及面十分广泛的话,这种冲击波会更为强烈,由此导致的怀疑还会引发人们认识上的普遍危机感。在这种情况下,悖论往往会直接导致“数学危机”的产生。按照西方习惯的说法,在数学发展史上迄今为止出现了三次这 样的数学危机。 希帕索斯悖论与第一次数学危机 希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈起。勾股定理是欧氏几何中最著名的定理之一。天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。不过,在我国对于勾股定理的证明却是较迟的事情。一直到三国时期的赵爽才用面 积割补给出它的第一种证明。

在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。 因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。 毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

希帕索斯悖论与第一次数学危机

希帕索斯悖论与第一次数学危机希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈起。勾股定理是欧氏几何中最著名的定理之一。天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。不过,在我国对于勾股定理的证明却是较迟的事情。一直到三国时期的赵爽才用面积割补给出它的第一种证明。 在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。 毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学 信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个

成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课

相关主题
文本预览
相关文档 最新文档