1 巧妙求和(一)
- 格式:doc
- 大小:34.50 KB
- 文档页数:6
巧妙求和(一)知识要点:1、一定量的数按照顺序排成一串,就叫作数列。
数列中的每一个数称为一项,其中第一个数称为首项,最末一个数称为末项,数列中数个数称为项数。
如:3、6、9、12----、96,首项是3,末项是96,项数为32.2、如果一个数列的每一项和前一项的差相等,就叫作等差数列。
每一项和前一项的差叫作公差。
如以上的就是等差数列,公差为3.芝麻开门:同学们听过德国数学家高斯的故事吗?高斯在10岁的时候就显示出与众不同的数学才能。
在一次数学课上,数学老师提出这样的一个问题。
计算:1+2+3+---+99+100的和?正当其他同学还在苦思冥想时,高斯已经算出了答案:5050,老师和同学们都很惊诧他的运算速度。
同学们你们知道小高斯为什么能这么快就能计算出答案吗?他究竟用了什么方法呢?下面我们就来探究一下。
经典范例例1: 计算:1+2+3+4+5+6+7+8+9+10的和。
思路解析:在计算这样的算式时,如果我们依次计算,数字太大、太多,计算起来特别麻烦还容易出现错误。
于是,我们就要调整思维方式,观察算式,寻找规律。
解:方法一:观察得到把最小的数和最大的数相加得11,然后再依据规律依次相加,总共有5对得11的算式,没有多余的数。
1+2+3+4+5+6+7+8+9+10=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)=11×5=55方法2:找出和为10的式子,但会出现多余的数,然后再把多余的数加上去。
1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10×4+15=55例2:计算1+3+5+7+9+11+13+15+17思路解析:在这个算式中,首项和末项的和是1+17=18,次项和3+15=18也是18,依次结合,最后把多余的项加上去。
解:方法一:1+3+5+7+9+11+13+15+17=(1+17)+(3+15)+(5+13)+(7+11)+9=18×4+9=72+9=81方法2:1+3+5+7+9+11+13+15+17=(1+17)×9÷2=18×9÷2=162÷2=81小结:1、在例1和例2中,每一项和前一项的差都是相同的,因此都是等差数列。
第八周巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
练习三计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。
第8周巧妙求和(一)专题简析:若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
例如:3,6,9,…,96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。
这一周,我们将学习“等差数列求和”。
为了更好地掌握此类问题,我们需要记住三个公式:通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X 项数÷2在等差数列中,只要知道首项、末项、公差、及总和这五个量中的三个,就可以利用通项公式、项数公式及求和公式求其余两个量。
例1:等差数列4,10,16,22,…,52共有多少项?练习一:1、等差数列中,首项=1,末项=39,公差=2。
这个等差数列共有多少项?2、等差数列2,5,8,11,…,101共有多少项?3、已知一个等差数列的首项是11,末项是101,总和是504,这个数列共有多少项?例2:已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习二:1、一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2、已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3、已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?例3:有这样的一个列数1,2,3,4,…,99,100,请你求出这列数各项相加的和。
练习三:计算下面各题。
1、1+2+3+4+…+49+502、6+7+8+9+…+753、100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。
练习四:计算下面各题。
1、2+6+10+14+19+222、5+10+15+20+…+195+2003、9+18+27+36+…+261+270例5:如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习五:1、如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2、如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3、如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?1、有一个等差数列:9,12,15,18,…,2004,这个数列共有多少项?2、已知等差数列:1000,993,986,979,…,20,这个数列共有多少项?3、求等差数列:1,6,11,16,…的第61项。
称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?练习:1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
练习:计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270例5:计算(2+4+6+...+100)-(1+3+5+ (99)练习:用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)(3)(1+3+5+...+1999)-(2+4+6+ (1998)例6:如果一个等差数列第4项为21,第6项为33,求他的第8项。
(2)如果一个等差数列的第3项是10,第7项是26,求他的第12项。
四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
一、知识要点若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
例如:3,6,9,…,96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。
在这一节课我们要学习“等差数列求和”,为了更好掌握此类问题,我们需要记住三个公式:等差数列总和=(首项+末项)×项数÷2通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1在等差数列中,只要知道首项、末项、项数、公差这几个量中的三个,就可以利用上面三个公式进行计算。
二、精讲精练【例题1】有一个数列:4,10,16,22.…,52。
这个数列共有多少项?练习1:1.等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2.有一个等差数列:2,5,8,11.…,101,这个等差数列共有多少项?3.已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?【例题2】有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?练习2:1.一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2. 求1,4,7,10……这个等差数列的第30项。
3.求等差数列2,6,10,14……的第100项。
【例题3】有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
练习3:计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60【例题4】求等差数列2,4,6,…,48,50的和。
练习4:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270【例题5】如果一个等差数列第4项为21,第6项为33,求它的第8项。
巧妙求和(一)测试卷通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和:总和=(首项+末项)×项数÷21、有一个数列:4,10,16,22,…,52,这个数列共有多少项?(4′)2、等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?(4′)3、有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?(4′)4、已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?(4′)5、有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?(4′)6、一等差数列,首项=3,公差=2,项数=10,它的末项是多少?(4′)7、求1,4,7,10……这个等差数列的第30项。
(4′)8、求等差数列2,6,10,14……的第100项。
(4′)9、有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
(4′)10、求等差数列2,4,6,…,48,50的和。
(4′)11、计算下面各题。
(30′)(1)1+2+3+…+49+50 (2)6+7+8+…+74+75 (3)100+99+98+…+61+60(4)2+6+10+14+18+22 (5)5+10+15+20+…+190 (6)9+18+27+36+…+26112、用简便方法计算下面各题。
(30′)(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+100)-(1+3+5+ (99)(3)(1+3+5+...+1999)-(2+4+6+ (1998)。
第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。
【例题3】有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
练习3:计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2,4,6,…,48,50的和。
练习4:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。
8讲巧妙求和(一)第一、知识要点.若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项2.有一个等差数列:,8,11.…,101.这个等差数列共有多少项3.已知等差数列,,…,1001.这个等差数列共有多少项【例题2】有一等差数列:,,……,这个等差数列的第100项是多少【思路导航】这个等差数列的首项是3.公差是4,项数是100。
要求第100)”进行计算。
1公差×(项数-+首项=项,可根据“末项.第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少2.求,7,10……这个等差数列的第30项。
3.求等差数列,10,14……的第100项。
【例题3】有这样一个数列:,…,99,100。
请求出这个数列所有项的和。
【思路导航】如果我们把,…,99,100与列100,99,…,相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
第1讲巧妙求和(一)
专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:
第n项=首项+(项数-1)×公差
项数公式:
项数=(末项-首项)÷公差+1
例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?
分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一
1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?
2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?
3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?
例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?
分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399
练习二
1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?
2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050
上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:
等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。
练习三
计算下面各题。
(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
(3)100+99+98+…+61+60
例4:求等差数列2,4,6,…,48,50的和。
分析与解答:这个数列是等差数列,我们可以用公式计算。
要求这一数列的和,首先要求出项数是多少:
项数=(末项-首项)÷公差+1=(50-2)÷2+1=25 首项=2,末项=50,项数=25
等差数列的和=(2+50)×25÷2=650
练习四
计算下面各题。
(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270
例5:计算(2+4+6+...+100)-(1+3+5+ (99)
分析与解答:容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。
进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。
因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。
(2+4+6+...+100)-(1+3+5+ (99)
=(2-1)+(4-3)+(6-5)+…+(100-99)
=1+1+1+…+1
=50
练习五
用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)
(3)(1+3+5+...+1999)-(2+4+6+ (1998)。