巧妙求和(二)
- 格式:doc
- 大小:40.00 KB
- 文档页数:6
第十六周巧妙求和(二)专题简析:某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?分析与解答:根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11,因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习一1,刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2,胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3,丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?分析与解答:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习二1,有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2,有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
第十一课时巧妙求和(二)【教学目标】1.某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和;2.如果是等差数列求和,才可用等差数列求和公式;3.在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
【教学重点】理解等差数列求和公式的概念,灵活使用等差数列求和公式。
【教学难点】准确确定数列的项数【教学内容】【典型例题】例题1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?练习1:(1)刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?(2)胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?(3)丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?例题2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?(1)有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?(2)有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?(3)有10只盒子,44只羽毛球。
能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?例题3:某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?练习3:(1)学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。
如果有21人参加比赛,一共要进行多少场比赛?(2)在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?(3)假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?例题4:求1 ~ 99 这99个连续自然数的所有数字之和。
三、总结:(5分)
记住以下三个公式,可以帮助我们更好地掌握此类问题:
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
四、随堂练习:
1.一个电影院第一排有36个座位,往后每排都比前一排多2个座位,最后一
排有82个座位,则这些座位被分成几排?
板书:
(82-36)÷2+1=24(排)
答:这些座位被分成24排。
2.工地将一堆规格相同的木料如图码放在空地上,最上面一层有8根,堆了 18层,则最底下一层有多少根木料?
板书:
8+(18-1)×1=25(根)
答:最底下一层有25根木料。
3. 计算3+11+19+……+99+107+115的和。
板书:
(115-3)÷8+1=15
(3+115)×15÷2=885
4.马上父亲节了,卡尔决定为父亲折满一罐纸鹤,她第一天折了15只纸鹤,
之后每天都多折5只纸鹤,一共折了10天,她一共折了多少只纸鹤?
板书:
15+5×(10-1)=60(只)
(60+15)×10÷2=375(只)
答:她一共折了375只。
5.学徒不小心将锁匠的45把锁的钥匙弄乱了,为了使每把锁都找到相配的钥
匙,最多要试几次?
板书:
44+43+…+1
=(44+1)×44÷2
=990(次)
答:最多要试990次。
第二讲巧妙求和教室:姓名:【知识要点】聪明的数学家高斯小时候就非常巧妙地算出1+2+3+4+…+100的结果。
小高斯算得又快又准的方法就是巧妙求和。
【例题精讲】例1、(1)9+10+11+12+13+14(2)1+3+5+7+……+97+99例2、老师读一本小说,第一天读20页,从第二天起,每天读的页数都比前一天多5页,最后一天读75页,这本书共多少页?例3、100―2―4―6―8―10―12例4、100把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?例5、活动课上,三(1)班全班同学玩接力棒赛跑游戏,规定跑第一棒的同学跑30米,跑第二棒的跑32米,第三棒的跑34米……小明跑第九棒,他应跑多少米?例6、有一个挂钟,一点钟敲1下,两点钟敲2下,三点钟敲3下……十二点钟敲12下,每逢半点钟也敲一下。
问:这个挂钟一昼夜共敲多少下?【池中戏水】1、看谁算得又对又快:(1)1+3+5+7+9+11+13+15 (3)100+102+104+106+108(2)18+19+20+21+22+23+24+25 (4)98+95+92+89+86+83+802、比101小的所有偶数的和是多少?3、小龙读一本科幻书,第一天读18页,从第二天起,每天读的页数都比前一天多读2页,第30 天读76页正好读完。
这本书共多少页?4、有30把锁的钥匙不慎搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?5、李明在小学一年级是捐款10元,以后每年捐款数额都是前一年的2倍。
他在读小学的六年中共捐款多少元?【江中畅游】1、我们班级里的42个同学进行象棋比赛,如果用循环赛的方法决出冠军,一共要进行几场比赛?2、五个连续偶数的和是150,这五个偶数是哪几个数?3、有10只盒子,45只乒乓球,能不能把45只乒乓球放到盒子中去,使各个盒子里的乒乓球不相等?【海中冲浪】有30个数,第1个数是9,以后每个数都比前一个数大4。
四年级下册数学教案-6.2 巧妙求和一、教学目标1. 知识与技能:使学生掌握巧妙的求和方法,能够运用所学的求和技巧解决实际问题。
2. 过程与方法:通过观察、分析、讨论等活动,培养学生的逻辑思维能力和团队合作意识。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和解决问题的能力。
二、教学重点、难点1. 教学重点:掌握巧妙的求和方法,能够运用求和技巧解决实际问题。
2. 教学难点:灵活运用求和技巧,解决实际问题。
三、教学过程1. 导入通过提问方式引导学生回顾已学的求和方法,为新课的学习做好铺垫。
2. 新课讲解(1)出示例题,引导学生观察、分析、讨论,发现求和的规律。
例题:计算1 2 3 ... 100的和。
(2)引导学生总结求和的方法,并加以验证。
方法一:高斯求和法1 2 3 ... 100 = (1 100) × 100 ÷ 2 = 5050方法二:等差数列求和公式1 2 3 ... 100 = (首项末项) × 项数÷ 2 = (1 100) × 100 ÷ 2 = 5050(3)出示练习题,巩固所学方法。
练习题1:计算1 3 5 ... 99的和。
练习题2:计算2 4 6 ... 100的和。
3. 小组合作探究(1)出示探究题,引导学生小组合作,共同解决问题。
探究题:计算1×1 2×2 3×3 ... 10×10的和。
(2)小组展示探究成果,师生共同总结求和方法。
方法:平方求和公式1×1 2×2 3×3 ... 10×10 = n(n 1)(2n 1) ÷ 6 = 3854. 课堂小结通过本节课的学习,学生能够掌握巧妙的求和方法,并能够运用求和技巧解决实际问题。
同时,培养学生的逻辑思维能力和团队合作意识。
5. 课后作业(布置必做题和选做题)必做题:完成练习册相关题目。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第十六周巧妙求和(二)
专题简析:
某些问题,可以转化为求若干个数的和,在解决这些问题时,
同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才
可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可
考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以
顺利解决。
例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?
分析与解答:根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11,因此可以很快得解:(30+60)×11÷2=495(页)
想一想:如果把“第11天”改为“最后一天”该怎样解答?练习一
1,刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?
2,胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?
3,丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?
例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?
分析与解答:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习二
1,有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
2,有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?
3,有10只盒子,44只羽毛球。
能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?
例3:某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?
分析与解答:假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。
依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:
50+49+48+…+2+1=(50+1)×50÷2=1275(次)
练习三
1,学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。
如果有21人参加比赛,一共要进行多少场比赛?
2,在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?
3,假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?
分析与解答:首先应该弄清楚这题是求99个连续自然数的数字之和,而不是求这99个数之和。
为了能方便地解决问题,我们不妨把0算进来(它不影响我们计算数字之和)计算0~99这100个数的数字之和。
这100个数头尾两配对后每两个数的数字之和都相等,是9+9=18,一共有100÷2=50对,所以,1~99这99个连续自然数的所有数字之和是18×50=900。
练习四
1,求1~199这199个连续自然数的所有数字之和。
2,求1~999这999个连续自然数的所有数字之和。
3,求1~3000这3000个连续自然数的所有数字之和。
分析与解答:不妨先求0~199的所有数字之和,再求200~209的所有数字之和,然后把它们合起来。
0~199的所有数字之和为(1+9×2)×(200÷2)=1900,200~209的所有数字之和为2×10+1+2+…+9=65。
所以,1~209这209个连续自然数的全部数字之和为1900+65=1965。
练习五
1,求1~308连续自然数的全部数字之和。
2,求1~2009连续自然数的全部数字之和。
3,求连续自然数2000~5000的全部数字之和。