不等式及其解集 教学设计word版本
- 格式:doc
- 大小:62.01 KB
- 文档页数:5
《不等式及其解集》教案1★新课标要求(一)知识与技能1.使学生感受到生活屮存在着人量的不等关系,了解不等式和一元一次不等式的意义.2.让学牛H发地寻找不等式的解,会在数轴上正确地表示出不等式的解集.3.能够根据题意准确迅速地列出相应的不等式.(二)过程与方法经历把实际问题抽象为不等式的过程,能够列出不等关系式;初步体会不等式(组)是刻画现实世界屮不等关系的一种有效的数学模型,培养学生的建模意识,渗透数形结合思、想.(三)情感、态度与价值观1.通过对不等式、不等式的解打解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识.2.讣学牛充分体会到牛活屮处处有数学,并能将它们应川到主活的各个领域屮去.3.培养学牛类比的思想方法、数形结合的思想.★教学重点木小节的重点是不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集.★教学难点难点是不等式解集的意义,根据题意列岀相应的不等式.★教学方法采用类比法和比较法,教师启发、引导,学生自主阅读、分析,讨论、交流学习成果.★教学过程一、创设问题情境,导入新课教师活动:教师在轻松欢快的音乐屮演示以“顾客选择不同商场进行购物的图片”为主体的课件.学生活动:学生欣赏图片,阅读其中的文字.体会不等式在实际问题中有广泛的应用. 师生共同总结:在我们现实生活中,不仅存在着大量的相等关系,同时也存在看人量的不等关系.如: 年龄的大小,个子的髙矮,身体的轻重,速度的快慢,路程的远近等等都表示不等的关系.用等式(包括方程)可以研究相等关系,要研究不等关系也需要专门的数学工具,这就是不等式.二、自主学习,合作探究,学习不等式等有关概念1.对不等式的定义的学习教师活动:教师播放课件,提岀问题,充分调动学生的探究兴趣.问题:一辆匀速行驶的汽车在11:20距A地50千米,要在12:00 Z前驶过A地,车速应满足什么条件?学生活动:学生分组讨论,教师参与其中及吋解决探究中遇到的困难.师生互动:小组甲:这属于行程问题,速度、时间和路程有关系为:路程$二速度「X时间r.这个等式有三种写法:®5 = vz; @v = -;③t V小组乙这个问题问的是车速V应满足什么条件?所以我们认为应从路程或时间两个介度考虑问题.小组丙:就问题中给出的条件看,11:20到12:00经过40分钟即彳小时,还有一个距A地50千米,也就是说考小时行驶的路程要大于50千米.小组丁:这是从路程的角度想,我们要是从时间的角度想,就是说行驶50千米路程所用的时间小于寺小时.教师活动:通过小组探究活动,大家分析得都很有道理,那么,同学们能不能用一•个数学关系式来表达它们呢?学牛活动:可以,如果设车速为v千米/小时,从路程的角度考虑可以得出:—>50;350 2从时间的角度考虑可以得出:—v 3教师活动:很好,以上两个关系式是用“V”或“〉”连接表示大小关系的式子,这就是我们今天要学习的内容一一不等式.师生互动:归纳不等式的定义:用“V”或“>”表示大小关系的式子叫做不等式.比如空〉50和聖V ?都是不等式,请同学们再举出一些不等式的例了.3 v 3教师板书:老师把学生举例分类罗列在黑板上:@5>3, 0<5;②7H3, 3H-1;③&是正数口J 以表示为a>0;④Q是非负数怎么表示呢?教师引导学生分析:非负数即正数或0,正数可以表示为。
《不等式及其解集》教学设计教学目标:1、知识与技能:感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;2、过程与方法:经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;3、情感态度与价值感:通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
教学重难点:1.正确理解不等式、不等式解与解集的意义。
2.把不等式的解集正确地表示到数轴上。
教法:自主学习法,讲授法教学过程:一、创设情境,导入新课1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了。
这是什么原因呢?2、利用PPT 在直播平台上出示生活中不相等的图片,并让学生举例。
设计意图:利用生活的情景导入本课题,激发学生学习不等式的积极性和学习兴趣,将学生的思维牵引到带本节课上来。
二、探究新知利用PPT 出示例题:一辆匀速行驶的汽车在11:20 时距离A 地50 千米。
要在12:00 准时驶过A 地,车速应该具备什么条件?学生很容易根据以往一元一次方程可以列出方程:2/3x=50,接着我并顺势给出题目:一辆匀速行驶的汽车在11:20 时距离A 地50 千米。
要在12:00 以前驶过A 地,车速应该具备什么条件?从而引导学生从两个维度来思考:1,从时间上看,汽车要在12:00 之前驶过A 地,则以这个速度行驶50 千米所用的时间不到2/3 小时,即汽车驶过A 地的时间小于2/3 小时,即:50/x<2/3 2,从路程上看,汽车要在12:00 之前驶过A 地,则以这个速度行驶2/3 小时的路程要超过50 千米,即汽车2/3 小时走的路程大于50 千米,即(2/3)x>50 以此来引出不等式的概念1,不等式、一元一次不等式的概念在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“ ”表示不等关系的式子也是不等式。
人教版七年级下册数学《不等式及其解集》教学设计.doc不等式及其解集教学设计一、内容及内容解析内容本节课内容是人教版义务教育课程标准实验教科书数学七年级下册第九章第一节第课时的内容涉及概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集内容解析现实生活中存在大量的相等关系,也存在大量的不等关系本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念前面学过方程、方程的解、解方程的概念通过类比教学,不等式、不等式的解、解不等式几个概念不难理解但是对于初学者而言,不等式的解集的理解就有一定的难度因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助二、目标及目标解析1.教学目标(1)了解不等式的概念(2)理解不等式的解、解集及解不等式,能正确表示不等式的解集(3)体会数学学习中的类比思想和数形结合思想2.目标解析目标(1)要求学生能正确区别不等式、等式以及代数式目标(2)要求学生能够通过计算判断一个数是否为不等式的解;理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合;用符号表示简单不等式的解集,并学会用数轴的形式表示简单不等式的解集;理解解不等式是求不等式解集的一个过程目标(3)需要教师紧紧把握类比思想方法这个主线,让学生在由等式到不等式,由方程的解到不等式的解,解方程到解不等式的类比教学过程中,潜移默化,把教学过程变成学生对知识的探索过程,让学生学会用类比的思想方法思考和解决问题,帮助学生积累数学活动的经验并在用式子和用数轴表示不等式的解集的教学中让学生体会到数形结合思想三、学生学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,对“”“”符号并不陌生,在前面学习过用方程表示问题情景中的等量关系不等式和方程在分析解决实际问题中有许多共同点,教学中,可以在学生已有知识的基础上,结合七年级学生认知特点,合理地应用类比思想,充分发挥学习心理学中正向迁移的积极作用,为进一步学习不等式提供合理的学习平台在知识障碍方面,不等式的解集是一个抽象的概念,涉及集合思想,学生理解起来较困难,特别是“解集”与“解”之间的关系,学生容易混淆;数轴上表示解集是数和图形的相互转化,需要注意的地方多,如:“不等号的方向与折射线的方向”,“画空心圆圈的情形”,学生在做题时容易误解;在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难另外,由于七年级学生具有好动、好问、好奇的心理特征,所以在教学中,一方面,要运用直观生动的形式,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面,要创造条件与机会,让学生发表见解,充分发挥学生学习的主动性四、教学重难点重点:不等式相关概念的理解和不等式的解集的表示难点:不等式的解集的理解五、教学策略及其分析策略教师通过设置“问题串”,利用类比的思想,采用启发式教学,使学生将独立思考与合作交流相结合,从而达成学习目标策略分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度教师不断用等式、方程知识的学习内容和学习方法启发学生,通过设置环环相扣的“问题串”,引导学生达成学习目标这样以旧引新,以新强旧,学生更易理解在这个过程中,教师为学生搭建自主学习、合作交流的平台,展示学习成果、反馈学习疑难;通过富有针对性的提问、指导,对教学进行及时调控,从而面向全体,为不同层次的学生提供学习的机会和恰当的帮助,提高课堂实效六、教学过程设计(一)创设情境,引入新课生活引入:在前面,我们学习了与方程有关的很多知识,了解到生活中存在着很多的等量关系那么,请同学们想一想,在生活中是不是所有的关系都能用等量关系来表示?待学生自由发言后,教师使用多媒体展示一组生活中的学生所熟悉的表现不等关系的图片由此可见,“不相等”处处可见这一节,我们就开始学习一类新的数学知识:不等式【设计意图】根据七年级学生的年龄特征,依靠生活背景,引发学生注意,使学生产生好奇心,激发学生的兴趣同时培养学生将实际生活中的问题抽象为数学问题的能力,使学生体会到数学来源于生活(二)开展活动,首探新知【活动】想一想得出不等式的概念枣阳市某中学组织学生乘车前往火青陵XX扫墓已知该校与火青陵XX的距离为50千米,他们上午:20从学校出发,汽车匀速行驶若该车计划中午2点准时到达火青陵XX,车速应满足什么条件?设车速为_千时,可列式子:_若该车实际上在中午2点之前已到达火青陵XX,车速应满足什么条件?设车速为_千时,可列式子:_观察所得到的式子,它们之间有什么区别?用符号“”或“”表示大小关系的式子,叫做_像a2a2这样用符号“”表示不等关系的式子也是不等式【设计意图】采用类比的方法,适当改变教材问题呈现方式,按照“等式不等式”的学习程序,学生自主解答,并在展示答案后自述列式理由这样做,一是降低直接列不等式的难度;二是让学生在开课初就能感受到类比的思想方法,实现已有知识的正迁移,这对培养学生良好的学习方式起到了引导作用;三是提供对比素材,通过“观察所得到的式子,它们之间有什么区别?”这个问题指引思考方向,为自然获得不等式的概念奠定基础看谁最聪明下列式子哪些是不等式?哪些不是不等式?(1)25;(2)_32_;(3)4_2y0;(4)a2b;(5)_22_0;(6)abc;(7)5m382用不等式表示:(1)a是正数;_(2)a是负数;_(3)a与5的和小于7;_(4)a与2的差大于;_(5)a的4倍大于8;_(6)a的一半小于3_【设计意图】第题中有含未知数的不等式,也有不含未知数的不等式,有等式,也有代数式,通过问题的解决,有效促使学生了解不等式的概念,认识不等式的特征,从而完成教学目标学生会识别不等式后,那么会列不等式吗?于是,自然产生第2题这种题型,并且是直接选用的教材练习题,达到用好教材的目的(三)开展活动,再探新知【活动2】填一填理解不等式的解与方程的解类似,我们把使不等式成立的未知数的值叫做_待学生准确作答后,提问:含有未知数的等式叫做什么?使方程的左边和右边相等的未知数的值叫做什么?2和方程的解类似,_78使不等式2_50成立,它叫做这个不等式的什么?表格中写出来的数中,3还有这个不等式的解吗?3你能说说什么叫做不等式的解吗?【设计意图】在学生正确填好表格的过程中,默默感受到方程的解和不等式的解之间有一定联系,教师通过三个问题将这种感觉外显,仍然遵循“方程的解不等式的解”的类比学习程序,初步理解不等式的解【活动3】探一探由不等式的解得出它的解集深思不等式的解集思考:除了80和78,不等式2_50还有其他解吗?32如果有,你能再举出一些吗?这个不等式有多少个解?2点之前已经到达火青陵XX,那么车3这些解应满足什么条件?_75表示了能使不等式2_50成立的_的取值范围,叫做不等式2_50的解的_,简称33_学生活动:围绕第2个问题进行小组讨论,然后汇报发言【设计意图】通过第,2两个问题,引起学生对上述_78,80是不等式2_50的解的反思,加深3学生对不等式的解的理解,然后通过问题3让学生在小组里讨论发言后,结合老师的举例进一步理解“任何一个大于75的数都是不等式的解,这样的解有无数个,而任何一个小于或等于75的数都不是不等式的解”,从而针对这个具体例子引导学生由有限思考转向无限思考,初步感知到无数个解的集合的思想,同时,能建立知识间的联系,完善认知结构4这个解集在数轴上怎么表示?075第一步:_;第二步:_;第三步:_师生活动:教师讲解示范,引导学生学习在数轴上表示不等式的解集的方法,由学生讨论归纳一般步骤【设计意图】用数轴表示不等式的解集,体现了数形结合思想,中间用到的一些数学知识是数学规定,教师示范引领得出画法符合学生认知规律和数学学习规律,体现了教师作为组织者、引导者与合作者的地位和作用,同时,再次开展小组活动,讨论、归纳用数轴表示不等式的解集的一般步骤,进一步培养学生的合作交流意识,提高学生的归纳概括能力和语言表达能力,并使学生进一步加深理解不等式的解集这个概念师:现在请同学们思考“想一想”中的问题,第问说汽车在速应满足的条件是什么?由不等式502也能得出这个结果吗?_3师生交流:学生可能会凭“直觉”感知到可以得出这个结果,也可能会根据不等式2_50的解到解3集的教学过程感悟到代入验算说明_75能满足不等式502教师可以说明有时“直觉”并不可靠,_3需要验证另外,代入验算也只是一种方法,可能会“以偏概全”,我们在以后的学习中会通过一些运算方法把_75算出来至此正式提出不等式的解集的概念,并叙述解不等式的概念一般地,一个含有未知数的不等式的所有的解,组成这个不等式的_求不等式的解集的过程叫做_【设计意图】开头从实际问题列出不等式,此处从不等式的解集到实际问题,首尾呼应,并通过一个新的问题,揭示了知识的内在联系,为使学生深入理解“一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集”创造有效问题情境,使其进一步感悟不等式的解集和它的解之间的联系(四)拓展研究,深化新知【活动4】练一练感悟不等式的解和解集的联系例直接想出不等式_46的解集,并在数轴上表示出来变式:已知_的取值范围如下图所示,你能写出_的取值范围吗?(1)(2)4004变式2:直接想出不等式2_8的解集,并在数轴上表示出来变式3:直接想出不等式2_8的解集【设计意图】变式训练是培养学生多层次、多角度思维能力的一种较好的形式源于此理念,教师将课后练习第3题题型引入这里作例题,并进行变式练习,深化了对概念本质属性的认识和把握,符合概念学习的有意义的学习原理(五)归纳小结,畅谈收获愉快的时光总是短暂的,能说说这一堂课的收获吗?你有什么体会?先由学生自由发言,再由教师总结课件展示:【设计意图】构建知识网络,完善学生认知结构(六)目标检测,反馈达标填空,用不等式表示:(1)a与5的和是正数_;(2)a与2的差是负数_;(3)c的一半不等于3_【设计意图】检测学生对不等式的概念、不等式的符号语言、列不等式的掌握情况2下列数中是不等式_36的解的是(A4B0C2.5)D3.【设计意图】检测学生对不等式的解的掌握情况3下面用数轴表示不等式_22的解集正确的是【设计意图】检测学生对不等式的解集及用数轴表示不等式的解集的掌握情况(七)布置作业,快乐提高基础题:习题9.第,2,3题2拓展题:【设计意图】巩固已学知识,并通过拓展题为后面的学习做好准备,既照应了本节课的实际问题情境,又能让学生反思总结用数轴表示不等式的解集的方法,以便能更好、更轻松地完成后续学习任务(八)板书设计。
9.1.1导学案教学目标:知识与能力:1、能说出不等式和一元一次不等式的定义。
2、能说出什么是不等式的解、解集、解不等式。
过程与方法:通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上。
情感态度和价值观:探究不等式解与解集的不同意义的过程,渗透数形结合思想。
教学重点:了解不等式和一元一次不等式的定义。
教学难点:能把不等式的解集正确地表示到数轴上。
教学方法:112师生互动模式教具:多媒体教学过程:一、导学质疑:知识链接:1、用式子表示三角形的三边关系2、什么叫方程、一元一次方程?举例说明。
导入明标:1、举一些有关不等式的生活实例。
如:一天,小明和他的爸爸去动物园玩,10:20从鸟的天堂出发赶往距此50千米的熊猫馆,可熊猫馆要在11:00以前才能够进去,否则要等到下午,可下午爸爸有事.问:爸爸的车速应该具备什么条件,才能在11:00以前赶到?若设车速为每小时x千米,能用一个式子表示吗?2.学生再举出一些有关不等式的实例。
如:过马路,跷跷板,太阳温度,限速路标,乌鸦喝水,思考相应问题,体会生活中的不等式。
3.结合实例引入本节课所要学习的内容和本节的学习目标。
(板书课题)学习目标:1、能说出不等式和一元一次不等式的定义。
2、能说出什么是不等式的解、解集、解不等式。
3、会把不等式的解集正确地表示到数轴上。
自觉质疑:(自学10分钟)请阅读课本114页到115页的内容,思考以下问题:1、①什么叫不等式、一元一次不等式?举例说明。
②下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠1(4)x+3>6 (5)2m<n(6)2x-3③不等号有哪几种?④数-2,-1,0,1,2.5适合不等式x+3<4吗?⑤什么叫不等式的解?⑥什么叫不等式的解集?如何在数轴上表示它的解集?⑦什么叫解不等式?2、思考:①判断下列数中哪些是不等式>50的解76,73,79,80,74.9,75.1,90,60 上述不等式还有其它的解吗?并在数轴上表示它所有的解二、合作交流:(10分钟)1.各小组同学之间互相检查一下自学情况。
不等式及其解集教学设计(精选5篇)第一篇:不等式及其解集教学设计《不等式及其解集》教学设计一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标 1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)1.从时间方面虑:<2.从行程方面: >50 3.从速度方面考虑:x>50÷设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析 1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:<,>50,x>50÷都是不等式. 2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75 说明x任意取一个大于75的数都是不等式<,>50的解. 3.不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式<的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?2、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计 1.填空下列式子中属于不等式的有___________________________ ①x +7>②x≥y ② + 2 = 0④ 5x + 7 设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7 ② a的与b的3倍的和是非负数③ 正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.3.填空下列说法正确的有_____________ ①x=5是不等式x-2>0的解②不等式 x2 > 0的解集为x =5 ④不等式 x-2 > 0的解集为 x> 2 设计意图:进一步让学生正确理解不等式的解与解集的区别与联系,并且理解数学中的从属关系与包涵关系.4.选择下列不等式的解集在数轴上表示正确的是:()A.x>-3B.x≥2 C.x≤5 D.0≤x≤10设计意图:进一步培养学生数形结合能力,理解空心圆圈与实心圆点的意义,并且能正确确定方向.第二篇:不等式及其解集教学设计《不等式及其解集》教学设计【教学目标】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式。
不等式及其解集教案一、教学目标1. 了解不等式的概念及其表达方式。
2. 学会解一元一次不等式。
3. 能够求解不等式的解集。
4. 能够应用不等式解决实际问题。
二、教学重点与难点1. 教学重点:不等式的概念及其表达方式。
一元一次不等式的解法。
不等式解集的求解方法。
2. 教学难点:不等式解集的求解方法。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和讨论来掌握不等式的概念和解法。
2. 使用实例和练习题,让学生通过实际操作和练习来加深对不等式的理解和应用能力。
3. 利用图形和图像辅助教学,帮助学生直观地理解不等式的解集。
四、教学准备1. 教学课件和教案。
2. 练习题和答案。
3. 图形和图像的展示工具。
五、教学过程1. 导入:通过引入实际问题,引发学生对不等式的兴趣和思考。
引导学生回顾已学的代数知识,为新知识的学习做好铺垫。
2. 讲解不等式的概念:解释不等式的定义和表达方式。
举例说明不等式的应用场景。
3. 讲解一元一次不等式的解法:引导学生通过移项、合并同类项等步骤解一元一次不等式。
给出解题的步骤和注意事项。
4. 练习题解答:让学生独立解答练习题,巩固所学的解法。
引导学生总结解题经验和技巧。
5. 讲解不等式解集的求解方法:介绍解集的概念和解集的表示方法。
引导学生通过图形和图像来求解不等式的解集。
6. 练习题解答:让学生独立解答练习题,巩固所学的解集求解方法。
引导学生总结解题经验和技巧。
7. 总结与复习:对本节课的内容进行总结和复习。
强调不等式的重要性和应用价值。
8. 布置作业:布置相关的练习题,让学生进一步巩固所学知识。
鼓励学生进行自主学习和思考。
教学反思:在教学过程中,要注意关注学生的学习情况,及时进行调整教学方法和节奏。
对于学生的疑问和困惑,要耐心解答和引导,帮助学生理解和掌握不等式的概念和解法。
要注重培养学生的解题能力和思维能力,提高他们解决实际问题的能力。
六、教学拓展1. 引入不等式的性质:讲解不等式的基本性质,如同向相加、同向相乘等。
《不等式及其解集》数学教案标题:《不等式及其解集》一、教学目标:1. 知识与技能:- 学生能够理解并掌握不等式的概念及基本性质。
- 学生能够熟练地求解一元一次不等式,并正确表示其解集。
2. 过程与方法:- 通过观察、比较和归纳,培养学生分析问题和解决问题的能力。
- 通过实例探究,引导学生理解不等式的实际意义。
3. 情感态度价值观:- 培养学生的逻辑思维能力和严谨的学习态度。
- 提高学生对数学学习的兴趣,激发他们主动探索知识的热情。
二、教学重点与难点:重点:不等式的概念及其基本性质,一元一次不等式的解法。
难点:理解和掌握不等式的解集。
三、教学过程:1. 导入新课:可以通过生活中的实例引出不等式,例如:小明身高比小红高,那么小明的身高可以用什么符号来表示?从而引入不等式的概念。
2. 新课讲解:(1)不等式的概念:通过实例,让学生理解什么是不等式,然后给出不等式的定义。
(2)不等式的解集:通过具体的例子,让学生理解什么是不等式的解,什么是不等式的解集,如何表示不等式的解集。
(3)一元一次不等式的解法:讲解并示范一元一次不等式的解法,然后让学生自己动手做题,老师进行指导和点评。
3. 巩固练习:设计一些关于不等式的题目,让学生独立完成,然后进行集体批改和讲评。
4. 小结与作业:总结本节课所学的知识,布置相关的作业,要求学生在课后继续复习和巩固。
四、教学反思:在教学过程中,教师应注重引导学生自主学习,鼓励他们提出问题,培养他们的创新精神和实践能力。
同时,教师也应及时反馈学生的学习情况,调整教学策略,提高教学效果。
《9.1.1不等式及其解集》教学设计
课程名称《9.1.1不等式及其解集》
授课人教学对象七年级科目数学课时安排1课时
一、教材分析
1教材的地位和作用
本章是新人教版七年级下册第九章的教学内容,此部分内容是在学生继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是进一步探究现实生活中的数量关系、培养学生分析问题和解决问题能力的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式知识的基础。
通过实际问题中一元一次不等式的应用,进一步增强学生学数学、用数学的意识,体会学数学的价值和意义;相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部份,它在解决各类实际问题中有着广泛的应用
1.2本节课的教材内容
本节课的内容主要介绍不等式及不等式的解的概念及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用.
1.3 学情分析
(1) 学生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解。
(2) 学生已初步具备了“从实际问题中抽象出数学模型,并回到实际问题解释和检验”的数学建模能。
(3) 学生已初步具备探究和比较的能力
二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观)
教学目标:
2.1知识与技能:了解不等式概念,并理解不等式的解、解集,能够正确表示不等式的解集;经历把实际问题抽象为不等式的过程,能够列出不等关系式。
使学生进一步理解归纳和类比的数学方法,以及从具体到抽象获取知识的思维方式;初步体会不等式是刻画现实世界中不等关系的一种有效数学模型。
2.2数学思考:感受生活中的数学问题,发展学生的观察、归纳、猜测、验证能力,领悟数学与现实世界的必然联系。
2.3解决问题:通过经历不等式的得出过程,积累数学活动经验。
通过分组活动探索不等式的解与解集,体会在解决问题过程中与他人合作的重要性。
2.4情感态度与价值观:认识通过观察、实验、类比可以获得数学结论,体验数学活动充满着探索性和创造性。
在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,学会分享别人的想法和结果,并重新审视自己的想法,能从交流中获益。
教学重点:不等式相关概念的理解和不等式的解集的表示。
教学难点:正确理解不等式解集的意义。
三.教学策略选择与设计
教法:根据本节课教学内容和七年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,揭示事物发展从“特殊”到“一般”再到“特殊”的辩证规律;既提高了学生的学习兴趣,增强了信心,又有利于接受知识;也有益于形成对问题进行探索、研究和解决的能力。
学法:根据本节课的特点,采用自主探究、合作交流的探究式学习方。
四、教学环境及设备、资源准备
教学环境:多媒体教室
学生准备:三角尺、直尺
教师准备:多媒体课件
教学资源:电脑、投影仪等
七、课后反思学习目标分析表
流程图。