04184-线性代数
- 格式:doc
- 大小:886.00 KB
- 文档页数:15
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。
20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。
全国2010年度4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++221121c a c a b b ( B )A .n m -B .m n -C .n m +D .)(n m +-2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACBB .CABC .CBAD .BCA3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8-B .2-C .2D .84.⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=333231232221131211333a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=100030001P ,⎪⎪⎪⎭⎫⎝⎛=100013001Q ,则=B ( B )A .PAB .APC .QAD .AQ5.已知A 是一个43⨯矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C )A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关C .由1个非零向量组成的向量组线性相关D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出D .β必能由321,,ααα线性表出8.设A 为n m ⨯矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于mB .等于mC .小于nD .等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T AB .2AC .1-AD .*A10.二次型212322213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分)11.行列式2010200920082007的值为_____________. 12.设矩阵⎪⎪⎭⎫ ⎝⎛-=102311A ,⎪⎪⎭⎫ ⎝⎛=1002B ,则=B A T_____________.13.设T )2,0,1,3(-=α,T )4,1,1,3(-=β,若向量γ满足βγα32=+,则=γ__________.14.设A 为n 阶可逆矩阵,且nA 1||-=,则|=-||1A _____________.15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则=||A _____________.16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为_____________.17.设n 阶可逆矩阵A 的一个特征值是3-,则矩阵1231-⎪⎭⎫⎝⎛A 必有一个特征值为_________.18.设矩阵⎪⎪⎪⎭⎫⎝⎛----=00202221x A 的特征值为2,1,4-,则数=x _____________.19.已知⎪⎪⎪⎪⎫⎛=10002/102/1b a A 是正交矩阵,则=+b a _____________. 20.二次型323121321624),,(x x x x x x x x x f ++-=的矩阵是_____________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式333222c c b b a a c b a cb a D +++=的值. 解:222333222333222111c b a c b a abc c b a c b a c b a c c b b a a c b a c b aD ==+++= 2222222200111a c a b ac ab abc a c a b a c ab abc ----=----=))()((11))((b c a c a b abc ac a b a c a b abc ---=++--=.22.已知矩阵)3,1,2(=B ,)3,2,1(=C ,求(1)C B A T =;(2)2A .解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==963321642)3,2,1(312C B A T;(2)注意到13312)3,2,1(=⎪⎪⎪⎭⎫⎝⎛=T CB ,所以131313)())((2=====A C B C CB B C B C B A T T T T T ⎪⎪⎪⎭⎫ ⎝⎛963321642.23.设向量组T 4T 3T 2T 1(1,1,1,1),)0,3,1,1(,(1,2,0,1),(2,1,3,1)=--===αααα,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--==1011130311211112),,,(4321ααααA →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1112130311211011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1110233001101011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000200001101011→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000100001101101,向量组的秩为3,421,,ααα是一个极大无关组,213ααα+-=.24.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A ,⎪⎪⎪⎭⎫⎝⎛--=315241B .(1)求1-A ;(2)解矩阵方程B AX =. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛=100010001100210321),(E A →⎪⎪⎪⎭⎫ ⎝⎛--100210301100010021→⎪⎪⎪⎭⎫ ⎝⎛--100210121100010001,1-A ⎪⎪⎪⎭⎫⎝⎛--=100210121; (2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--100210121⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--3111094315241.25.问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).解:⎪⎪⎪⎭⎫ ⎝⎛=63222204321),(a b A →⎪⎪⎪⎭⎫ ⎝⎛---23202204321a →⎪⎪⎪⎭⎫ ⎝⎛-03002204321a a .3≠a 时,3)(),(==A r b A r ,有惟一解,此时→),(b A ⎪⎪⎪⎭⎫ ⎝⎛010********a →⎪⎪⎪⎭⎫⎝⎛010********* →⎪⎪⎪⎭⎫ ⎝⎛010*********→⎪⎪⎪⎭⎫ ⎝⎛010*********,⎪⎩⎪⎨⎧===012321x x x ; 3=a 时,n A r b A r <==2)(),(,有无穷多解,此时→),(b A ⎪⎪⎪⎭⎫⎝⎛000023204321→⎪⎪⎪⎭⎫ ⎝⎛000023202001→⎪⎪⎪⎭⎫ ⎝⎛000012/3102001,⎪⎪⎩⎪⎪⎨⎧=-==333212312x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛12/30012k ,其中k 为任意常数.26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A 的三个特征值分别为5,2,1,求正的常数a 的值及可逆矩阵P ,使⎪⎪⎪⎭⎫ ⎝⎛=-5000200011AP P .解:由521)9(23323030002||2⨯⨯=-===a a aa a A ,得42=a ,2=a .=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----320230002λλλ.对于11=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----220220001→⎪⎪⎪⎭⎫ ⎝⎛000110001,⎪⎩⎪⎨⎧=-==333210x x x x x ,取=1p ⎪⎪⎪⎭⎫ ⎝⎛-110;对于22=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----120210000→⎪⎪⎪⎭⎫ ⎝⎛000100010,⎪⎩⎪⎨⎧===003211x x x x ,取=2p ⎪⎪⎪⎭⎫⎝⎛001;对于53=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--220220003→⎪⎪⎪⎭⎫ ⎝⎛-000110001,⎪⎩⎪⎨⎧===333210x x x x x ,取=3p ⎪⎪⎪⎭⎫ ⎝⎛110.令⎪⎪⎪⎭⎫ ⎝⎛-==101101010),,(321p p p P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P .四、证明题(本题6分)27.设A ,B ,B A +均为n 阶正交矩阵,证明111)(---+=+B A B A .证:A ,B ,B A +均为n 阶正交阵,则1-=A A T ,1-=B B T ,1)()(-+=+B A B A T ,所以111)()(---+=+=+=+B A B A B A B A T T T .全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵),,(321ααα=A ,其中i α(3,2,1=i )为A 的列向量,若=||B 6|),,2(|3221=+αααα,则=||A ( C )A .12-B .6-C .6D .122.计算行列式=----32320200051020203( A )A .180-B .120-C .120D .1803.若A 为3阶方阵且2||1=-A ,则=|2|A ( C ) A .21B .2C .4D .84.设4321,,,αααα都是3维向量,则必有( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .1α不可由432,,ααα线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则=)(A r ( C ) A .2B .3C .4D .56.设A 、B 为同阶方阵,且)()(B r A r =,则( C ) A .A 与B 相似B .||||B A =C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为0,1,2,则=+|2|E A ( D ) A .0B .2C .3D .24..A .A 与B 等价B .A 与B 合同C .||||B A =D .A 与B 有相同特征值9.若向量)1,2,1(-=α与),3,2(t =β正交,则=t ( D )A .2-B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为0,1,2,则( B ) A .A 正定B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)11.设⎪⎪⎪⎭⎫ ⎝⎛-=421023A ,⎪⎪⎭⎫⎝⎛--=010112B ,则=AB ______________.12.设A 为3阶方阵,且3||=A ,则=-|3|1A ______________.13.三元方程1321=++x x x 的通解是______________.14.设)2,2,1(-=α,则与α反方向的单位向量是______________.15.设A 为5阶方阵,且3)(=A r ,则线性空间}0|{==Ax x W 的维数是______________.16.17.若A 、B 为5阶方阵,且0=Ax 只有零解,且3)(=B r ,则=)(AB r ______________.18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--110101012所对应的二次型=),,(321x x x f ______________.19.设3元非齐次线性方程组b Ax =有解⎪⎪⎪⎭⎫ ⎝⎛=3211α,⎪⎪⎪⎭⎫⎝⎛-=3 2 12α,且2)(=A r ,则b Ax =的通解是______________.20.设⎪⎪⎪⎭⎫ ⎝⎛=321α,则T A αα=的非零特征值是______________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式2000102000002000002010002=D .解:连续3次按第2行展开,243821128201020102420010200002010022=⨯=⨯=⨯=⨯=D . 22.设矩阵X 满足方程⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-021102341010100001200010002X ,求X .解:记⎪⎪⎪⎭⎫ ⎝⎛-=200010002A ,⎪⎪⎪⎭⎫ ⎝⎛=010100001B ,⎪⎪⎪⎭⎫⎝⎛---=021102341C ,则C AXB =,⎪⎪⎪⎭⎫ ⎝⎛-=-2/100010002/11A ,⎪⎪⎪⎭⎫ ⎝⎛=-010*******B ,11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛-=10002000121⎪⎪⎪⎭⎫ ⎝⎛---021102341⎪⎪⎪⎭⎫⎝⎛010100001⎪⎪⎪⎭⎫ ⎝⎛---=021********⎪⎪⎪⎭⎫ ⎝⎛010100001⎪⎪⎪⎭⎫⎝⎛---=20102443121. 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛------089514431311311→⎪⎪⎪⎭⎫⎝⎛------176401764011311→⎪⎪⎪⎭⎫⎝⎛---000001764011311 →⎪⎪⎪⎭⎫ ⎝⎛---0000017640441244→⎪⎪⎪⎭⎫ ⎝⎛--000001764053604→⎪⎪⎪⎭⎫ ⎝⎛----000004/14/72/3104/54/32/301,⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=-+=4433432431472341432345x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3012/32/3004/14/521k k ,21,k k 都是任意常数. 24.求向量组)4,1,2,1(1-=α,)4,10,100,9(2=α,)8,2,4,2(3---=α的秩和一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=844210141002291),,(321TT T ααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21121012501291→⎪⎪⎪⎪⎪⎭⎫⎝⎛--08001900410291 →⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010291→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010201,向量组的秩为2,21,αα是一个极大无关组.25.已知⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量T )1,1,1(-=ξ,求b a ,及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设λ是ξ所对应的特征值,则λξξ=A ,即⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---1111112135212λb a ,从而⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛++-λλλ121b a ,可得3-=a ,0=b ,1-=λ; 对于1-=λ,解齐次方程组0)(=-x A E λ:=-A E λ=⎪⎪⎪⎭⎫ ⎝⎛+-+---201335212λλλ⎪⎪⎪⎭⎫ ⎝⎛----101325213→⎪⎪⎪⎭⎫⎝⎛----213325101→⎪⎪⎪⎭⎫ ⎝⎛110220101→⎪⎪⎪⎭⎫ ⎝⎛000110101,⎪⎩⎪⎨⎧=-=-=333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛--111,属于1-=λ的全部特征向量为k ⎪⎪⎪⎭⎫⎝⎛--111,k 为任意非零实数.26.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A ,试确定a 使2)(=A r .解:⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A →⎪⎪⎪⎭⎫ ⎝⎛----a 12121122211→⎪⎪⎪⎭⎫ ⎝⎛----233023302211a →⎪⎪⎪⎭⎫⎝⎛--a 00023302211,0=a 时2)(=A r . 四、证明题(本大题共1小题,6分)27.若321,,ααα是b Ax =(0≠b )的线性无关解,证明,12αα-13αα-是对应齐次线性方程组0=Ax 的线性无关解.证:因为321,,ααα是b Ax =的解,所以12αα-,13αα-是0=Ax 的解;设0)()(132121=-+-ααααk k ,即0)(3221121=++--αααk k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧===--0002121k k k k ,只有零解021==k k ,所以,12αα-13αα-线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
04184线性代数知识点b b1. 已知 2 阶行列式 a 1 a 1= N , b 1 b c 1 c 线性代数知识点 = n ,则 b 1 b 2 a 1 + c 1 a 2 + c 22. 设 A 是 n 阶矩阵,C 是 n 阶正交阵,且 B=C T AC ,则 A 与B 等价、A 与 B 有相同的特征值、A 与 B 相似3. n 元线性方程组 Ax=b 有两个解 a 、c ,则 a-c 是 Ax=0 的解。
4.4.设A ,B ,C 均为n 阶方阵,AB= BA ,AC=CA ,则ABC=BCA5. 非齐次线性方程组 Ax=b 中,系数矩阵 A 和增广矩阵的秩都等于 4,A 是4×6 矩阵,则方程组有无穷多解6. α,β,γ是三维列向量,且|α,β,γ|≠0,则向量组α,β,γ的线性相关性是线性无关7.(-1,1)不能表示成(1,0)和(2,0)的线性组合8.(4,0)能表示成(-1,2),(3,2)和(6,4)的线性组合,且系数不唯一9.设β=(1,0,1),γ=(1,1,-1),则满足条件3x+β=γ的x 为 1/3(0, 1, -2)10.设α,β,γ都是 n 维向量,k ,l 是数,(α+β)+γ=α+(β+γ)、α+β=β+α、α+(-α)=011.属于不同特征值的特征向量必线性无关、相似矩阵必有相同的特征值、特征值相同的矩阵未必相似12. 已知矩阵 A = 5 2 1有一个特征值为 0,则 x= 2.5 13. 已知 3 阶矩阵 A 的特征值为 1,2,3,则|A-4E|=-614. 已知 f (x )=x 2+x+1 方阵 A 的特征值 1,0,-1,则 f (A )的特征值为 3,1,115. 要保证 n 阶实对称阵 A 为正定,则 A -1 正定、A 合同于单位阵、A 的正惯性指数等于 n16.二次型 f (x 1,x 2,x 3)= x 12+ x 22+x 32+2x 1x 2+2x 1x 3+2x 2x 3,其秩为 117. 设 f=X T AX ,g=X T BX 是两个 n 元正定二次型,则 X T ABX 未必是正定二次型。
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
例如)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
《线性代数(经管类)》刘吉佑、徐诚浩主编,武汉大学出版社新版第一章行列式1.1 行列式的定义1。
2 行列式行(列)展开1。
3 行列式的性质与计算1。
3 克拉默法则第二章矩阵2。
1 线性方程组与矩阵的定义2.2 矩阵运算2.3 分阵的逆矩阵2。
4 分块矩阵2.5 矩阵的初等变换与初等方阵2.6 矩阵的秩2.7 矩阵与线性方程组第三章向量空间3.1 n 维向量概念及其线性运算3。
2 线性相关与线性无关3。
3 向量组的秩3.4 向量空间第四章线性方程组4。
1 齐次线性方程组4.2 非齐次线性方程组第五章特征值与特征向量5.1 特征值与特征向量5。
2 方阵的相似变换5。
3 向量内积和正交矩阵5。
4 实对称矩阵的相似标准形第六章实二次型6.1 实二次型及其标准形6。
2 正这二次型和正定矩阵… … (中间部分略)完整版15页请——QQ :1273114568 索取第一部分行列式本章概述行列式在线性代数的考试中占很大的比例。
从考试大纲来看。
虽然只占13%左右。
但在其他章.的试题中都有必须用到行列式计算的内容.故这部分试题在试卷中所占比例远大于13%.1.1 行列式的定义1。
1。
1 二阶行列式与三阶行列式的定义一、二元一次方程组和二阶行列式例1.求二元一次方程组的解.解:应用消元法得当时。
得同理得定义称为二阶行列式。
称为二阶行列式的值.记为.于是由此可知。
若.则二元一次方程组的解可表示为:例2二阶行列式的结果是一个数.我们称它为该二阶行列式的值.二、三元一次方程组和三阶行列式考虑三元一次方程组希望适当选择。
使得当后将消去。
得一元一次方程若,能解出其中要满足为解出。
在(6),(7)的两边都除以得这是以为未知数的二元一次方程组.定义1。
1。
1 在三阶行列式中,称于是原方程组的解为;类似地得这就将二元一次方程组解的公式推广到了三元一次方程组。
例3 计算例4 (1)(2)例5 当x取何值时,?为将此结果推广到n 元一次方程组。
线性代数复习资料1.n 阶行列式000000000000000121-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅n n a a a a 的值为 C A . a 1a 2…a nB. - a 1a 2…a nC . (-1)n -1 a 1a 2…a nD .(-1)n a 1a 2…a n2.设行列式121210031k -=,则k 的取值为 A A .1B .-2C .0D .13.设A 、B 均为n 阶矩阵,且A 可逆,则下列结论正确的是 AA. 若AB ≠0,则B 可逆B.若AB =0,则B =0C. 若AB ≠0,则B 不可逆D.若AB=BA ,则B =E4.设A 为n 阶实矩阵,对于线性方程组(I)AX=0和线性方程组(II)A T AX=0必有 BA. (I)的解是(II)的解,(II)的解也是(I)的解B. (I)的解是(II)的解,但(II)的解不是(I)的解C.(II)的解是(I)的解,但(I)的解不是(II)的解D.(I)的解不是(II)的解,(II)的解也不是(I)的解5.设2是3阶方阵A 的一个特征值,则A 2必有一个特征值为 AA.8B.4C.6D.2 6.n 阶方阵A 、B 相似的充分必要条件是 AA. 存在可逆矩阵P ,使P -1AP =BB.存在可逆矩阵P ,使P T AP =BC.存在两个可逆矩阵P 和Q ,使PAQ =BD.A 可以经过有限次初等变换变成B 7.对任意n 阶方阵A ,B ,总有 D A.B A B A +=+B.()111AB A B ---=C.()2222B AB A B A ++=+ D.BA AB =8.矩阵A=101001240001-⎛⎫ ⎪⎪ ⎪-⎝⎭的秩为 C A.1B.2C.3D.49.n 阶方阵A 可对角化的充分必要条件是 D A. A 有n 个不同的特征值B.A 为实对称矩阵C.A 有n 个不同的特征向量D.A 有n 个线性无关的特征向量10.设A 是n 阶实对称矩阵,则A 为正定的充要条件A.0A >B.A 的特征值全大于0C.存在n 阶矩阵C ,使得T A CC =D.负惯性指数为0 11.齐次线性方程组0Ax =有非零解的充要条件为DA .系数矩阵A 的任意两个列向量线性无关B .系数矩阵A 的任意两个列向量线性相关C .系数矩阵A 中必有一个列向量可由其余列向量线性表出D .系数矩阵A 中任意列向量可由其余列向量线性表出12.设A 、B 、C 为均为n 阶可逆矩阵,且ABC =E ,则下列结论成立的是 D A .ACB =E B .BAC =E C .CBA =E D . CAB =E 13.初等方阵 AA .都可逆B .行列式的值都为1C .之和是初等方阵D .之积是初等方阵14.设A 为3阶方阵,且1=A ,则12A A -*+=④①27 ②12 ③6 ④32 15.向量组12,,,r ααα 的秩为r 的充要条件为 C A .向量组中不含零向量 B .向量组中没有两个向量成比例 C .向量组线性无关D .向量组中有一个向量不能由其余向量线性表示16.已知3阶矩阵A 的特征值为1、-1、2,则矩阵A 2+E 的特征值为 AA .1、-1、2B .2、2、3C .1、1、2D .1、1、1217.设3阶矩阵A 有特征值1,1,3-,其对应的特征向量分别为321,,X X X ,令[]321,,X X X P =,则=-AP P 1 DA .diag (-1,1,3)B .()1,3,1diag -C .()3,1,1diag -D .()1,1,3diag - 18.设12,x x 是0Ax =的解,12,y y 是Ax b =的解,则 BA .11x y +是0Ax =的解B .12x x +是0Ax =的解C .12y y +是Ax b =的解D .12y y -是Ax b =的解 19.矩阵A 的属于不同特征值的特征向量 CA .两两正交B .其和仍是A 的特征向量C .线性无关D .线性相关 20.设n 阶方阵A ,且|A |≠0,则(A *)-1= DA .|A |1 AB .|A |1A * C .11--A A D .|A |1*A21.方程组⎩⎨⎧=+=-03022121kx x x x 只有零解,则__D____A. k=6B. k ≠6C. k=-6D. k ≠-622.设矩阵A 与C 分别为m ×n 和s ×t 阵若使ABC 有意义,B 应为 __B____ A m ×t 阵 B n ×s 阵 C m ×s 阵 D n ×t 阵23.设A 为n 阶方阵,方阵行列式=A a , k 为一个常数 ,则TkA = __B____A. k aB.a k nC. a kD.ak n24.设2阶矩阵A 的伴随矩阵A *=⎪⎪⎭⎫⎝⎛4301,则A = _A_____ A. 4 B. 16 C. 2 D. 825.已知向量组A :4321,,,αααα 中432,,ααα线性无关,那么 __C____ A. 432,1,,αααα线性无关 B. 432,1,,αααα线性相关 C.32,αα线性无关 D.1α可用432,,ααα线性表出26.设A,B 均为3阶矩阵r (A )=3,r (B )=2,则r(AB )= __B____ A.1 B.2 C.3 D.627. 矩阵21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101101010是 ___C___A. 实对称矩阵B.反实对称矩阵C. 正定矩阵D. 正交矩阵 28.下列矩阵,是初等方阵的是 __D____A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100101B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010010101 C. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100120001 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010301 29.下列向量与α=(1,-1,0)正交的是 _A_____ A. 1α=(1,1,1) B. 2α=(1,-1,0) C.3α=(1,0,-1)D.3α=(0,1,-1)30.计算行列式=--3234023002001000___C___A.0B.-24C.24D.18031.设A =⎥⎦⎤⎢⎣⎡4321,则|(2A )-1|=__C____ A .4 B.-4 C -81 D.81 32.设四阶方阵A =(α1,α2,α3,β),B=(α1,α2,α3,γ) , α1,α2,α3,β,γ都是4维向量,行列式A =2, B =-1则B A +=__C____ A. 3 B. 6 C. 24D. 833.若A 为4阶方阵,r (A )=3,21,ηη是线性方程组Ax =b 的解, 则Ax =b 的通解为__D____ A .21ηη+kB .21ηηk +C .)(211ηηη++kD .)(211ηηη-+k34.设方阵A 有一个特征值为2,则__A____ A .A T 有一个特征值为2 B .A -1有一个特征值为2 C .A T 有一个特征值为21D .A -1有一个特征值为21 35.设A 为3阶方阵,其特征值分别为2,l ,0则|A -2E |=___A___ A .0 B .2 C .3 D .136.设A,B 均为3阶矩阵r (A )=3,r (B )=2,则r(AB )= __B____ A.1 B.2 C.3 D.637.齐次线性方程组x 1+x 2+x 3+ +x n =0的基础解析中解向量的个数__D____ A .0 B .1 C .n D .n-138.设4阶实对称矩阵A 的特征值分别为2,l ,0,-2,则A 的正惯性指数为___B___ A .1 B .2 C .3 D .439.设111A ⎛⎫⎪=- ⎪ ⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=111B ,则=B A T __1_____40.设1112A ⎛⎫=⎪⎝⎭,则=-1A ⎪⎪⎭⎫ ⎝⎛--1112 41.若A 为35⨯矩阵,且A 有一个三阶子式不等于0,则()=A R __3____ 42.设A 为三阶方阵,1=A ,则A -=____-1____ 43.若3阶矩阵A 有特征值1,2,3,则A E +=__24_____ 44.已知矩阵满足A 2+A -2E =0,则A 的特征值为___-2 和 1____45.齐次线性方程组AX=0的系数矩阵A 的秩为r (r <n ),则其任意一个基础解系中的解向量的个数为__n-r_____个。
46.二次型f (x 1,x 2,x 3)=x T Ax 经正交变换化为标准形22215y y +,则A 的最小的特征值是__0_____ 47.设矩阵A =110122024⎛⎫ ⎪-- ⎪ ⎪-⎝⎭,则二次型Ax x T=____48.A 是3阶方阵,且2A =,*A 是A 的伴随矩阵,则*A =___4____49.设3阶方阵A 的秩为3,矩阵⎪⎪⎪⎭⎫ ⎝⎛=100001010P , ⎪⎪⎪⎭⎫ ⎝⎛=101010001Q 若矩阵PAQ B =,则秩(B )= ___3____50.设 1-,5,λ 是矩阵⎪⎪⎪⎭⎫ ⎝⎛----=120222023A 的特征值,则λ=____2___51.若n 阶方阵A 与B 相似,且|A|=2,则|BA|=___4____52.已知方阵A 满足A 2+2A -3E =0,则A 的特征值为_-3和1______53.二次型123(,,)f x x x 的矩阵A 有三个特征值1,3,2,该二次型的标准形为_______54.二次型222123123(,,)2f x x x x x x =-+,该二次型的负惯性指数等于__1_____ 55.设A =⎥⎦⎤⎢⎣⎡2132,则1-A =_⎪⎪⎭⎫ ⎝⎛--2312_____ 56.三元齐次线性方程组只有零解的充分必要条件是系数行列式A _≠0_____ 57.设α=(-1,2,2),则α的长度α=_3_____58.设A 为5阶方阵,且r (A )=3,则线性空间W ={x |Ax =0}的维数是__3____59.设A 为3阶方阵,特征值分别为-2,-1,l ,则|5A |=_250_____60.若A 、B 为同阶方阵,且Bx =0只有零解,若r (A )=3,则r (AB )=_3_____61.矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101032121所对应的二次型AX X T=_ x 12+3x 22-x 32+4x 1x 2+2x 1x 362.已知向量 α=),21,31(k k k 是单位向量,k= __6/7____ 63.设三阶矩阵A 满足A 2+2A=O ,且r(A)=2,则A 的特征值为__0,-2,-2____64.设行列式333231232221131211a a a a a a a a a =5,则行列式333231312322212113121111222a a a a a a a a a a a a +++=_10_____65.设A 为3阶反实对称矩阵方阵,则|A |=__0____66.A 为4×5矩阵,r (A )=r (A,b )方程组Ax=b 有__无穷多解____67设D=ij a 为n 阶行列式,A ij 为元素ij a 的代数余子式,∑=≠nj kj ijk i A a1)(=__0____68.设A 2+2A-E=O,则A -1=__ A+2E ____69.已知向量α1=(3,4,-1),α2=(1,0,3),α1与α2的内积为___0___70.二次型f (x 1,x 2,x 3)=21x -2x 1x 2+22x -2x 2x 3所对应的矩阵是_01111011----____ 71. 设A,B 都是3阶矩阵,且|A|=2,B=-2E ,则|A -1B |=__-16____72.3阶A 的特征值为1,-1,2则B=A+E 特征值是__2,0,3____73.已知200012025A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求:1A -。