巴州二中2017-2018学年上学期高一期末数学试卷
- 格式:doc
- 大小:236.00 KB
- 文档页数:4
2017-2018学年高一上学期期末考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(,1)a x =,(4,)b x =,//a b ,则实数x =( ) A .0B .2C .2-D .2或2-2.下列图形中可以是某个函数的图象的是( )3.函数()log (2)1a f x x =++(0a >且1a ≠)的图象经过的定点是( ) A .(2,1)-B .(1,1)-C .(1,0)D .(1,2)4.函数()sin(3)26f x x π=-+的图象的一条对称轴方程是( )A .0x =B .2x π=C .718x π=D .59x π=5.若1a >,则一定存在一个实数0x ,使得当0x x >时,都有( )A .3log xa x ax a a <+< B .3log xa ax a x a +<<C .3log x a a ax a x <+<D .3log xa ax a a x +<<6.若||2a b +=,a b ⊥,则||a b -=( )A .1BC .2D .47.若集合{}2|log 3A x x =<,集合11|24x B x ⎧⎫=<⎨⎬⎩⎭,则A B =( ) A .{}|28x x <<B .{}|02x x <<C .{}|28x x -<<D .{}|8x x <8.若(1,3)a =,(2,4)b =-,则a 在b 方向上的投影是( )A B .C D .9.若一扇形的周长为4,面积为1,则该扇形的圆心角的弧度数是( ) A .1B .2C .3D .410.若函数2()log (1)x a f x a x =++在[]1,2上的最大值与最小值之和为22a a ++,则实数a 的值是( )A B .10 C D .2tan 60tan18tan12tan18︒+︒︒+︒︒=( )A .3B C .1 D .312.已知向量1e 与2e 的夹角为4π,1||1e =,2||2e =,若12e e λ+与123e e λ+的夹角为锐角,则实数λ的取值范围是( )A .55(22-- B .55(,(3,22--+-C .5513(,()22---+-∞+∞ D .5513(,(,3)(3,)22---+-∞+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(3,1)a =,||1b =,3a b ⋅=,则a 与b 的夹角是 . 14.若函数()2sin()1(0)f x x πϕϕπ=++<<是偶函数,则ϕ= . 15.若tan()54πα+=,则1sin cos αα= .16.若定义在R 上的函数()f x 满足(2)()f x f x +=-,(1)f x +是奇函数,现给出下列4个论断: ①()f x 是周期为4的周期函数; ②()f x 的图象关于点(1,0)对称; ③()f x 是偶函数;④()f x 的图象经过点(2,0)-.其中正确论断的序号是 (请填上所有正确论断的序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数()ln(1)ln(1)f x x x =+--. (Ⅰ)求函数()f x 的定义域与零点; (Ⅱ)判断函数()f x 的奇偶性.18.已知函数2()4sin cos f x x x x =+.(Ⅰ)求函数()f x 的最小正周期和递增区间; (Ⅱ)求函数()f x 的图象的对称中心的坐标.19.已知某海滨浴场的海浪高度y (单位:米)是时间t (单位:小时,024t ≤≤)的函数,记作()y f t =.如表是某日各时的浪高数据:(Ⅰ)在如图的网格中描出所给的点;(Ⅱ)观察图,从y at b =+,2y at bt c =++,cos()y A t b ωϕ=++中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)依据规定,当海浪高度高于1.25米时才对冲浪爱好者开放,请依据(Ⅱ)的结论判断一天内的8:00到20:00之间有多长时间可供冲浪爱好者进行活动.20.已知cos81cos39sin219cos171x =︒︒-︒︒,220lg 2lg 5(sincos )64y ππ=-++,3log 42(tan )lg 2log 253z π=+⋅,求x y z ++的值.21.已知02παβπ<<<<,(1,tan )2a α=,5||a =,cos()αβ-=.(Ⅰ)求tan α的值; (Ⅱ)求β的值.22.已知函数()))63f x x x ππ=++的值域为D ,函数2222()log log 3g x a x a x =+-,[4,)x ∈+∞的值域为T .(Ⅰ)求集合D 和集合T ;(Ⅱ)若对任意的实数1[4,)x ∈+∞,都存在2x R ∈,使得12()()1g x f x =,求实数a 的取值范围.2017-2018学年高一上学期期末考试数学试题答案一、选择题1-5:DDBDA 6-10:CACBA 11、12:CD二、填空题13.6π 14.2π15.136 16.①②③三、解答题17.解:(Ⅰ)∵10,10,x x +>⎧⎨->⎩∴11x -<<,∴()f x 的定义域为(1,1)-.由()ln(1)ln(1)0f x x x =+--=,得ln(1)ln(1)x x +=-, ∴110x x +=->,解得0x =,∴()f x 的零点为0x =. (Ⅱ)∵对任意的实数(1,1)x ∈-, 都有()ln(1)ln(1)()f x x x f x -=--+=-, ∴()f x 是奇函数. 18.解:21cos 2()4sin cos 422xf x x x x x -=+=⋅+22cos 224sin(2)26x x x π=-+=-+.(Ⅰ)函数()f x 的最小正周期22T ππ==.由222262k x k πππππ-≤-≤+,k Z ∈,得63k x k ππππ-≤≤+,k Z ∈.∴函数()f x 的单调递增区间是,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (Ⅱ)由26x k ππ-=,k Z ∈,得212k x ππ=+,k Z ∈,∴函数()f x 的图象的对称中心的坐标是(,2)212k ππ+,k Z ∈. 19.解:(Ⅰ)(Ⅱ)根据图,应选择cos()y A t b ωϕ=++. 不妨设0A >,0ω>, 由图可知 1.50.50.52A -==, 1.50.512b +==,212πω=,6πω=. ∴0.5cos()16y t πϕ=++,又当0x =时, 1.5y =,∴0.5cos 1 1.5y ϕ=+=,∴cos 1ϕ=,∴2k ϕπ=,k Z ∈. ∴0.5cos(2)16y t k ππ=++,∴所求的解析式为0.5cos1(024)6y t t π=+≤≤.(Ⅲ)由0.5cos 1 1.256y t π=+>,即1cos62t π>, 得22363k t k πππππ-<<+,即122122k t k -<<+,k Z ∈.又820t ≤≤,∴1014t <<.答:一天内的8:00到20:00之间有4个小时可供冲浪爱好者进行活动. 20.解:∵cos81cos39sin(18039)cos(9081)x =︒︒-︒+︒︒+︒cos81cos39(sin39)(sin81)=︒︒--︒-︒cos81cos39sin81sin39=︒︒-︒︒1cos(8139)cos1202=︒+︒=︒=-.(lg 2lg5)(lg 2lg5)1lg 2lg51y =+-+=-+.3log 4lg 25lg 2lg 2z =+⋅31log 4223lg 5=+3log 232lg 5=+22lg5=+22lg5=+. ∴557lg 2lg51222x y z ++=++=+=. 21.解:(Ⅰ)∵(1,tan)2a α=,5||a =,∴251tan24α+=,即21tan 24α=.∵02πα<<,∴024απ<<,∴tan02α>,∴1tan22α=, ∴212tan2422tan 131tan 124ααα⨯===--. (Ⅱ)∵02παβπ<<<<,∴0παβ-<-<,又∵cos()(0,1)αβ-=,∴02παβ-<-<,∴tan()7αβ-=-, []47tan tan()3tan tan ()141tan tan()173ααββααβααβ+--=--===-+--⨯. 又2πβπ<<,∴34πβ=. 22.解:(Ⅰ)11()(sin 2)(cos 2)2(cos 2)(sin 2)22f x x x x x ⎫⎡⎤⎡⎪=+⋅+⋅-⎬⎢⎥⎢⎪⎪⎣⎦⎣⎦⎩⎭3112cos 2)(sin 22)232x x x x =+=-1sin(2)33x π=--. ∴11,33D ⎡⎤=-⎢⎥⎣⎦. 2222()log log 3g x a x a x =+-.(1)若0a =,则()3g x =-,{}3T =-;(2)若0a ≠,则322()(log )324a a g x a x =+--. ∵[4,)x ∈+∞,∴2log [2,)x ∈+∞, 当2log 2x =时,2()243g x a a =+-,①若0a >,则22a-<,∴2[243,)T a a =+-+∞; ②若0a <,则02a->,(i )若022a <-≤,即40a -≤<,则2(,243]T a a =-∞+-;(ii )若22a->,即4a <-,则3(,3]4a T =-∞--. 综上,若0a >,则2[243,)T a a =+-+∞; 若0a =,则{}3T =-;若40a -≤<,则2(,243]T a a =-∞+-;若4a <-,则3(,3]4a T =-∞--. (Ⅱ)∵1()sin(2)33f x x π=--,∴()f x 的值域为11,33⎡⎤-⎢⎥⎣⎦, ∴1()f x 的值域(,3][3,)S =-∞-+∞. ∴对任意的实数1[4,)x ∈+∞,都存在2x R ∈,使得12()()1g x f x =,即121()()g x f x =,T S ⇔⊆20,2433,a a a >⎧⇔⎨+-≥⎩或0a = 或240,2433a a a -≤<⎧⎨+-≤-⎩或34,33,4a a <-⎧⎪⎨--≤-⎪⎩0,31,a a a >⎧⇔⎨≤-≥⎩或或0a =或40,20,a a -≤<⎧⎨-≤≤⎩或4,0.a a <-⎧⎨≥⎩ ⇔1a ≥或0a =或20a -≤<或a ∈∅20a ⇔-≤≤或1a ≥.∴所求a 的取值范围为[]2,0[1,)-+∞.。
2018年高一(上)期末数学试卷一、选择题:(本大题共12小题,每小题5分)1.已知集合A={x|﹣1≤x<1},B={﹣1,0,1},则A∩B=()A.{0,1} B.{﹣1,0} C.{0} D.{﹣1,0,1}2.函数y=log4(x+2)的定义域为()A.{x|x≥﹣4} B.{x|x>﹣4} C.{x|x≥﹣2} D.{x|x>﹣2}3.下面的函数中,周期为π的偶函数是()A.y=sin2x B.y=cosx C.y=cos2x D.y=sinx4.已知向量=(1,2),=(x,4),若向量∥,则x=()A.2 B.﹣2 C.8 D.﹣85.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a6.如果A为锐角,=()A.B.C.D.7.已知=﹣5,那么tanα的值为()A.﹣2 B.2 C.D.﹣8.函数f(x)=2x+x的零点所在的区间为()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)9.如图,平行四边形ABCD中,=(2,0),=(﹣3,2),则•=()A.﹣6 B.4 C.9 D.1310.函数f(x)=2sin(ωx+ϕ)(ω>0,﹣<ϕ<)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣B.2,﹣C.D.-2,11.若,则cosα+sinα的值为()A.B.C.D.12.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.二、填空题(每题5分,共20分)13.如果一扇形的弧长为2πcm,半径等于2cm,则扇形所对圆心角为.14.已知,则=.15.若幂函数的图象不过原点,则实数m的值为.16.给出下列命题:(1)存在实数α,使sinαcosα=1(2)存在实数α,使sinα+cosα=(3)函数y=sin(+x)是偶函数(4)若α、β是第一象限的角,且α>β,则sinα>sinβ.其中正确命题的序号是.三.解答题(本大题共6小题,满分共70分)17.求值:(1)(2)sin45°cos15°﹣cos45°sin15°.18.已知向量=﹣,=4+3,其中=(1,0),=(0,1).(Ⅰ)试计算•及|+|的值;(Ⅱ)求向量与的夹角的余弦值.19.已知cos(α+β)=,α,β均为锐角,求sinα的值.20.已知函数,x∈R.(1)求函数f(x)的最小正周期和值域;(2)求函数的单调区间.21.已知M(1+cos2x,1),(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求y关于x的函数关系式y=f(x);(2)求函数y=f(x)的单调区间;(3)若时,f(x)的最大值为4,求a的值..22.已知函数f(x)=(sinx+cosx)2﹣2.(1)当x∈[0,]时,求函数f(x)的单调递增区间;(2)若x∈[﹣,],求函数g(x)=f2(x)﹣f(x+)﹣1的值域.2018年高一(上)期末数学试卷一、选择题:(本大题共12小题,每小题5分)1.已知集合A={x|﹣1≤x<1},B={﹣1,0,1},则A∩B=()A.{0,1} B.{﹣1,0} C.{0} D.{﹣1,0,1}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|﹣1≤x<1},B={﹣1,0,1},∴A∩B={﹣1,0},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.函数y=log4(x+2)的定义域为()A.{x|x≥﹣4} B.{x|x>﹣4} C.{x|x≥﹣2} D.{x|x>﹣2}【考点】函数的定义域及其求法.【专题】函数思想;定义法;函数的性质及应用.【分析】根据函数成立的条件即可求函数的定义域.【解答】解:要使函数有意义,则x+2>0,即x>﹣2,即函数的定义域为{x|x>﹣2},故选:D.【点评】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.3.下面的函数中,周期为π的偶函数是()A.y=sin2x B.y=cos C.y=cos2x D.y=sin【考点】函数奇偶性的判断.【专题】三角函数的图像与性质.【分析】根据正弦型函数及余弦型函数的性质,我们逐一分析四个答案中的四个函数的周期性及奇偶性,然后和题目中的条件进行比照,即可得到答案.【解答】解:A中,函数y=sin2x为周期为π的奇函数,不满足条件;B中,函数y=cos周期为4π,不满足条件;C中,函数y=cos2x为周期为π的偶函数,满足条件;D中,函数y=sin是最小正周期为4π的奇函数,不满足条件;故选C.【点评】本题考查的知识点是正弦(余弦)函数的奇偶性,三角函数的周期性及其求法,熟练掌握正弦型函数及余弦型函数的性质是解答本题的关键.4.已知向量=(1,2),=(x,4),若向量∥,则x=()A.2 B.﹣2 C.8 D.﹣8【考点】平面向量共线(平行)的坐标表示.【专题】计算题.【分析】根据向量=(1,2),=(x,4),向量∥,得到4﹣2x=0,求出x 的值.【解答】解:∵向量=(1,2),=(x,4),向量∥,则4﹣2x=0,x=2,故选A.【点评】本题考查两个向量共线的性质,两个向量坐标形式的运算,得到4﹣2x=0,是解题的关键.5.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a【考点】指数函数单调性的应用.【专题】计算题.【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C【点评】本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.6.如果A为锐角,=()A.B.C.D.【考点】诱导公式的作用;同角三角函数间的基本关系.【专题】计算题.【分析】由于sin(π+A)=﹣sinA=﹣,cos(π﹣A)=﹣cosA,A为锐角,可求得其值,从而可求得cos(π﹣A).【解答】解:∵sin(π+A)=﹣sinA=﹣,∴sinA=,又A为锐角,∴A=;∴cos(π﹣A)=﹣cosA=﹣cos=﹣.故选D.【点评】本题考查诱导公式的作用,关键在于掌握诱导公式及其应用,属于基础题.7.已知=﹣5,那么tanα的值为()A.﹣2 B.2 C.D.﹣【考点】同角三角函数基本关系的运用.【分析】已知条件给的是三角分式形式,且分子和分母都含正弦和余弦的一次式,因此,分子和分母都除以角的余弦,变为含正切的等式,解方程求出正切值.【解答】解:由题意可知:cosα≠0,分子分母同除以cosα,得=﹣5,∴tanα=﹣.故选D.【点评】同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.8.函数f(x)=2x+x的零点所在的区间为()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】将选项中区间的两端点值分别代入f(x)中验证,若函数的两个值异号,由零点存在定理即可判断零点必在此区间.【解答】解:当x=0时,f(0)=20+0=1>0,当x=﹣1时,f(﹣1)=<0,由于f(0)•f(﹣1)<0,且f(x)的图象在[﹣1,0]上连续,根据零点存在性定理,f(x)在(﹣1,0)上必有零点,故答案为B.【点评】本题主要考查了函数的零点及零点存在性定理,关键是将区间的端点值逐个代入函数的解析式中,看函数的两个值是否异号,若异号,则函数在此开区间内至少有一个零点.9.如图,平行四边形ABCD中,=(2,0),=(﹣3,2),则•=()A.﹣6 B.4 C.9 D.13【考点】平面向量数量积的运算.【专题】计算题;平面向量及应用.【分析】运用向量的平行四边形法则和三角形法则,得到•=(﹣)•(+)=﹣,再由向量的模的公式,即可得到答案.【解答】解:由平行四边形ABCD得,•=(﹣)•(+)=﹣=(9+4)﹣4=9.故选:C.【点评】本题考查平面向量的运算,向量的平行四边形法则和三角形法则,及向量的平方等于模的平方,属于基础题.10.函数f(x)=2sin(ωx+ϕ)(ω>0,﹣<ϕ<)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣B.2,﹣C.D.,【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】利用正弦函数的周期性可求得==,可求得ω=2;再利用“五点作图法”可求得ϕ,从而可得答案.【解答】解:由图知,==﹣=,故ω=2.由“五点作图法”知,×2+ϕ=,解得ϕ=﹣∈(﹣,),故选:A.【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查正弦函数的周期性与“五点作图法”的应用,考查识图能力,属于中档题.11.若,则cosα+sinα的值为()A.B. C. D.【考点】三角函数中的恒等变换应用.【分析】题目的条件和结论都是三角函数式,第一感觉是先整理条件,用二倍角公式和两角差的正弦公式,约分后恰好是要求的结论.【解答】解:∵,∴,故选C【点评】本题解法巧妙,能解的原因是要密切注意各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.12.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.【解答】解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.二、填空题(每题5分,共20分)13.如果一扇形的弧长为2πcm,半径等于2cm,则扇形所对圆心角为π.【考点】弧长公式.【专题】计算题;对应思想;定义法;三角函数的求值.【分析】直接根据弧长公式解答即可.【解答】解:一扇形的弧长为2πcm,半径等于2cm,所以扇形所对的圆心角为n===π.故答案为:π.【点评】本题主要考查了弧长公式的应用问题,熟记公式是解题的关键.14.已知,则=﹣7.【考点】两角和与差的正切函数.【专题】三角函数的求值.【分析】利用三角函数的平方关系和商数关系即可得到tanα,再利用两角和的正切公式即可得出.【解答】解:∵,∴,∴,故=,∴.故答案为﹣7.【点评】熟练掌握三角函数的平方关系和商数关系、两角和的正切公式是解题的关键.15.若幂函数的图象不过原点,则实数m的值为m=1或m=2.【考点】幂函数的性质.【专题】计算题.【分析】由幂函数的图象不过原点,知,由此能求出实数m的值.【解答】解:∵幂函数的图象不过原点,∴,解得m=1或m=2.故答案为:m=1或m=2.【点评】本题考查幂函数的性质和应用,解题时要认真审题,仔细解答.16.给出下列命题:(1)存在实数α,使sinαcosα=1(2)存在实数α,使sinα+cosα=(3)函数y=sin(+x)是偶函数(4)若α、β是第一象限的角,且α>β,则sinα>sinβ.其中正确命题的序号是(3).【考点】命题的真假判断与应用.【专题】三角函数的图像与性质;简易逻辑.【分析】(1)由sinαcosα=1化为sin2α=2,由于sin2α≤1,可知:不存在实数α,使得sin2α=2;(2)由于sinα+cosα=<,即可判断出;(3)函数y=sin(+x)=﹣cosx是偶函数;(4)若α、β是第一象限的角,且α>β,取,,即可判断出.【解答】解:(1)由sinαcosα=1化为sin2α=2,∵sin2α≤1,∴不存在实数α,使得sin2α=2,因此不正确;(2)∵sinα+cosα=<,因此不存在实数α,使sinα+cosα=,故不正确;(3)函数y=sin(+x)=﹣cosx是偶函数,正确;(4)若α、β是第一象限的角,且α>β,取,,则sinα>sinβ不成立,因此不正确.其中正确命题的序号是(3).故答案为:(3).【点评】本题综合考查了三角函数的性质、倍角公式、两角和差的正弦公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.三.解答题(本大题共6小题,满分共70分)17.求值:(1)(2)sin45°cos15°﹣cos45°sin15°.【考点】两角和与差的余弦函数;根式与分数指数幂的互化及其化简运算.【专题】计算题;函数思想;数学模型法;三角函数的图像与性质.【分析】(1)化根式为分数指数幂,然后结合对数的运算性质化简求值;(2)直接利用两角差的正弦得答案.【解答】解:(1)==9﹣25+9+2=﹣5;(2)sin45°cos15°﹣cos45°sin15°=sin(45°﹣15°)=sin30°=.【点评】本题考查根式与分数指数幂的互化及化简运算,考查了两角和与差的正弦,是基础的计算题.18.已知向量=﹣,=4+3,其中=(1,0),=(0,1).(Ⅰ)试计算•及|+|的值;(Ⅱ)求向量与的夹角的余弦值.【考点】平面向量数量积的运算.【专题】转化思想;向量法;平面向量及应用.【分析】(Ⅰ)运用向量的加减坐标运算和数量积的坐标表示以及模的公式,计算即可得到所求;(Ⅱ)运用向量的夹角公式:cos<,>=,计算即可得到所求值.【解答】解:(Ⅰ)由题意可得=﹣=(1,﹣1),=4+3=(4,3),可得•=4﹣3=1;+=(5,2),即有|+|==;(Ⅱ)由(1)可得||=,||==5,即有cos<,>===,则向量与的夹角的余弦值为.【点评】本题考查向量的运算,很重要考查向量的数量积的坐标表示和夹角公式,考查运算能力,属于基础题.19.已知cos(α+β)=,α,β均为锐角,求sinα的值.【考点】两角和与差的正弦函数.【专题】计算题.【分析】由α,β的范围得出α+β的范围,然后利用同角三角函数间的基本关系,由cos(α+β)和cosβ的值,求出sin(α+β)和sinβ的值,然后由α=(α+β)﹣β,把所求的式子利用两角差的正弦函数公式化简后,将各自的值代入即可求出值.【解答】解:由,根据α,β∈(0,),得到α+β∈(0,π),所以sin(α+β)==,sinβ==,则sinα=sin[(α+β)﹣β]=sin(α+β)cosβ﹣cos(α+β)sinβ=×﹣×=.【点评】此题考查学生灵活运用同角三角函数间的基本关系及两角和与差的正弦函数公式化简求值,是一道基础题.做题时注意角度的变换.20.已知函数,x∈R.(1)求函数f(x)的最小正周期和值域;(2)求函数的单调区间.【考点】余弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用正弦函数的周期性、值域,得出结论.(2)由条件利用正弦函数的单调性求得函数的单调区间.【解答】解:(1)根据函数,x∈R,可得周期T=2π,且.(2)令2kπ﹣≤x+≤2kπ+,求得2kπ﹣≤x≤2kπ+,可得函数的单调增区间为:[2kπ﹣,2kπ+],k∈Z.令2kπ+≤x+≤2kπ+,求得2kπ+≤x≤2kπ+,可得函数的单调减区间为:[2kπ+,2kπ+],k∈Z.【点评】本题主要考查正弦函数的周期性、值域,正弦函数的单调性,属于基础题.21.已知M(1+cos2x,1),(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求y关于x的函数关系式y=f(x);(2)求函数y=f(x)的单调区间;(3)若时,f(x)的最大值为4,求a的值.【考点】三角函数的最值;平面向量数量积的运算;正弦函数的单调性.【专题】计算题.【分析】(1)利用向量数量积的定义可得(2)利用和差角公式可得,分别令分别解得函数y=f(x)的单调增区间和减区间(3)由求得,结合三角函数的性质求最大值,进而求出a 的值【解答】解:(1),所以.(2)由(1)可得,由,解得;由,解得,所以f(x)的单调递增区间为,单调递减区间为.(3),因为,所以,当,即时,f(x)取最大值3+a,所以3+a=4,即a=1.【点评】本题以向量的数量积为载体考查三角函数y=Asin(wx+∅)的性质,解决的步骤是结合正弦函数的相关性质,让wx+∅作为整体满足正弦函数的中x所满足的条件,分别解出相关的量.22.已知函数f(x)=(sinx+cosx)2﹣2.(1)当x∈[0,]时,求函数f(x)的单调递增区间;(2)若x∈[﹣,],求函数g(x)=f2(x)﹣f(x+)﹣1的值域.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】三角函数的图像与性质.【分析】(1)首先,结合辅助角公式,化简函数解析式,然后,利用降幂公式进行处理即可,然后,结合正弦函数的单调性和周期进行求解;(2)首先,化简函数g(x)的解析式,然后,结合所给角度的范围,换元法进行转化为二次函数的区间最值问题进行求解即可.【解答】解:(1)函数f(x)=(sinx+cosx)2﹣2.=[2sin(x+)]2﹣2=4sin2(x+)﹣2=2[1﹣cos(2x+)]﹣2=﹣2cos(2x+),∴f(x)=﹣2cos(2x+),可以令2kπ≤2x+≤π+2kπ,k∈Z,∴kπ﹣≤x≤+kπ,∵x∈[0,],∴函数f(x)的单调递增区间[0,].(2)g(x)=f2(x)﹣f(x+)﹣1=×4cos2(2x+)+2cos[2(x+)+]﹣1=2cos2(2x+)+2cos(2x++)﹣1=2cos2(2x+)﹣2sin(2x+)﹣1=2﹣2sin2(2x+)﹣2sin(2x+)﹣1=﹣2sin2(2x+)﹣2sin(2x+)+1∴g(x)=﹣2sin2(2x+)﹣2sin(2x+)+1 令sin(2x+)=t,∵x∈[﹣,],∴﹣≤2x≤,∴≤2x+≤,∴sin(2x+)∈[﹣,1],∴t∈[﹣,1],∴y=﹣2t2﹣2t+1,t∈[﹣,1],=﹣2(t+)2+1+=﹣2(t+)2+,∴最大值为,最小值为﹣3.∴值域为[﹣3,].【点评】本题重点考查了三角公式、辅助角公式、降幂公式、两角和与差的三角公式等知识,属于中档题.。
巴州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()A .B .C .D .2480642402. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有()A .2个B .4个C .6个D .8个3. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )4. 设函数f (x )=,则f (1)=()A .0B .1C .2D .35. 已知两条直线,其中为实数,当这两条直线的夹角在内变动12:,:0L y x L ax y =-=0,12π⎛⎫⎪⎝⎭时,的取值范围是( )A .B .C .D .()0,1(⎫⎪⎪⎭(6. 曲线y=x 3﹣3x 2+1在点(1,﹣1)处的切线方程为( )A .y=3x ﹣4B .y=﹣3x+2C .y=﹣4x+3D .y=4x ﹣57. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( )A .36πB .48πC .60πD .72π8. 若圆心坐标为的圆在直线上截得的弦长为 )()2,1-10x y --=A . B . ()()22210x y -++=()()22214x y -++=C .D .()()22218x y -++=()()222116x y -++=9. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于()A .8B .1C .5D .﹣110.下列命题正确的是()A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()()2xf x x =-11(,)32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥11.二进制数化为十进制数的结果为( ))(210101A . B . C .D .1521334112.在等比数列中,,,且数列的前项和,则此数列的项数}{n a 821=+n a a 8123=⋅-n a a }{n a n 121=n S n等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.二、填空题13.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 14.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 . 15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .16.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数xOy l 和均相切(其中为常数),切点分别为和()()2220f x x a x =+>()()3220g x x a x =+>a ()11,A x y ,则的值为__________.()22,B x y 12x x +17.设,则18.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有 种(用数字作答).A B C D 三、解答题19.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围;(Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.20.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,()()3231312f x x k x kx =-+++其中.k R ∈(1)当时,求函数在上的值域;3k =()f x []0,5(2)若函数在上的最小值为3,求实数的取值范围.()f x []1,2k 21.已知函数f (x )=a ﹣,(1)若a=1,求f (0)的值;(2)探究f (x )的单调性,并证明你的结论;(3)若函数f (x )为奇函数,判断|f (ax )|与f (2)的大小.22.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.23.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A 到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.24.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点.C ⎩⎨⎧==ααsin cos 2y x α)0,1(P C B A 、(1)将曲线的参数方程化为普通方程;C (2)求的最值.||||PB PA ⋅巴州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:,故选B.8058631=⨯⨯⨯=V 考点:1.三视图;2.几何体的体积.2. 【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A ⊆B ,A ⊆C ;∴A ⊆B ∩C={0,2}∴集合A 可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B . 3. 【答案】B【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题,可推出¬p 为假命题,q 为假命题,故为真命题的是p ∨q ,故选:B .【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真. 4. 【答案】D【解析】解:∵f (x )=,f (1)=f[f (7)]=f (5)=3.故选:D . 5. 【答案】C 【解析】1111]试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以1:L y x =045α=0,12π⎛⎫⎪⎝⎭直线的倾斜角的取值范围是且,所以直线的斜率为2:0L ax y -=03060α<<045α≠且或,故选C.00tan 30tan 60a <<0tan 45α≠1a <<1a <<考点:直线的倾斜角与斜率.6. 【答案】B【解析】解:∵点(1,﹣1)在曲线上,y ′=3x 2﹣6x ,∴y ′|x=1=﹣3,即切线斜率为﹣3.∴利用点斜式,切线方程为y+1=﹣3(x ﹣1),即y=﹣3x+2.故选B .【点评】考查导数的几何意义,该题比较容易. 7. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b ,则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =S 矩形ABCD ·PO13=abR ≤R 3.1323∴R 3=18,则R =3,23∴球O 的表面积为S =4πR 2=36π,选A.8. 【答案】B 【解析】考点:圆的方程.1111]9. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B . 10.【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),,p q q p ⇒⇒最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.11.【答案】B 【解析】试题分析:,故选B.()21212121101010242=⨯+⨯+⨯=考点:进位制12.【答案】B二、填空题13.【答案】 .【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目. 14.【答案】 ﹣2 .【解析】解:∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn﹣lg(n+1),∴a1+a2+…+a99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.故答案为:﹣2.15.【答案】 (﹣1,1] .【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.故答案为:(﹣1,1]16.【答案】56 27【解析】17.【答案】9【解析】由柯西不等式可知18.【答案】 27 【解析】解:若A 方格填3,则排法有2×32=18种,若A 方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种.故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题. 三、解答题19.【答案】(1)a =(2)(-∞,-1-].(3)121e 827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥.22ln xx 令g (x )=,x >0,则g '(x )=.22ln xx()3212ln x x -令g'(x )=0,解得x .当x ∈(0)时,g '(x)>0,所以g (x )在(0)上单调递增;当x∞)时,g'(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g ,1e所以-(a +1)≥,即a ≤-1-,1e 1e所以a 的取值范围为(-∞,-1-].1e(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当<a <2时,53当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减;当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2,所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ' (a )=3a 2-6a +3=3(a -1)2≥0.所以h (a )在(,2)上单调递增,53所以当a ∈(,2)时,h (a )>h ()=.5353827③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减,所以M (a )=f (1)=3a -1,m (a )=f (2)=4,所以h (a )=M (a )-m (a )=3a -1-4=3a -5,所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为.827点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.20.【答案】(1);(2).[]1,212k ≥【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得,再()'f x =()()31x x k --分和两种情况进行讨论;1k ≤1k >试题解析:(1)解: 时,3k =()32691f x x x x =-++ 则()()()23129313f x x x x x =-+=--'令得列表()0f x '=121,3x x ==x 0()0,11()1,33()3,53()f x '+0 -0+()f x 1单调递增5单调递减1单调递增21由上表知函数的值域为()f x []1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以()()()min 31113132f x f k k ==-+++= 即(舍) 53k =②当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以()()()322min 313132f x f k k k k k ==-+++=化简得:32340k k -+=即()()2120k k +-=所以或(舍)1k =-2k =注:也可令()3234g k k k =-+则()()23632g k k k k k =='--对()()1,2,0k g k ∀∈'≤在单调递减()3234g k k k =-+()1,2k ∈所以不符合题意()02g k <<综上所述:实数取值范围为k 2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分②当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以不符合题意()()min 23f x f <=③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以不符合题意()()()min 23f x f k f =<=综上所述:实数取值范围为k 2k ≥21.【答案】【解析】解:(1)a=1时:f (0)=1﹣=;(2)∵f (x )的定义域为R ∴任取x 1x 2∈R 且x 1<x 2则f (x 1)﹣f (x 2)=a ﹣﹣a+=.∵y=2x 在R 是单调递增且x 1<x 2∴0<2x1<2x2,∴2x1﹣2x2<0,2x1+1>0,2x2+1>0,∴f (x 1)﹣f (x 2)<0即f (x 1)<f (x 2),∴f (x )在R 上单调递增.(3)∵f (x )是奇函数∴f (﹣x )=﹣f (x ),即a ﹣=﹣a+,解得:a=1.∴f(ax)=f(x)又∵f(x)在R上单调递增∴x>2或x<﹣2时:|f(x)|>f(2),x=±2时:|f(x)|=f(2),﹣2<x<2时:|f(x)|<f(2).【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.22.【答案】【解析】证明:(Ⅰ)由b n=,且a n+1=a n+,得,∴,下面用数学归纳法证明:0<b n<1.①由a1=∈(0,1),知0<b1<1,②假设0<b k<1,则,∵0<b k<1,∴,则0<b k+1<1.综上,当n∈N*时,b n∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题. 23.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k 2)x 2+8k 2x+4k 2﹣12=0,∴x 1+x 2=﹣,x 1x 2=.|AB|==.点O 到直线AB 的距离d=.∴S 平行四边形ABCD =4×S △OAB ==2××=.则S 2==<36,∴S <6.因此当平行四边形ABCD 为矩形面积取得最大值6. 24.【答案】(1).(2)的最大值为,最小值为.1222=+y x ||||PB PA ⋅21【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数C ⎩⎨⎧==ααsin cos 2y x αα得曲线的普通方程为(3分)C 1222=+y x(2)由题意知,直线的参数方程为(为参数),将代入⎩⎨⎧=+=θθsin cos 1t y t x ⎩⎨⎧=+=θθsin cos 1t y t x 1222=+y x 得 (6分)01cos 2)sin 2(cos 222=-++θθθt t 设对应的参数分别为,则.B A ,21,t t ]1,21[sin 11sin 2cos 1||||||22221∈+=+==⋅θθθt t PB PA ∴的最大值为,最小值为. (10分)||||PB PA ⋅21考点:参数方程化成普通方程.。
巴州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( )A .16B .6C .4D .82. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是()A .(1,1)B .(0,3)C .(,2)D .(,0)3. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .44. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3B4C5D65. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是A4B6C8D106. 已知向量,,,若为实数,,则( )(1,2)a = (1,0)b = (3,4)c = λ()//a b c λ+λ=A . B . C .1D .214127. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( )A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可.8. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)9. 已知函数,则要得到其导函数的图象,只需将函数()cos()3f x x π=+'()y f x =()y f x =的图象( )A .向右平移个单位 B .向左平移个单位2π2πC. 向右平移个单位D .左平移个单位23π23π10.已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)11.已知函数,,若,则( )A1B2C3D-112.若方程C :x 2+=1(a 是常数)则下列结论正确的是()A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线二、填空题13.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ()A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.14.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .15.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线上xC y e :=一点,直线经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.20l x y c :++=16.已知角α终边上一点为P (﹣1,2),则值等于 .17.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是 .三、解答题19.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.20.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.(1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)21.如图,在△ABC 中,BC 边上的中线AD 长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin ∠BAD 的值;(Ⅱ)求AC 边的长.22.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0.(1)求常数 a ,b 的值;(2)求f(x)在[﹣2,﹣]的最值.23.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.V(1)求该几何体的体积;111]S(2)求该几何体的表面积.24.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.巴州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S△ABC=absinC==8.故选:D.2.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.3.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.4.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 5.【答案】B【解析】本题考查了对数的计算、列举思想a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时b =0,b =1符合;a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时b =-1,b =1符合;共6个6. 【答案】B 【解析】试题分析:因为,,所以,又因为,所以(1,2)a = (1,0)b = ()()1,2a b λλ+=+ ()//a b c λ+,故选B. ()14160,2λλ+-==考点:1、向量的坐标运算;2、向量平行的性质.7. 【答案】D【解析】解:由已知M={x|﹣1<x <1},N={x|x >0},则M ∩N={x|0<x <1},故选D .【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题, 8. 【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k ≥﹣1.∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题. 9. 【答案】B 【解析】试题分析:函数,所以函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以将函数函数的图象上所有的点向左平移个单位长度得到()cos 3f x x π⎛⎫=+ ⎪⎝⎭()y f x =2π,故选B.5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭考点:函数的图象变换.()sin y A x ωϕ=+10.【答案】C【解析】解:易知函数f (x )=lnx+2x ﹣6,在定义域R +上单调递增.因为当x →0时,f (x )→﹣∞;f (1)=﹣4<0;f (2)=ln2﹣2<0;f (3)=ln3>0;f (4)=ln4+2>0.可见f (2)•f (3)<0,故函数在(2,3)上有且只有一个零点.故选C . 11.【答案】A【解析】g (1)=a ﹣1,若f[g (1)]=1,则f (a ﹣1)=1,即5|a ﹣1|=1,则|a ﹣1|=0,解得a=112.【答案】 B【解析】解:∵当a=1时,方程C :即x 2+y 2=1,表示单位圆∴∃a ∈R +,使方程C 不表示椭圆.故A 项不正确;∵当a <0时,方程C :表示焦点在x 轴上的双曲线∴∀a ∈R ﹣,方程C 表示双曲线,得B 项正确;∀a ∈R ﹣,方程C 不表示椭圆,得C 项不正确∵不论a 取何值,方程C :中没有一次项∴∀a ∈R ,方程C 不能表示抛物线,故D 项不正确综上所述,可得B 为正确答案故选:B 二、填空题13.【答案】A 【解析】14.【答案】 2 .【解析】解:∵复数z满足z(2﹣3i)=6+4i(i为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.15.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
2017-2018学年高一(上)期末数学试卷(文科)一.选择题(每小题5分,共12题,共60分)1.(5分)设集合A={x|﹣1≤x≤2},B={x|0≤x≤4},则A∩B=()A.[0,2]B.[1,2]C.[0,4]D.[1,4]2.(5分)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m3.(5分)平行线3x+4y﹣9=0和6x+8y+2=0的距离是()A.B.2 C.D.4.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.35.(5分)△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为()A.B.C.D.6.(5分)设f(x)为奇函数,且在(﹣∞,0)内是减函数,f(﹣2)=0,则xf(x)<0的解集为()A.(﹣1,0)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞) D.(﹣2,0)∪(0,27.(5分)过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=08.(5分)已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.9.(5分)设点A(2,﹣3),B(﹣3,﹣2),直线l过点P(1,1)且与线段AB 相交,则l的斜率k的取值范围()A.k≥或k≤﹣4 B.≤k≤4 C.﹣4≤k≤D.k≥4或k≤﹣10.(5分)已知长方体ABCD﹣A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A.B.C.D.11.(5分)a=log0.76,b=60.7,c=0.70.6,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.b>c>a12.(5分)函数y=log(x2﹣ax+3)在[1,2]上恒为正数,则a的取值范围是()A.2<a<2B.2<a<C.3<a<D.3<a<2二.填空题(每小题5分,共4题,共20分)13.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=.14.(5分)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同族函数”,试问解析式为y=x2,值域为{1,2}的“同族函数”共有个.15.(5分)已知圆柱的侧面展开图是边长为4和6的矩形,则该圆柱的表面积为.16.(5分)直线2x+ay﹣2=0与直线ax+(a+4)y﹣4=0平行,则a的值为.三.解答题(本大题共6个小题,共70分,解答题应写出文字说明.证明过程或演算步骤.)17.(10分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).18.(12分)△ABC的两顶点A(3,7),B(﹣2,5),若AC的中点在y轴上,BC的中点在x轴上(1)求点C的坐标;(2)求AC边上的中线BD的长及直线BD的斜率.19.(12分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点,F是PC的中点.(Ⅰ)求证:面PDE⊥面PAB;(Ⅱ)求证:BF∥面PDE.20.(12分)如图,棱长为1的正方体ABCD﹣A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求三棱锥B﹣CD1B1的体积.21.(12分)已知函数f(x)=log4(4x+1)+kx(k∈R).(1)若k=0,求不等式f(x)>的解集;(2)若f(x)为偶函数,求k的值.22.(12分)已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.参考答案与试题解析一.选择题(每小题5分,共12题,共60分)1.(5分)设集合A={x|﹣1≤x≤2},B={x|0≤x≤4},则A∩B=()A.[0,2]B.[1,2]C.[0,4]D.[1,4]【分析】结合数轴直接求解.【解答】解:由数轴可得A∩B=[0,2],故选择A.【点评】本题考查集合的运算,基础题.注意数形结合2.(5分)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B【点评】本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题3.(5分)平行线3x+4y﹣9=0和6x+8y+2=0的距离是()A.B.2 C.D.【分析】先将两平行直线的方程的系数统一,再代入平行线间的距离公式计算即可.【解答】解:两平行直线的距离d===2.故选B【点评】本题考查两平行直线之间的距离.4.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【分析】考查对分段函数的理解程度,f(2)=log3(22﹣1)=1,所以f(f(2))=f(1)=2e1﹣1=2.【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.【点评】此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.5.(5分)△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为()A.B.C.D.【分析】由原图和直观图面积之间的关系=,求出原三角形的面积,再求直观图△A′B′C′的面积即可.【解答】解:正三角形ABC的边长为1,故面积为,而原图和直观图面积之间的关系=,故直观图△A′B′C′的面积为×=故选D.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.6.(5分)设f(x)为奇函数,且在(﹣∞,0)内是减函数,f(﹣2)=0,则xf(x)<0的解集为()A.(﹣1,0)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞) D.(﹣2,0)∪(0,2【分析】根据函数的奇偶性求出f(2)=0,x f(x)<0分成两类,分别利用函数的单调性进行求解.【解答】解:∵f(x)为奇函数,且在(﹣∞,0)内是减函数,f(﹣2)=0,∴f(﹣2)=﹣f(2)=0,在(0,+∞)内是减函数∴x f(x)<0则或根据在(﹣∞,0)内是减函数,在(0,+∞)内是减函数解得:x∈(﹣∞,﹣2)∪(2,+∞)故选C【点评】本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题.7.(5分)过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=0【分析】先根据垂直关系求出所求直线的斜率,由点斜式求直线方程,并化为一般式.【解答】解:设A(1,2),则OA的斜率等于2,故所求直线的斜率等于﹣,由点斜式求得所求直线的方程为y﹣2=﹣(x﹣1),化简可得x+2y﹣5=0,故选A.【点评】本题考查用点斜式求直线方程的方法,求出所求直线的斜率,是解题的关键.8.(5分)已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.【分析】三棱锥是底面是等腰直角三角形,腰长是1,.一条侧棱与底面垂直,且这条侧棱的长度是,根据三棱锥的体积公式写出体积的表示式,得到结果.【解答】解:∵由三视图知,三棱锥是底面是等腰直角三角形,底边上的高是1,一条侧棱与底面垂直,且这条侧棱的长度是,∴三棱锥的体积是××1×2=,故选B【点评】本题考查由三视图求几何体的体积,考查由三视图还原直观图,只要主视图和侧视图是三角形,那么这个几何体一定是一个椎体,由俯视图得到底面是几边形,确定是几棱锥.9.(5分)设点A(2,﹣3),B(﹣3,﹣2),直线l过点P(1,1)且与线段AB 相交,则l的斜率k的取值范围()A.k≥或k≤﹣4 B.≤k≤4 C.﹣4≤k≤D.k≥4或k≤﹣【分析】画出图形,由题意得所求直线l的斜率k满足k≥k PB或k≤k PA,用直线的斜率公式求出k PB和k PA的值,求出直线l的斜率k的取值范围.【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥k PB或k≤k PA,即k≥=,或k≤=﹣4,∴k≥,或k≤﹣4,即直线的斜率的取值范围是k≥或k≤﹣4.故选A.【点评】本题考查直线的斜率公式的应用,体现了数形结合的数学思想,解题的关键是利用了数形结合的思想,解题过程较为直观,本题类似的题目比较多.可以移动一个点的坐标,变式出其他的题目.10.(5分)已知长方体ABCD﹣A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A.B.C.D.【分析】要求线面角,先寻找斜线在平面上的射影,因此,要寻找平面的垂线,利用已知条件可得.【解答】解:由题意,连接A1C1,交B1D1于点O∵长方体ABCD﹣A1B1C1D1中,AB=BC=4∴C1O⊥B1D1∴C1O⊥平面DBB1D1中,在Rt△BOC∴直线BC1和平面DBB1D1所成角的正弦值为故选C.【点评】本题的考点是直线与平面所成的角,主要考查线面角,关键是寻找线面角,通常寻找斜线在平面上的射影.11.(5分)a=log0.76,b=60.7,c=0.70.6,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.b>c>a【分析】利用指数式和对数式的性质,分别比较三个数与0或1的大小得答案.【解答】解:∵a=log0.76<0,b=60.7>1,0<c=0.70.6<0.70=1,∴b>c>a.故选:D.【点评】本题考查对数值的大小比较,考查了指数函数与对数函数的单调性,是基础题.12.(5分)函数y=log(x2﹣ax+3)在[1,2]上恒为正数,则a的取值范围是()A.2<a<2B.2<a<C.3<a<D.3<a<2【分析】根据对数函数的单调性,将问题转化为0<x2﹣ax+3<1在[1,2]上恒成立即可.【解答】解:由于底数是,若y=f(x)=(x2﹣ax+3)在[1,2]上恒为正数,则0<x2﹣ax+3<1在[1,2]上恒成立,即x+<a<x+,x∈[1,2],a<x+时,令f(x)=x+,x∈[1,2],f′(x)=,令f′(x)>0,解得:x>,令f′(x)<0,解得:x<,∴f(x)在[1,)递减,在(,2]递增,∴f(x)min=f()=2,a>x+时,令g(x)=x+,x∈[1,2],g′(x)=,令g′(x)>0,解得:x>,令g′(x)<0,解得:x<,∴f(x)在[1,)递减,在[,2]递增,∴g(x)max=3,∴3<a<2,故选:D.【点评】本题考查了对数函数的单调性、二次函数的性质,考查复合函数的考查,是一道基础题.二.填空题(每小题5分,共4题,共20分)13.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=2.【分析】可以直接求出A、B然后求值;也可以用圆心到直线的距离来求解.【解答】解:圆心为(0,0),半径为2,圆心到直线x﹣2y+5=0的距离为d=,故,得|AB|=2.故答案为:2.【点评】本题考查直线与圆的位置关系,考查学生的理解能力,是基础题.14.(5分)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同族函数”,试问解析式为y=x2,值域为{1,2}的“同族函数”共有9个.【分析】1的原象是正负1;2的原象是正负.值域为{1,2},由此来判断解析式为y=x2,值域为{1,2}的“同族函数”的个数.【解答】解:1的原象是正负1;2的原象是正负.值域为{1,2},所以y=x2的同族函数只有9个,定义域分别为{1,},{﹣,﹣1},{,﹣1},{﹣,1},{﹣,﹣1,1},{,﹣1,1},{﹣,,﹣1},{﹣,,1},{﹣,,1,﹣1},共9个故答案为:9.【点评】本题考查函数的构成个数,解题时要认真审题,仔细求解.15.(5分)已知圆柱的侧面展开图是边长为4和6的矩形,则该圆柱的表面积为24+或24+.【分析】已知圆柱的侧面展开图是边长为4和6的矩形,分两种情况:①6=2πr,②4=2πr,然后再分别求解.【解答】解:∵圆柱的侧面展开图是边长为4和6的矩形,①若6=2πr,则r=,∴圆柱的表面积为:4×6+2×π×()2=24+;②若4=2πr,r=,∴圆柱的表面积为:4×6+2×π×()2=24+.故答案为:24+或24+.【点评】此题主要考查圆柱的性质及其应用,易错点是容易丢解.解题时要认真审题,注意分类讨论的思想的合理运用,此题是一道中档题.16.(5分)直线2x+ay﹣2=0与直线ax+(a+4)y﹣4=0平行,则a的值为﹣2.【分析】根据直线平行的条件,建立方程即可.【解答】解:若a=0,则两个直线方程为x=1和y=1.此时两直线不平行.若a≠0,若两直线平行,则=≠,解得a=4或a=﹣2,当a=4时,两直线方程为x+2y﹣1=0和x+2y﹣1=0,不满足两直线平行.当a=﹣2时,两直线方程为x﹣y﹣1=0和x﹣y+2=0,满足两直线平行.∴a=﹣2.故答案为:﹣2.【点评】本题主要考查直线的方程以及直线平行的等价条件,注意对a要进行讨论.三.解答题(本大题共6个小题,共70分,解答题应写出文字说明.证明过程或演算步骤.)17.(10分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).【分析】(1)求解指数不等式和对数不等式化简集合A,B,然后直接利用交集概念求解;(2)直接利用补集运算求解.【解答】解:(Ⅰ)={x|﹣1<x<2},B={x|log3x≤2}={x|0<x≤9,所以A∩B={x|0<x<2};(Ⅱ)A∪B={x|﹣1<x≤9},C U(A∪B)={x|x≤﹣1或x>9.【点评】本题考查了角、并、补集的混合运算,考查了指数不等式和对数不等式的解法,是基础题.18.(12分)△ABC的两顶点A(3,7),B(﹣2,5),若AC的中点在y轴上,BC的中点在x轴上(1)求点C的坐标;(2)求AC边上的中线BD的长及直线BD的斜率.【分析】(1)由条件利用线段的中点公式求得点C的坐标.(2)求得线段AC的中点D的坐标,再利用两点间的距离公式、斜率公式求得AC边上的中线BD的长及直线BD的斜率.【解答】解:(1)由于△ABC的两顶点A(3,7),B(﹣2,5),AC的中点在y 轴上,BC的中点在x轴上则点C的横坐标为﹣3,点C的纵坐标为﹣5,故点C的坐标为(﹣3,﹣5).(2)由于AC的中点为D(0,1),故AC边上的中线BD的长为=2,直线BD的斜率为=﹣2.【点评】本题主要考查线段的中点公式、两点间的距离公式、斜率公式的应用,属于基础题.19.(12分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点,F是PC的中点.(Ⅰ)求证:面PDE⊥面PAB;(Ⅱ)求证:BF∥面PDE.【分析】(I)证明DE⊥AB,DE⊥AP,利用线面垂直的判定定理,可得DE⊥面PAB,从而可证面PDE⊥面PAB;(Ⅱ)证明FG与BE平行且相等,可得BF∥GE,利用线面平行的判定可得BF∥面.【解答】证明:(Ⅰ)∵底面ABCD是菱形,∠BCD=60°∴△ABD为正三角形E是AB的中点,DE⊥AB﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∵PA⊥面ABCD,DE⊂面ABCD∴DE⊥AP﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∵AB∩AP=A∴DE⊥面PAB∵DE⊂面PDE∴面PDE⊥面PAB﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)取PD的中点G,连结FG,GE,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∵F,G是中点,∴FG∥CD且∴FG与BE平行且相等,∴BF∥GE﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∵GE⊂面PDE∴BF∥面PDE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查线面垂直,面面垂直,考查线面平行,正确运用判定定理是关键.20.(12分)如图,棱长为1的正方体ABCD﹣A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求三棱锥B﹣CD1B1的体积.(1)由DD1⊥平面ABCD可得DD1⊥AC,又AC⊥BD,故而AC⊥平面B1D1DB;【分析】(2)设AC,BD交于点O,以△B1BD1为棱锥的底面,则棱锥的高为OC,代入体积公式计算.【解答】解:(1)证明:∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC,∵正方形ABCD中,∴AC⊥BD,又DD1⊂平面B1D1DB,BD⊂B1D1DB,DD1∩BD=D,∴AC⊥平面B1D1DB.(2)∵B 1D1=,BB1=1,∴S=.∵设AB,CD交点为O,则OC==.∵AC⊥平面B1D1DB,∴三棱锥B﹣CD1B1的体积V===.【点评】本题考查了正方体的结构特征,线面垂直的判定,棱锥的体积计算,属于基础题.21.(12分)已知函数f(x)=log4(4x+1)+kx(k∈R).(1)若k=0,求不等式f(x)>的解集;(2)若f(x)为偶函数,求k的值.【分析】(1)根据对数的单调性解对数不等式;(2)根据偶函数的性质求常数k.【解答】解:(1),∵,∴x>0,即不等式的解集为(0,+∞).…(6分)(2)由于f(x)为偶函数,∴f(﹣x)=f(x)即,∴对任意实数x都成立,所以…(12分)【点评】本题主要考查对数的性质:单调性、奇偶性,解题时注意真数要大于零.22.(12分)已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.【分析】(1)圆的方程化为标准方程,利用半径大于0,可得m的取值范围;(2)直线方程与圆方程联立,利用韦达定理及OM⊥ON,建立方程,可求m的值;(3)写出以MN为直径的圆的方程,代入条件可得结论.【解答】解:(1)(x﹣1)2+(y﹣2)2=5﹣m,∴方程表示圆时,m<5;(2)设M(x1,y1),N(x2,y2),则x1=4﹣2y1,x2=4﹣2y2,得x1x2=16﹣8(y1+y2)+4y1y2,∵OM⊥ON,∴x1x2+y1y2=0,∴16﹣8(y1+y2)+5y1y2=0①,由,得5y2﹣16y+m+8=0,∴,.代入①得.(3)以MN为直径的圆的方程为(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0,即x2+y2﹣(x1+x2)x﹣(y1+y2)y=0,∴所求圆的方程为.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.。
新疆巴音郭楞蒙古自治州高一上学期数学期末考试试卷 22姓名:________班级:________成绩:________一、 选择题 (共 12 题;共 24 分)1. (2 分) 若全集 U=R,集合 A={x|0<x<2},B={x|x﹣1>0},则 A∩∁UB=( )A . {x|0<x≤1}B . {x|1<x<2}C . {x|0<x<1}D . {x|1≤x<2}2. (2 分) 函数 A. B. C. D.的定义域为( )3. (2 分) 如果 sin(π+A)= ,那么 cos( ﹣A)等于( )A.B.﹣C.D.﹣ 4. (2 分) (2018 高二上·泰安月考) 已知实数 确的是( ),且,,那么下列不等式一定正A.第 1 页 共 18 页B. C. D. 5. (2 分) 已知减函数 A. B. C. D.是定义在 上的奇函数,则不等式的解集为( )6. (2 分) (2015 高三上·潮州期末) 已知 则实数 a 的取值范围是( )A . (﹣1,+∞) B . (﹣2,0) C . (﹣2,+∞) D . (0,1]7. (2 分) (2019 高二上·温州期中) 设函数 值范围是( ),且函数 y=f(x)﹣1 恰有 3 个不同的零点,,则使得成立的 的取A.B.C.D.8. (2 分) (2017 高三上·连城开学考) 设动直线 x=a 与函数 f(x)=2sin2( +x)和 g(x)=第 2 页 共 18 页cos2x的图象分别交于 M、N 两点,则|MN|的最大值为( )A.B. C.2 D.39. (2 分) 函数的值域是( )A . [0,+∞) B . [0,4] C . [0,4) D . (0,4) 10. (2 分) (2019 高三上·武清月考) 将函数 所得图象对应的函数恰为偶函数,则 的最小值为( ) A. B. C. D.的图象向右平移个单位,11. (2 分) 已知函数的定义域为 ,, 若在区间上函数()且对于任意的 都有 恰有四个不同零点,则实数 的取值范围为第 3 页 共 18 页A. B. C. D. 12. (2 分) 一个弹性小球从 10 米自由落下,着地后反弹到原来高度的 处,再自由落下,又弹回到上一次 高度的 处,假设这个小球能无限次反弹,则这个小球在这次运动中所经过的总路程为( ) A . 50 B . 80 C . 90 D . 100二、 填空题 (共 4 题;共 5 分)13. (1 分) (2019 高一上·杭州期中) 计算:________.14. (2 分) (2016 高三上·台州期末) 已知函数 f(x)= f(x﹣3)<f(2)的解集为________.,则 f(f(2))=________,不等式15. (1 分) (2016 高三上·南通期中) 若角 α 的终边经过点 P(a,2a)(a<0),则 cosα=________16. (1 分) (2020 高一下·泸县月考) 把物体放在空气中冷却,如果物体原来的温度是, 分钟后温度可由公式当物体温度降为时,所用冷却时间求得,现有 ________分钟.的物体放在,空气温度是 的空气中冷却,三、 解答题 (共 6 题;共 45 分)17. (5 分) (2019 高二下·慈溪期末) 在中,内角 , , 的对边分别是 a,b,c,且满足:第 4 页 共 18 页.(Ⅰ)求角 的大小;(Ⅱ)若,求的最大值.18. (5 分) (2017 高二下·牡丹江期末) 已知是定义在,且时,有恒成立.(Ⅰ)用定义证明函数在上是增函数;上的奇函数,且(Ⅱ)解不等式: (Ⅲ)若; 对所有恒成立,求实数 m 的取值范围.,若19. (10 分) (2019 高一上·鹤岗月考) 已知函数(其中,,)的相邻对称轴之间的距离为 ,且该函数图象的一个最高点为.(1) 求函数的解析式和单调递增区间;(2) 若,求函数的最大值和最小值.20. (5 分) (2019 高二下·湖州期中) 已知二次函数满足(Ⅰ)求函数的表达式;,.(Ⅱ)设,若在区间上单调递增,求实数 k 的取值范围.21. (10 分) (2018·山东模拟) 已知函数.(1) 曲线在点处的切线垂直于直线 :,求 的值;(2) 讨论函数零点的个数.22. (10 分) (2017 高一上·平遥期中) 二次函数 f(x)满足 f(x+1)﹣f(x)=2x,且 f(0)=1.第 5 页 共 18 页(1) 求 f(x)的解析式; (2) 在区间[﹣1,1]上,y=f(x)的图象恒在 y=2x+m 的图象上方,试确定实数 m 的范围.第 6 页 共 18 页一、 选择题 (共 12 题;共 24 分)答案:1-1、 考点:参考答案解析: 答案:2-1、 考点: 解析:答案:3-1、 考点:解析: 答案:4-1、第 7 页 共 18 页考点: 解析:答案:5-1、 考点: 解析: 答案:6-1、 考点:第 8 页 共 18 页解析: 答案:7-1、 考点: 解析:答案:8-1、 考点: 解析:第 9 页 共 18 页答案:9-1、 考点:解析: 答案:10-1、 考点: 解析:答案:11-1、第 10 页 共 18 页考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共5分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共45分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:。
巴州三中2018-2019学年第一学期高一数学期末考试问卷一、选择题1.设{3,5,6,8}A =,{4,5,7,8}B =,求A B ⋂=( ) A .∅B .{5,8}C .{3,4,5,6,7,8}D .以上都不对2.函数1()47f x x =+的定义域是( )A .RB .{|0}x x >C .7|4x x ⎧⎫≠-⎨⎬⎩⎭D .{|2}x x <-3=( ) A .4π-B .4π-C .π-D .44.390︒是第几象限角( ) A .第一象限B .第二象限C .第三象限D .第四象限5.150︒-化成弧度是:( ) A .23πB .23π-C .56π D .56π-6.角α的终边经过点(3,4)P ,则sin α=( ) A .34B .43C .35D .457.将函数sin y x =的图象上所有点向左平移3π个单位长度,则所得图像的函数解析式为:( ) A .sin 3y x π⎛⎫=-⎪⎝⎭B .sin 6y x π⎛⎫=-⎪⎝⎭C .sin 3y x π⎛⎫=+⎪⎝⎭D .sin 6y x π⎛⎫=+⎪⎝⎭8.已知(4,2)a =r ,(6,)b y =r,且//a b r r ,则y =( )A .3B .3-C .12D .12-9.已知(3,4)a =-r ,(5,2)b =r ,则||a r 的值及||b r的值分别为:( )A .5B .5C .7D .710.已知(5,4)A -,(3,6)B -,则线段AB 的中点坐标为:( )A .(4,5)B .(4,5)-C .(4,5)-D .(4,5)--11.设a r 表示“向东走5km ”,b r 表示“向西走10km ”,则下列说法正确的是:( ) A .a b +r r表示“向东走15km ” B .a b +r r表示“向西走15km ” C .a b +r r表示“向东走5km ”D .a b +r r表示“向西走5km ”12.已知1sin cos 5αα+=则sin2α的值是:( ) A .2425-B .725-C .725D .2425二、填空题13.计算:33log 18log 2-=_________ 14.求值:cos225︒=___________ 15.函数cos4y x =的周期为___________16.已知||5a =r ,||4b =r ,a r 与b r 的夹角60θ︒=,则a b ⋅=r r ______三、解答题17.(用定义法)证明:()f x x =在R 上是增函数。
巴州二中2017-2018学年上学期高一期末试卷
高一数学
(时间:100分钟 满分:100分 )
班级 姓名
说明:1,不能使用计算器。
2,请同学将各题的答案写在相应答题纸上,做在试卷上无效。
3,考试完毕后,请将试卷和答题纸一起试卷上交。
一、 选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题纸的表格中)。
1.
3
π
的正弦值等于 ( ) (A )
23 (B )21 (C )2
3
- (D )21-
2、下列四个命题中,正确的是( )
A . 第一象限的角必是锐角
B .锐角必是第一象限的角
C .终边相同的角必相等
D .第二象限的角必大于第一象限的角
3. 下列函数中,在区间()0,+∞不是增函数的是( )
A. x y 2=
B. x y lg =
C. 3
x y = D. 1y x
=
4、下列函数中,最小正周期为
2
π
的是( )
A .)3
2sin(π
-=x y B .)3
2tan(π
-=x y
C .)6
2cos(π
+
=x y
D .)6
4tan(π
+
=x y
5.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π--的大小关系是( )
(A )()f π>(3)f ->(2)f - (B )()f π>(2)f ->(3)f -
(C )()f π<(3)f -<(2)f - (D )()f π<(2)f -<(3)f -
6、函数)2
5
2sin(π+
=x y 的图像中的一条对称轴方程是 ( )
A 、4
π
-
=x B 、2
π
-
=x C 、8
π
=
x D 、π4
5=
x 7,下列关系中正确的个数为 ( )
①0∈{0},②
Φ{0},③{0,1}⊆{(0,1)},④{(a ,b )}={(b ,a )}
(A )1 (B )2 (C )3 (D )4
8、若函数f(x)=x 3
+x 2-2x-2
的一个正数零点附近的函数值用二分法逐次计算,参考数
据如下表:
那么方程x 3
+x 2
-2x-2=0的一个近似根(精确到0.1)为
A 、1.2
B 、1.3
C 、1.4
D 、1.5 9.函数y 3cos(3x )2
π
=+
的图象是把y=3cos3x 的图象平移而得,平移方法是
A .向左平移
2π
个单位长度 B .向左平移
6π
个单位长度 C .向右平移2
π
个单位长度
D .向右平移6
π
个单位长度;
10、函数2,02,0
x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为
11、下列不等式中,成立的是( )
(A )sin(-
18π)<sin(-10
π
) (B )sin3>sin2
(C )cos(-
5
23π
)<cos(-417π) (D )cos 57π<cos 516π
12. 二次函数y =ax 2
+bx 与指数函数y =(
a
b )x
的图象只可能是
二、填空题(本大共6小题.每小题3分,共18分)
13.若θθθ则,0cos sin >在 象限。
14、若函数2
1)(X
x f -=的定义域为是 。
(用区间表示)
15.已知α
αα
ααcos 3sin 2cos sin ,2tan +--=则
的值是 .
16. 函数y =⎪⎩
⎪
⎨⎧>+≤<+≤+1)( 5-1),(0
30),(
32x x x x x x 的最大值是_____
17.已知=-=-ααααcos sin ,4
5
cos sin 则 18、 给出下列函数:
① 函数x
y 2=与函数x 2log 的定义域相同; ② 函数3
x y =与函数x
y 3=值域相同;
③ 函数()2
1-=x y 与函数12-=x y 在()+∞,0上都是增函数;
④ α是三角形的内角,且2
1sin =
α,则α等于
30。
其中错误的序号是
三、解答题(本大题共6小题,共46分.解答应写出文字说明,证明过程或演算步骤) 19.(6分)角α的终边过点P (4,-3),求sin α,αcos 和tan α的值。
20.(6分)设
{|||6}
A x Z x =∈≤,
{}{}
1,2,3,3,4,5,6B C ==,
求: (1)A
B ;
(2)()A A C C .
21.(6分)已知cosα=35,且2π-<α<0,求cos()sin(2)cos()tan αππαπαα
--++--的值
22.(8分)计算(1)
(2) 2lg 2lg3
111lg 0.36lg823
+++
23.(10分)函数y=Asin(ωx+φ)(A>0,ω>0,ππ223
<Φ<)的最小值是-3,周期为3
π, 且它们的图象经过点(0,2
3-
), 求(1)这个函数的解析式, (2)这个函数的单调增区间,
(3)这个函数的最大值及相应的X 的集合,
24 。
(10分) 商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。
把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。
现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问: (Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元? (Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?。