三元一次方程组解法复习讲义附习题[1]
- 格式:doc
- 大小:267.00 KB
- 文档页数:9
三元一次方程组的解法 例题与讲解1.三元一次方程及三元一次方程组 (1)三元一次方程:含有三个未知数,并且含未知数的项的次数都是1的方程叫做三元一次方程.(2)三元一次方程组:①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组.如:⎩⎨⎧ x +y =1,y +z =3,x -2z =5,⎩⎨⎧x +3y +2z =2,3x +2y -4z =3,2x -y =7等都是三元一次方程组.②拓展理解:a.构成三元一次方程组中的每一个方程都必须是一次方程;b.三元一次方程组中的每个方程不一定都含有三个未知数,但方程组中一定要有三个未知数.【例1】 下列方程组中是三元一次方程组的是( ).A.⎩⎨⎧x 2-y =1,y +z =0,xz =2B.⎩⎪⎨⎪⎧1x +y =1,1y +z =2,1z +x =6C.⎩⎨⎧a +b +c +d =1,a -c =2,b -d =3D.⎩⎨⎧m +n =18,n +t =12,t +m =0解析:A ,B 选项中有的方程不是三元一次方程,C 中含有四个未知数,只有D 符合三元一次概念内涵,故选D.答案:D2.三元一次方程组的解(1)三元一次方程的解:使三元一次方程左右两边相等的三个未知数的值,叫做三元一次方程的解.和二元一次方程一样,一个三元一次方程也有无数个解.(2)三元一次方程组的解:组成三元一次方程组的三个方程的公共解,叫做三元一次方程组的解.它也是三个数.(3)检验方法:同二元一次方程和二元一次方程组的检验方法一样,代入检验,左、右两边相等即是方程的解.释疑点 检验三元一次方程组的解三元一次方程组的解是三个数,将这三个数代入每一个方程检验,只有这些数满足方程组中的每一个方程,这些数才是这个方程组的解.【例2】 判断⎩⎨⎧x =2,y =-3,z =-3是不是方程组⎩⎨⎧x +y -2z =5,2x -y +z =4,2x +y -3z =10的解.答:__________(填是或不是).解析:把⎩⎨⎧x =2,y =-3,z =-3代入方程组的三个方程中检验,能使三个方程的左右两边都相等,所以是方程组的解.答案:是3.三元一次方程组的解法(1)解法思想:解三元一次方程组的基本思路是消元,其方法有代入消元法和加减消元法两种,通过消元将三元一次方程组转化为二元一次方程组或一元一次方程.(2)步骤:①观察方程组中每个方程的特点,确定消去的未知数;②利用加减消元法或代入消元法,消去一个未知数,得到二元一次方程组;③解二元一次方程组,求出两个未知数的值;④将所得的两个未知数的值代入原三元一次方程组中的某个方程,求出第三个未知数的值;⑤写出三元一次方程组的解.(3)注意点:①三元一次方程组的解法多种多样,只要逐步消元,解出每一个未知数即可;②解三元一次方程组时,每一个方程都至少要用到一次,否则解出的结果也不正确.【例3】 解方程组⎩⎨⎧ x +3y +2z =2,3x +2y -4z =3,2x -y =7.①②③分析:观察方程组中每个方程的特征可知,方程③不含有字母z ,而①,②中的未知数z 的系数成倍数关系,故可用加减消元法消去字母z ,然后将所得的方程与③组合成二元一次方程组,求这个方程组的解,即可得到原方程组的解.解:①×2+②,得5x +8y =7,④ 解③,④组成的方程组 ⎩⎨⎧2x -y =7,5x +8y =7.解这个方程组,得⎩⎨⎧x =3,y =-1.把x =3,y =-1代入①,得z =1,所以原方程组的解为⎩⎨⎧x =3,y =-1,z =1.4.运用三元一次方程组解实际问题(1)方法步骤:①审题:弄清题意及题目中的数量关系; ②设:设三个未知数;③列:找出实际问题中的已知数和未知数,分析它们之间的数量关系,用式子表示,列出三个方程,组成三元一次方程组;④解:解这个方程组,并检验解是否符合实际; ⑤答:回答说明实际问题的答案. 析规律 列三元一次方程组同二元一次方程组的实际应用相类似,运用三元一次方程组解决实际问题要设三个未知数,寻找三个等量关系,列出三个一次方程,组成三元一次方程组.【例4】 某个三位数是它各位数字和的27倍,已知百位数字与个位数字之和比十位数字大1,再把这个三位数的百位数字与个位数字交换位置,得到一个新的三位数,新三位数比原三位数大99,求原来的三位数.解:设百位数字为a 、十位数字为b ,个位数字为c ,则这个三位数为100a +10b +c ,由题意,得⎩⎨⎧a +c =b +1,27a +b +c =100a +10b +c ,100a +10b +c +99=100c +10b +a .化简,得⎩⎨⎧a -b +c =1,-73a +17b +26c =0,a -c =-1.解这个方程组,得⎩⎨⎧a =2,b =4,c =3.答:原来的三位数是243.。
三元一次方程组解法和利用方程组解决实际问题知识归纳三元一次方程组的解法(1)、三元一次方程的概念三元一次方程组就是含有三个未知数,并且含有的未知数的项都是1次的整式方程。
(2)、三元一次方程组的概念一般地,由三个一次方程组成,并且含有三个未知数的方程组叫做三元一次方程组。
(3)、三元一次方程组的解法(1)三元一次方程组与二元一次方程组同属于一次方程组,解二元一次方程组基本思想是消元,通过代入法或加减法使二元化成一元,未知转化为已知,受它的启发,解三元一次方程组也通过代入或加减消元,使三元化为二元或一元,转化为我们已经熟悉的问题。
(2)三元一次方程组解题的基本步骤:①利用代入法或加减法,把方程组中的一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组。
②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
典例剖析:例解方程组2636 31576 4949x y zx y zx y z++=⎧⎪++=⎨⎪-+=⎩①②③思路探索:此方程组中没有一个未知数的系数的绝对值是1,所以考虑用加减消元法,选择消去系数较简单的未知数x,由①和②,①和③两次消元,得到关于y,z的二元一次方程组,最后求x。
解析:①×3,得 6x+18y+9z=18④②×2,得 6x+30y+14z=12⑤⑤-④,得12y+5z=-6⑥①×2,得4x+12y+6z=12⑦⑦-③, 得21y+2z=3⑧由⑥和⑧组成方程组12562123y zy z+=-⎧⎨+=⎩,解这个方程组,得132yz⎧=⎪⎨⎪=-⎩把y=13, z=-2代入①,得2x+6×13+3×(-2)=6, ∴ x=5∴5132 xyz=⎧⎪⎪=⎨⎪=-⎪⎩规律总结:解三元一次方程组,除了要考虑好选择哪种方法和决定消去哪一个未知数之外,关键的一步是由三“元”化为二“元”,特别注意两次消元过程中,方程组中每个方程至少要用到1次,并且(1),(2),(3)3个方程中先由哪两个方程消某一个未知数,再由哪两个方程(一个是用过的)仍然消这个未知数,防止第一次消去y,第二次消去z或x,仍然得到三元一次方程组,没有达到消“元”的目的。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】三元一次方程组(基础)知识讲解责编:杜少波【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值; 5.写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩ B .111216y x z yx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次,故A 选项不是;B 选项中1x,1y ,1z不是整式,故B 选项不是;C 选项中有四个未知数,故C 选项不是;D 项符合三元一次方程组的定义.【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.类型二、三元一次方程组的解法2.(2016春•枣阳市期末)在等式y=ax 2+bx+c 中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a ,b ,c 的值.【思路点拨】由“当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论. 【答案与解析】解:根据题意,得,②﹣①,得a+b=1④; ③﹣①,得4a+b=10 ⑤.④与⑤组成二元一次方程组,解这个方程组,得,把代入①,得c=﹣5.因此,即a ,b ,c 的值分别为3,﹣2,﹣5.【总结升华】本题考查了解三元一次方程组,解题的关键是得出关于a 、b 、c 的三元一次方程组.本题属于基础题,难度不大. 【:三元一次方程组 409145 例1】举一反三:【变式】解方程组:【答案】解:①+②得:5311x y +=④①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =,2y =将2y =代入⑤知:1x =将1x =,2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩【:三元一次方程组409145 例2(2)】3. 解方程组23520x y zx y z ⎧==⎪⎨⎪++=⎩①②【答案与解析】解法一:原方程可化为:253520x zy zx y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③由①③得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y zt ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【总结升华】对于这类特殊的方程组,可根据其方程组中方程的特点,采用一些特殊的解法(如设比例系数等)来解. 举一反三:【变式】(2015秋•德州校级月考)若三元一次方程组的解使ax+2y+z=0,则a 的值为( ) A .1 B .0 C .﹣2 D .4【答案】B .解:,①+②+③得:x+y+z=1④, 把①代入④得:z=﹣4, 把②代入④得:y=2, 把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0, 解得:a=0.类型三、三元一次方程组的应用4. (2015春•黄陂区校级月考)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 元.【思路点拨】首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【答案】5.【解析】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5.【总结升华】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x张、y张和z张.依题意,得24122926x y zx y zx y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③把③分别代入①和②,得21813232x zx z+=⎧⎪⎨+=⎪⎩④⑤⑤×2,得6x+z=46 ⑥⑥-④,得4x=28,x=7.把x=7代入③,得y=13.把x=7,y=13代入①,得z=4.∴方程组的解是7134xyz=⎧⎪=⎨⎪=⎩.答:面值为2元、l元和5角的人民币分别为7张、13张和4张.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
三元一次方程组解法总结与练习三元一次方程组一、三元一次方程组之特殊型类型一:有表达式,用代入法型. 例1:①⎧x +y +z =12⎪解方程组⎨x +2y +5z =22②⎪x =4y ③⎩分析:方程③是关于x 的表达式,因此确定“消x ”的目标。
类型二:缺某元,消某元型. 针对上例进而分析,方程组中的方程③里缺z, 因此利用①、②消z, 也能达到消元构成二元一次方程组的目的。
类型三:轮换方程组,求和作差型.分析:通过观察发现每个方程未知项的系数和相①⎧2x +y +z =15等;每一个未知数的系数之和也相等,即系数和相⎪例2:解方程组⎨x +2y +z =16②等。
具备这种特征的方程组,我们给它定义为“轮⎪x +y +2z =17③⎩换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。
⎧x +y =20, ⎪典型例题举例:解方程组⎨y +z =19,⎪x +z =21. ⎩⎧x :y :z =1:2:7⎩2x -y +3z =21①② ③分析:观察此方程组的特点是未知项间存在着比例关系,把比例式化成关系式求解类型四:遇比例式找关系式,遇比设元型. 例3:解方程组⎨①②⎧x +y +z =111①⎪典型例题举例:解方程组⎨y :x =3:2②⎪y :z =5:4③⎩二、三元一次方程组之一般型⎧3x -y +z =4, ⎪例4:解方程组⎨x +y +z =6,⎪2x +3y -z =12. ⎩①② ③分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:(一)消元的选择1. 选择同一个未知项系数相同或互为相反数的那个未知数消元;2. 选择同一个未知项系数最小公倍数最小的那个未知数消元。
(二)方程式的选择采取用不同符号标明所用方程,体现出两次消元的过程选择。
⎧3x -y +=4⎪解方程组:⎨x +y +=6⎪2x +3y -=12⎩典型例题举例①∨②∆③∨∆⎧2x +4 y +3z =9, ⎪⎪解方程组⎨3x -2 y +5z =11,⎪y ⎪ +7z =13. ⎩5x -6①∨②∨③∆∆分析:通过比较发现未知项y 的系数的最小公倍数最小,因此确定消y 。
专题2.21 解三元一次方程组100题(专项练习)三元一次方程组及其解法的重要性容易不被引起重视,从而影响到了初三学习二次函数求解析式的有效性和正确性,因此巩固此内容相当重要,希望本专题的练习,为后期学习打下扎实基础!一、解答题1.解方程组2.解方程组:.3.解方程组:.4.已知多项式,当时,它的值是,当时,它的值是,试求的值.5.解方程组:6.设线段x、y、z满足,求x、y、z的值.7.解方程组:8.已知y=ax2+bx+c.当x=3时,y=0;当x=-1时,y=0;当x=0,y=3;求a、b、c的值9.10.解方程组:.11.解方程组12.13.在等式中,当时,;当时,:当时,.(1) 求,,的值;(2) 求当时,的值.14.解方程组:15.解方程组:16.解三元一次方程组:17.解三元一次方程组.18.用代入法解三元一次方程组.19.解方程组:20.解方程组.21.解方程组22.解方程:23.解方程组:.24.解方程组:.25.解方程组:.26.解方程组:.27.解方程组:.28.解方程组:.29.解方程组.30.解方程组:.31.解方程组:.32.解方程组:.33.解方程组:34.解下列三元一次方程组:35.解方程组:.36.解方程组:.37.解方程组:.38.解方程组:.39.解方程组:40.解方程组:41.解下列方程组:(1)(2)42.解方程组:43.解方程组44.解下列方程组:(1);(2).45.解下列三元一次方程组:(1);(2).46.在等式中,当时,;当时,;当与时,的值相等.求,,的值.47.解下列三元一次方程组:(1);(2).48.解三元一次方程组49.解方程组.50.在等式中,当时,;当时,;当时,.求,,的值.51.解下列三元一次方程组:(1);(2).52.解三元一次方程组:53.解方程组:54.在等式中,当时,;当时,;时,.求、、的值.55.已知等式y=ax2+bx+c,且当x=1时,y=2;当x=﹣1时,y=6;当x=0时,y=3,求a,b,c的值.56.已知y=ax2+bx+c,当x=1时,y=8;当x=0时,y=2;当x=﹣2时,y=4.(1)求a,b,c的值;(2)当x=﹣3时,求y的值.57.已知.当时,;当时,;当时,.(1)求、、的值;(2)求时,的值.58.59.在等式y=ax3+bx+c中.当x=1时,y=6;当x=2时,y=9;当x=3时,y=16.求a,b,c的值.60.解方程组:61.解方程组:62.解方程组:63.解方程组64.解方程组:.65.解方程组:.66.在等式中,当时,;当时,;当时,,求这个等式中、、的值.67.在等式y=ax2+bx+c中,当x=1时,y=6;当x=﹣1时,y=0;当x=2时,y=12,当x=4时,y的值是多少.68.解方程组:.69.解方程组:70.71.72.73.解三元一次方程组74.解方程组:.75.在等式y=ax2+bx+c中,当x=1时,y=﹣2;当x=﹣1时,y=20;当x=2时,y =﹣10;求当x=﹣2时,y的值.76.解方程组:.77.78.解三元一次方程组.79.若,且x+2y+z=36,分别求x、y、z的值.80.已知代数式,当时,;当时,;当时,;①求、、的值;②求时,的值.81.已知方程组其中c≠0,求的值.82.已知y=ax2+bx+c. 当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.(1)求a、b、c的值;(2)求x=4时,y的值.83.阅读下列解方程组的过程:解方程组:由①+②+③,得2(x+y+z) =6,即x+y+z=3.④由④-①,得z=2;由④-②,得x=1;由④-③,得y=0.则原方程组的解为按上述方法解方程组:84.解方程组:85.解方程组86.解方程组:87.解方程组:(1)(2)88.解方程组:89.解方程(1)(2)90.解方程组:91.解三元一次方程组:92.解方程组:(1) ;(2) 93.解方程组94.解三元一次方程组95.解方程组.96.解方程组.97.解方程组:.98.已知,xyz≠0,则的值_____.99.解方程组100.解方程组:(1) ;(2) ;(3) ;(4) .参考答案1.2.【分析】先用加减消元法消去z,变为关于x、y的二元一次方程组,解三元一次方程组即可.解:,②①,得:,③②,得:,解方程组,得:,将代入①,得:,解得:,∴原方程组的解为:.【点拨】本题考查了三元一次方程组的解法,解题的关键是熟练运用消元法把三元化为二元,再解二元一次方程组.2.【分析】根据加减消元法和代入消元法求解即可解:①②得,④,③④得,,解得,代入③得,,代入①得,,∴方程组的解为.【点拨】本题考查了三元一次方程组的求解,正确的计算是解决本题的关键.3.【分析】①②得:④,把③代入④求出x,把代入③求出y,再把,代入①求出z即可.解:,①②得:④,把③代入④得:,解得:,把代入③得:,把,代入①得:,解得:,原方程组的解为:.【点拨】此题考查了解三元一次方程组,正确掌握三元一次方程组的解法是解题的关键.4.【分析】把与代入,分别使其值为0和1,列出两个关系式,相减即可求出的值.解:由题意得,②①,得,∴.【点拨】本题考查了代数式求值,以及解三元一次方程组,熟练掌握运算法则是解本题的关键.5.【分析】第一个与第三个方程相加解出x,第一个与第二个方程相加列出关于的方程组,再将x代入求出y,进而求出z的值,即可得到方程组的解.解:得:得:④把代入④得:把,代入①得:所以原方程组的解是:【点拨】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.6..【分析】设===k,从而可得x+y=2k,z+x=3k,y+z=4k,进而可得x+y+z=k,然后根据x+y+z=18,求出k的值,从而求出x+y=8,z+x=12,y+z=16,最后进行计算即可解答.解:设===k,∴x+y=2k,z+x=3k,y+z=4k,∴x+y+z+x+y+z=9k,∴2x+2y+2z=9k,∴x+y+z=k,∵x+y+z=18,∴k=18,∴k=4,∴x+y=8,z+x=12,y+z=16,∴z=10,y=6,x=2,∴原方程组的解为:.【点拨】本题考查解三元一次方程组,解题的关键是令===k,并求出k值.7.【分析】利用消元法先把三元一次方程组变形为二元一次方程组,再解二元一次方程组即可得解.解:,得,把和④组成方程组得,解此二元一次方程组得,把,代入②得2×2+5×1-2z=11,解得z=−1,∴原方程组得解为.【点拨】本题主要考查了解三元一次方程组,把三元一次方程组通过消元法化为二元一次方程组是解题的关键.8.,,.【分析】代入得出三元一次方程组,求出方程组的解即可.解:由题意得:将代入①,③中得:,由④⑤得:,解得:,将代入④中得:,解得:,即,,.【点拨】本题考查了解三元一次方程组的应用,解此题的关键是能根据题意得出三元一次方程组,题目比较好,难度适中.9.【分析】由于未知数的系数均为1,可以用加减消元法解答.解:,①+②+③得,∴,④-③得y=0,将y=0代入①中得:x=2,将y=0代入②中得:z=3故原方程组的解为:.【点拨】本题考查解三元一次方程组,用加减消元法来解答,要注意消元思想的应用.10.【分析】由②+③×3可得,再由由①-④可得,然后把分别代入①,②,即可求解.解:由②+③×3得:,由①-④得:,解得:,把代入①得:,把,代入②得:,所以原方程组的解为【点拨】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.11.【分析】由①得,由②得,利用代入消元法求解即可.解:,由①得④,由②得⑤,把④、⑤代入③得:,解得,把代入④得,把代入⑤得,∴.【点拨】本题考查解三元一次方程组,利用代入消元法求解是解题的关键.12.【分析】先用②+③求得x,然后代入②得:y=x+3z-4 ④,再将④代入①可求得z,然后将x、z代入④可求得y.解:②+③得:5x=2,∴x=,由②得:y=x+3z-4 ④,将④代入①得:2x-3(x+3z-4 )+4z=12,解得:z=-,将x=,z=-代入④得:y=-,∴原方程组的解为:.【点拨】本题主要考查了三元一次方程组的解法,掌握加减消元法和代入消元法是解答本题的关键.13.(1) (2)【分析】(1)根据题设条件,得到关于,,的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于和的等式,把代入,计算求值即可.解:(1)根据题意得:,①+②得:④③+②×2得:⑤,⑤-④得:,把代入④得:,解得:,把,代入①得:,解得:,方程组的解为:;(2)根据题意得:,把代入得:,即的值为.【点拨】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.14.解:①+②,解得y=8.将y=8代入②和③,得,解得,所以原方程组的解为.15.【分析】消去未知数z或y,把三元一次方程组先化为二元一次方程组,求解二元一次方程组后再求出另一个未知数.解:由①+②,得,由①+③,得,由④⑤组成方程组为,解这个方程组,得,把代入①,得;∴原方程组的解为;【点拨】本题考查了解三元一次方程组,把三元一次方程组化为二元一次方程组是解决本题的关键.16.【分析】先利用方程①③消去位置是z,再与方程②结合求解x,y,再求解z,从而可得答案.解:①-③得-x+2y=1④,④+②得y=2,将y=2代入②得x=3,将x=3,y=2代入①得z=1,所以原方程组的解为.【点拨】本题考查的是三元一次方程组的解法,掌握利用加减消元法解三元一次方程组的步骤是解本题的关键.17.【分析】先由①×2-②消去y,①×3+③消去y,得到,转化为解关于x,z的二元一次方程组,据此解答.解:①×2-②,得①×3+③,得解方程组解得把代入①,得,所以原方程组的解为.【点拨】本题考查加减消元法解三元一次方程组,是基础考点,掌握相关知识是解题关键.18.【分析】观察每个方程的特点,将变形为z=3x+2y﹣16,分别代入剩下的方程,再利用加减消元解二元一次方程组即可.解:,由②得:z=3x+2y﹣16④,把④代入①得:2x+y+9x+6y﹣48=13,即11x+7y=61⑤;把④代入③得:x+3y﹣15x﹣10y+80=10,即2x+y=10⑥,⑥×7﹣⑤得:3x=9,即x=3,把x=3代入⑥得:y=4,把x=3,y=4代入④得:z=1,则方程组的解为.【点拨】本题主要考查了解三元一次方程组,正确运用消元思想进行运算是解题的关键.19.【分析】根据解三元一次方程组的求解方法求解即可.解:解析:①③得④,②④3得,把代入④得,把代入①得,∴方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟知解三元一次方程组的方法是解题的关键.20.【分析】分别将①与②相加,③减去①,联立得到关于x和z的二元一次方程组,求解并代入原方程组任意方程即可求解.解:,①+②得,④,③-①得,⑤,④-⑤得,,,把代入④得,,,把,代入②,,,∴方程组的解为.【点拨】本题考查解三元一次方程组,选择一个比较容易消去的未知数进行消元,能够使运算更加简便.21.【分析】先用加减消元法消去z,变为关于x、y的二元一次方程组,解三元一次方程组即可.解:,②−①,得:,②+③,得:,解方程组,得:,将代入①,得:,解得:,∴原方程组的解为:【点拨】本题考查了三元一次方程组的解法,解题关键是熟练运用消元法把三元化为二元,再解二元一次方程组.22.【分析】分别用②﹣①、③﹣①消去z,得到两个关于x和y的方程,求出x和y的值,进而可求出z的值.解:,②﹣①得:3x﹣y=11④,③﹣①得:15x+5y=35,即3x+y=7⑤,④+⑤得:6x=18,解得:x=3,④﹣⑤得:﹣2y=4,解得:y=﹣2,把x=3,y=﹣2代入①得:z=﹣5,则方程组的解为.【点拨】此题考查了解三元一次方程组,解题的关键是利用加减消元法消去未知数转化成一元一次方程.23.【分析】把①代入②消去z得到方程④,把③④构成方程组解得x、y,再代入①求得z,从而求解.或者把①+②消去z得到方程④,把③④构成方程组解得x、y,再代入①求得z,从而求解.解:方法一:,把①代入②得,④联立方程③④得,解得,把代入①,得.所以原方程组的解是.方法二:,①+②,得,,④联立方程③④,得,解得,所以原方程组的解是.【点拨】本题考查解三元一次方程组,熟练运用代入消元法、加减消元法解方程组是解决本题的关键.24.【分析】利用加减消元法求出解即可.解:解方程组,①+②,得④,,得⑤,④+⑤,得,∴,将代入③,得,∴,将代入②,得,∴,∴方程组的解为.【点拨】本题考查了解三元一次方程组,利用消元的思想是解题的关键,消元包括:代入消元法和加减消元法.25.【分析】先①+②得④,再求出,将代入④求出x,最后将代入②求出y即可.解:,①+②,得④,,得:,∴,将代入④中,得:,∴,将代入②中,得:,∴,∴方程组的解为.【点拨】本题考查了三元一次方程组的解法,理解三元一次方程组的解法是解答关键.26.【分析】利用消元的方法将三元一次方程组化为二元一次方程组,再利用消元的方法将二元一次方程组化为一元一次方程组,再求出未知数的值,将求出的未知数的值代入方程中求出另外两个未知数的值.解:由①得:将④代入②和③中整理得:得:将代入⑤中得:将,代入④中得:∴该方程组的解为【点拨】本题主要考查了用消元法解方程组,熟练掌握消元法解方程组是解答此题的关键.27.【分析】由①+②可得3x+4y=24④,再由①+③可得6x-3y=15⑤,然后④⑤可得y=3,再把把y=3代入④,可得x=4,最后把x=4,y=3代入①,即可求解.解:,①+②得3x+4y=24④①+③得6x-3y=15⑤④⑤得8y+3y=48-15解得:y=3,把y=3代入④,得:3x+12=24,解得:x=4,把x=4,y=3代入①,得:4+3+2z=15,解得:z=4,∴方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟练掌握解三元一次方程组得基本方法是解题的关键.28.【分析】根据解三元一次方程组的步骤即可求得.解:,由②得,将代入①中得:,则,由①+③得:,则,解得,,,所以方程组的解为:.【点拨】本题考查了三元一次方程组的解法,灵活运用加减消元或代入消元法解方程组是解决本题的关键.29.【分析】利用“消元”的思想将三元一次方程组消元变成二元一次方程组,再继续消元变成一元一次方程,解一元一次方程,将得到的未知数的值回带到前面的式子求出另外两个未知数即可.解:方法一:①②,得④②③,得⑤④⑤5,得把代入④,得把,代入③,得原方程组的解是.方法二:①②,得④①③,得由④与⑤构成的二元一次方程组为解这个方程组,得把代入③,得所以原方程组的解是.方法三:①②,得④②③,得⑤由⑤得⑥把⑥代入④,得所以把代入⑥,得把,同时代入③得所以所以原方程组的解为.【点拨】本题考查解三元一次方程组,关键是掌握解方程组中的“消元”思想,利用代入法或加减法消元.30.【分析】由①设,把,,代入②,求得,进而即可求得.解:,由①设,∴,,,把,,代入②,∴,.∴,,.∴方程组的解为.【点拨】本题考查了解三元一次方程组,根据比例式设参数是解题的关键.31.【分析】根据解三元一次方程的方法求解即可.解:①+②得,解得,③-①得,即,解得,将代入①得,解得,故方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟知解三元一次方程的方法是解题的关键.32.【分析】利用加减消元法解该三元一次方程组即可.解:②③得,④,③①得,⑤,⑤④得,,,把代入④,得:解得:,把,代入①,得:解得:.∴方程组的解为:.【点拨】本题考查解三元一次方程组.掌握解三元一次方程组的方法是解题关键.33.【分析】将①+②可得得:④,再由③+④可得,然后把和代入①可得,即可求解.解:将①+②得:④,将③+④得:,解得:,将代入④得:,将和代入①得:,原方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.34.解:将①代入②、③,消去z,得解得把x=2,y=3代入①,得z=5。
七年级数学下册8.4三元一次方程组的解法习题新版新人教版*8.4 三元一次方程组的解法 基础题知识点1 解三元一次方程组1.下列是三元一次方程组的是(D )A .⎩⎪⎨⎪⎧2x =5x 2+y =7x +y +z =6B .⎩⎪⎨⎪⎧3x -y +z =-2x -2y +z =9y =-3 C .⎩⎪⎨⎪⎧x +y -z =7xyz =1x -3y =4 D .⎩⎪⎨⎪⎧x +y =2y +z =1x +z =92.观察方程组⎩⎪⎨⎪⎧3x -y +2z =3,2x +y -4z =11,7x +y -5z =1的系数特点,若要使求解简便,消元的方法应选取(B )A .先消去xB .先消去yC .先消去zD .以上说法都不对3.将三元一次方程组⎩⎪⎨⎪⎧5x +4y +z =0, ①3x +y -4z =11, ②x +y +z =-2 ③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是(A )A .⎩⎪⎨⎪⎧4x +3y =27x +5y =3B .⎩⎪⎨⎪⎧4x +3y =223x +17y =11 C .⎩⎪⎨⎪⎧3x +4y =27x +5y =3 D .⎩⎪⎨⎪⎧3x +4y =223x +17y =11 4.已知方程组⎩⎪⎨⎪⎧x +2y =k ,2x +y =1的解满足x +y =3,则k 的值为(B ) A .10 B .8 C .2 D .-85.由方程组⎩⎪⎨⎪⎧2x +y =7,2y +z =8,2z +x =9,可以得到x +y +z 的值等于(A )A .8B .9C .10D .11 6.解下列三元一次方程组:(1)⎩⎪⎨⎪⎧2x +y =4,①x +3z =1,②x +y +z =7;③解:由①,得y =4-2x.④由②得z =1-x 3.⑤ 把④,⑤代入③,得x +4-2x +1-x 3=7. 解得x =-2.∴y =8,z =1.∴原方程组的解为⎩⎪⎨⎪⎧x =-2,y =8,z =1.(2)⎩⎪⎨⎪⎧x +z -3=0,①2x -y +2z =2,②x -y -z =-3.③解:②-③,得x +3z =5.④解由①,④组成的方程组,得⎩⎪⎨⎪⎧x =2,z =1. 将⎩⎪⎨⎪⎧x =2,z =1代入③,得y =4. ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =4,z =1.知识点2 三元一次方程组的简单应用7.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14.则这个三位数是275.8.已知-a x +y -z b 5c x +z -y 与a 11b y +z -x c 是同类项,则x =6,y =8,z =3.9.(镇江校级期末)已知y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1.求a ,b ,c 的值.解:∵y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1,∴代入,得⎩⎪⎨⎪⎧a +b +c =3,①a -b +c =1,②c =1,③把③代入①和②,得⎩⎪⎨⎪⎧a +b =2,a -b =0. 解得a =1,b =1,即a =1,b =1,c =1.10.2016里约奥运会,中国运动员获得金、银、铜牌共70枚,位列奖牌榜第三.其中金牌比银牌多8枚,铜牌比银牌的总数的2倍少10枚.问金、银、铜牌各多少枚?解:设金牌x 枚,银牌y 枚,铜牌z 枚,则⎩⎪⎨⎪⎧x +y +z =70,x -y =8,2y -z =10,解得⎩⎪⎨⎪⎧x =26,y =18,z =26.答:金牌26枚,银牌18枚,铜牌26枚.中档题11.三元一次方程组⎩⎪⎨⎪⎧x +y =-1,x +z =0,y +z =1的解是(D )A .⎩⎪⎨⎪⎧x =-1y =1z =0B .⎩⎪⎨⎪⎧x =1y =0z =-1C .⎩⎪⎨⎪⎧x =0y =1z =-1D .⎩⎪⎨⎪⎧x =-1y =0z =112.(淄博中考)如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是(C )A .2B .7C .8D .15 13.如图1,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图2,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与2个砝码C 的质量相等.14.解方程组:(1)⎩⎪⎨⎪⎧x -2y +z =0,①3x +y -2z =0,②7x +6y +7z =100;③解:①+②×2,得7x -3z =0.④①×3+③,得10x +10z =100,即x +z =10.⑤解由④,⑤组成的方程组,得⎩⎪⎨⎪⎧x =3,z =7. 将⎩⎪⎨⎪⎧x =3,z =7代入①,得y =5. ∴原方程组的解是⎩⎪⎨⎪⎧x =3,y =5,z =7.(2)⎩⎪⎨⎪⎧x ∶y =1∶5,①y ∶z =2∶3,②x +y +z =27.③解:由①,得y =5x.④由②,得z =32y =152x.⑤ 把④,⑤代入③,得x +5x +152x =27.解得x =2. ∴y =10,z =15.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =10,z =15.15.若||x +2y -5+(2y +3z -13)2+3z +x -10=0,试求x ,y ,z 的值.解:由题意,得⎩⎪⎨⎪⎧x +2y -5=0,2y +3z -13=0,3z +x -10=0.解得⎩⎪⎨⎪⎧x =1,y =2,z =3.16.小明从家到学校的路程为3.3千米,其中有一段上坡路、平路和下坡路.如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米,那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?解:设去学校时上坡路是x 千米,平路是y 千米,下坡路是z 千米.依题意得⎩⎪⎨⎪⎧x +y +z =3.3,x 3+y 4+z 5=1,z 3+y 4+x 5=4460,解得⎩⎪⎨⎪⎧x =2.25,y =0.8,z =0.25.答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.综合题17.(贵州中考)为确保信息安全,在传输时往往需加密,发送方发出一组密码a ,b ,c 时,则接收方对应收到的密码为A ,B ,C.双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?解:(1)由题意得⎩⎪⎨⎪⎧A =2×2-3,B =2×3,C =3+5,解得A =1,B =6,C =8.答:接收方收到的密码是1,6,8.(2)由题意得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11.解得⎩⎪⎨⎪⎧a =3,b =4,c =7.答:发送方发出的密码是3,4,7.。
8.4.1三元一次方程组的解法举例(1)学习目标:1、知道解三元一次方程组的基本思想方法是消元,即化“三元”为“二元”。
2、会用加减法和代入法解简单的三元一次方程组。
3、培养学生分析问题和解决问题的能力。
一、复习:解下列方程组:⎩⎨⎧=+=+18002380y x y x (2)⎩⎨⎧=-=+5231284y x y x二、自主学习,合作探究1、阅读课本p111:了解三元一次方程组的概念。
方程组含有 的未知数,每个方程中含 都是1,并且一共有三个方程,像这样的方程组叫做 。
2、在下列方程中,是三元一次方程的在括号内打“√”,否则打“×”。
(1)2x+3y=12-z ( ) (2) xy -z=14 ( )(3)13361-=+-z y x ( ) (4)4243+=-z y x ( ) 3、三元一次方程组的解法:二元一次方程组解法思路是先用加减法或代入法消去一个未知数,化____元为_____元,那么,三元一次方程组的解法是否类似地将“三元”化为“二元”呢?例1 解方程组⎪⎩⎪⎨⎧=+-=-=++③②①182126z y x y x z y x解析:由于方程(2)是关于x 、y 的二元一次方程,缺少未知数z ,所以可先消去①(3)方程中的z ,再与(2)组成二元一次方程组③-①得:__________ ④解方程组⎩⎨⎧④②_____________________________得x= ________y= __________把上值代入 ①,得z=⎪⎩⎪⎨⎧===∴z y x跟踪练习:解三元一次方程组:⎪⎩⎪⎨⎧=+-=++=+8795932743)1(z y x z y x z x① ②③ ① ②③点评:若方程组中某一个方程缺少某个未知数,则可从另外两个方程中消去这个未知数,转化为二元一次方程组求解.例2 解方程组⎪⎩⎪⎨⎧=+-=+-=++13765115239342z y x z y x z y x 解析:观察三个方程发现,未知数y 的系数成倍数关系,因此可考虑先消去y .①+②×2,得 ④.②×3-③,得 ⑤ ④与⑤组成方程组得:⎩⎨⎧⑤④____________________________解这个方程组得得x=_______z= ______。
8.4三元一次方程组解法举例(一)、基础练习1.在方程5x -2y +z =3中,若x =-1,y =-2,则z =_______. 2.已知单项式-8a3x +y -z b 12 cx +y +z与2a 4b2x -y+3z c 6,则x =____,y =____,z =_____.3.解方程组 ,则x =_____,y =______,z =_______.4.已知代数式ax 2+bx +c ,当x =-1时,其值为4;当x =1时,其值为8;当x =2时,其值为25;则当x =3时,其值为_______.5.已知,则x ∶y ∶z =___________.6.解方程组,若要使运算简便,消元的方法应选取()A 、先消去xB 、先消去yC 、先消去zD 、以上说法都不对7.方程组的解是()A 、B 、C 、D 、8.若x +2y +3z =10,4x +3y +2z =15,则x +y +z 的值为()A 、2B 、3C 、4D 、5 9.若方程组的解x 与y 相等,则a 的值等于()A 、4B 、10C 、11D 、1210.已知∣x -8y ∣+2(4y -1)2+3∣8z -3x ∣=0,求x +y +z 的值. 11.解方程组(1)(2)x +y -z =11y +z -x =5 z +x -y =1x +y -z =11y +z -x =5 z +x -y =1x +y =-1x +z =0 y +z =1x =-1 y =1 z =0x =1y =0 z =-1x =0 y =1 z =-1x =-1 y =0 z =14x +3y =1ax +(a -1)y =3x -3y +2z =03x -3y -4z =0x +y =3 y +z =5 x +z =6x +y -z =6x -3y +2z =1 3x +2y -z =412.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?(二)拓展训练13、解下列方程组:(1)323231112xy z xy z xyz (2)|23|(2)2011x y z x y z xyz(三)达标测试14、已知方程组1620224ax by cxy的解应该是810x y,一个学生解题时,把c 看错了,因此得到解为1213x y,求a 、b 、c 的值。
三元一次方程组解法和利用方程组解决实际问题知识归纳(1)、三元一次方程的概念三元一次方程组就是含有三个未知数,并且含有的未知数的项都是1次的整式方程。
(2)、三元一次方程组的概念一般地,由三个一次方程组成,并且含有三个未知数的方程组叫做三元一次方程组。
(3)、三元一次方程组的解法(1)三元一次方程组与二元一次方程组同属于一次方程组,解二元一次方程组基本思想是消元,通过代入法或加减法使二元化成一元,未知转化为已知,受它的启发,解三元一次方程组也通过代入或加减消元,使三元化为二元或一元,转化为我们已经熟悉的问题。
(2)三元一次方程组解题的基本步骤:①利用代入法或加减法,把方程组中的一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组。
②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
典例剖析:例解方程组2636 31576 4949x y zx y zx y z++=⎧⎪++=⎨⎪-+=⎩①②③思路探索:此方程组中没有一个未知数的系数的绝对值是1,所以考虑用加减消元法,选择消去系数较简单的未知数x,由①和②,①和③两次消元,得到关于y,z的二元一次方程组,最后求x。
解析:①×3,得 6x+18y+9z=18④②×2,得 6x+30y+14z=12⑤⑤-④,得12y+5z=-6⑥①×2,得4x+12y+6z=12⑦⑦-③, 得21y+2z=3⑧由⑥和⑧组成方程组12562123y zy z+=-⎧⎨+=⎩,解这个方程组,得132yz⎧=⎪⎨⎪=-⎩把y=13, z=-2代入①,得2x+6×13+3×(-2)=6, ∴ x=5∴5132 xyz=⎧⎪⎪=⎨⎪=-⎪⎩规律总结:解三元一次方程组,除了要考虑好选择哪种方法和决定消去哪一个未知数之外,关键的一步是由三“元”化为二“元”,特别注意两次消元过程中,方程组中每个方程至少要用到1次,并且(1),(2),(3)3个方程中先由哪两个方程消某一个未知数,再由哪两个方程(一个是用过的)仍然消这个未知数,防止第一次消去y,第二次消去z或x,仍然得到三元一次方程组,没有达到消“元”的目的。
课时训练试题:解下列方程组(1)275322344y xx y zx z=-⎧⎪++=⎨⎪-=⎩(2)491232137544x yy zx z⎧⎪+=⎪-=⎨⎪⎪+=⎩(3)3743225x yy zx z-=-⎧⎪+=⎨⎪-=-⎩(4)491731518232x zx y zx y z-=⎧⎪++=⎨⎪++=⎩(5)76710020320x y zx y zx y z++=⎧⎪-+=⎨⎪+-=⎩(6)2439325115680x y zx y zx y z++=⎧⎪-+=⎨⎪++=⎩(7)3232443210x y zx y zx y z-+=⎧⎪+-=⎨⎪++=-⎩(8)26363127343411x y zx y zx y z++=⎧⎪-+=-⎨⎪-+=⎩(9)::1:2:32315x y zx y z=⎧⎨+-=⎩(10)123x yy zz x+=⎧⎪+=⎨⎪+=⎩(三)实际问题与二元一次方程:1.利用二元一次方程组解决问题的基本过程:2.实际问题向数学问题的转化:3.设未知数有两种设元方法——直接设元、间接设元.当直接设元不易列出方程时,用间接设元.在列方程(组)的过程中,关键寻找出“等量关系”,根据等量关系,决定直接设元,还是间接设元4. 列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.5.常见题型有以下几种情形:(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
•例1.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨。
3辆大车与5辆小车一次可以运货多少吨?•分析:等量关系一次运货的总吨数。
(2)行程问题(基本关系:路程=速度×时间。
)相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
甲走的路程+乙走的路程=全路程追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
船(飞机)航行问题:相对运动的合速度关系是:顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题:①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。
②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个成长③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
例2、张强与李毅二人分别从相距 20 千米的两地出发,相向而行。
如果张强比李毅早出发 30 分钟,那么在李毅出发后 2 小时,他们相遇;如果他们同时出发,那么 1 小时后两人还相距 11 千米。
求张强、李毅每小时各走多少千米?•例3.甲,乙两地相距160千米,一辆汽车和一辆拖拉机同时由两地相向而行,1小时20分钟相遇。
相遇后,拖拉机继续前行,汽车在相遇处停留1小时后掉转车头原速返回,且半小时后追上拖拉机。
这时,汽车,拖拉机各走了多少千米?•例4;甲乙两人分别从相距30千米的AB两地同时相向而行,经历3小时相距3千米,再经过2小时,甲到B地所剩的路程是乙到A地所剩路程的2倍,求甲乙两人的速度.•分析:•等量关系:1.两人相遇路程和=总路程• 2.所剩路程的倍数关系(3)工程问题工作总量=工作时间×工作效率;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间甲的工作量+乙的工作量=甲乙合作的工作总量,其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
例5.某城市为缓解缺水状况,实施了一项引水工程,就是把200千米以外的一条大河的水引到城市中来,把这个工程交给了甲乙两个施工队,工期50天完成,甲乙两队合作了30天后,乙队因另外有任务需要离开10天,于是甲队加快速度,每天多修了0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天也比原来多修0.4千米,结果如期完成。
问:甲,乙两队原计划每天各修多少千米?工作量=工作效率×工作时间(相对应的)•分析:•等量关系:1.两施工队原来的速度和 2.总工程量•解:设甲队原计划每天修x千米,乙队每天修y千米。
例6.(遵义07)某中学准备改造面积为21080m的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;10m;甲工程队每天所需费用160元,乙工程队每天所需乙工程队每天比甲工程队多改造2费用200元.(1)求甲乙两个工程队每天各改造操场多少平方米?(2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活补助费,现有以下三种方案供选择.第一种方案:由甲单独改造;第二种方案:由乙单独改造;第三种方案:由甲、乙一起同时进行改造;你认为哪一种方案既省时又省钱?试比较说明.例7、某工厂为生产一种零件,购买了一台昂贵的特殊的机床,有两名工人轮流生产,每天只能工作8小时。
如果一天中,甲工作5小时,乙工作3小时,则一天可生产67只零件;如果一天中甲工作3小时,乙工作5小时,则一天可生产69只零件,问:甲乙两工人每小时各生产多少只零件?(4)、经济问题例8.某人用24000元买进甲,乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问此人买的甲乙两股票各是多少元?•分析:利润=成本×利润率总利润=各分利润之和等量关系:1.股票的成本 2.获得利润解:设买进甲x元,买进乙y元.则甲股票获利为0.15x元,乙股票获利为-0.1y元.x+y=240000.15x-0.1y=1350(5)、分配问题•例9.初一某班45名同学被平均分配到甲,乙,丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙,丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调到乙,丙各多少人?•分析:1.甲处人数=调出人数• 2.重新分配后的乙丙人数之比•中考题荟萃1.(06年山东济南)某高校共有5个大餐厅和2个小餐厅,经过测试同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
2.(江西07)23.2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?3. (湘潭07)星期天,七年级1、2两班部分同学相约去某公园玩碰碰车或划船.已知玩碰碰车的同学每人租用一辆车,划船的同学每4人合租一条船,两班各花了115元.活动人数如下表:4.(07海南省)“海之南”水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后收入30400元。