如图,求角A+角B+角C+角D+角E+角F+角G的度数。
- 格式:doc
- 大小:27.50 KB
- 文档页数:1
第04讲等边三角形课程标准学习目标①等边三角形的概念与性质②等边三角形的判定③含30°角的直角三角形 1.掌握等边三角形的性质并能够对其熟练应用。
2.掌握等边三角形的判定方法,能够运用已知条件熟练判定等腰三角形。
3.掌握含30°角的直角三角形的性质并对其熟练应用。
知识点01等边三角形的概念与性质1.等边三角形的概念:三条边都的三角形叫做等边三角形,等边三角形是特殊的。
2.等边三角形的性质:如图①等边三角形的三条边都,三个角也,且三个角都等于°。
②等边三角形三条边都存在。
③等边三角形是一个图形,它有条对称轴,对称轴的交点叫做中心。
题型考点:①等边三角形的性质求角度与线段。
【即学即练1】1.如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠1=40°,则∠2的度数为()A.80°B.70°C.60°D.50°【即学即练2】2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【即学即练3】3.如图,△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长度为.【即学即练4】4.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.知识点02含30°角的直角三角形1.30°角所对的直角边与斜边的关系:30°角所对的直角边等于斜边的。
证明如下:1如图,△ABC是等边三角形,AD⊥BC。
证明BD=AB2∵△ABC是等边三角形∴AB=BC=AC,∠BAC=∠B=∠C=。
∵AD⊥BC∴AD平分∠BAC,∠BAD=∠CAD=BD=CD=BC∴BD=AB。
题型考点:含30°角的直角三角形的性质。
人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。
一、选择题1.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.3cm,4cm,5cm D.5cm,6cm,7cm2.下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2 B.3 C.4 D.53.如图,线段BE是ABC的高的是( )A.B.C.D.4.在ABC中,若B与C∠互余,则ABC是()三角形A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数()A.不变B.减少C.增加D.不能确定6.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.8 B.5 C.6 D.7a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边7.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒8.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF9.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 10.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . 11.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.14.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.15.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.16.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.17.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.18.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.19.如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.20.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.三、解答题21.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.22.如图,在ABC 中,AD 平分BAC ∠,E 为AD 上一点,过点E 作EF AD ⊥交BC 的延长线于点F .(1)若40B ∠=︒,70ACB ∠=︒,求F ∠的度数;(2)请直接写出F ∠与B ,ACB ∠之间的数量关系:______.23.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°,求∠EAD 的度数.24.如图,175,2105,C D ∠=︒∠=︒∠=∠.(1)判断AC 与DF 的位置关系,并说明理由;(2)若C ∠比A ∠大25°,求F ∠的度数.25.一个多边形的每个外角都等于40°,求这个多边形的内角和.26.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC=24°,∠ADC=42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、1+2=3,故以这三根木棒不能构成三角形,符合题意;B、2+3>4,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.2.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.3.D解析:D【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.【详解】A 选项中,BE ⊥BC ,BE 与AC 不垂直,此选项错误;B 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;C 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;D 选项中,BE ⊥AC ,∴线段BE 是△ABC 的高,此选项正确.故选:D .【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.B解析:B【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案.【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒,180A B C ∠+∠+∠=︒,90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意,故选:B .【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.5.A解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A .【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°. 6.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C.【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.7.C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.8.C解析:C【分析】根据三角形的高的定义,△ABC中AC边上的高是过B点向AC作的垂线段,即为BF.【详解】解:∵BF⊥AC于F,∴△ABC 中AC 边上的高是垂线段BF .故选:C .【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.9.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C .【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.10.B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A .CE 不垂直AB ,故CE 不是ABC 的高,不符合题意,B .CE 是ABC 中AB 边上的高,符合题意,C .CE 不是ABC 的高,不符合题意,D .CE 不是ABC 的高,不符合题意.故选B .【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.11.A解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a ,∴a=(4-2)•180°=360°;∵五边形的外角和等于b ,∴b=360°,∴a=b .故选:A .【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键. 12.D解析:D【分析】根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.8【分析】利用三角形的中线将三角形分成面积相等的两部分S △ABD=S △ACD=S △ABCS △BDE=S △ABDS △ADF=S △ADC 再得到S △BDE=S △ABCS △DEF=S △ABC 所以S △ABC=解析:8【分析】利用三角形的中线将三角形分成面积相等的两部分,S △ABD =S △ACD =12S △ABC ,S △BDE =12S △ABD ,S △ADF =12S △ADC ,再得到S △BDE =14S △ABC ,S △DEF =18S △ABC ,所以S △ABC =83S 阴影部分.【详解】解:∵D 为BC 的中点,∴12ABD ACD ABC S S S ==△△△, ∵E ,F 分别是边,AD AC 上的中点, ∴111,,222BDE ABD ADF ADC DEF ADF SS S S S S ===, ∴111,448BDE ABC DEF ADC ABC S S S S S ===, ∵113488BDE DEF ABC ABC ABC S SS S S S =+=+=阴影部分, ∴888333ABC S S ⨯===阴影部分, 故答案为:8.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S △=12×底×高.三角形的中线将三角形分成面积相等的两部分. 14.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2n θ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= ……∴∠A n =2n θ.故答案为:4θ,2n θ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 15.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ∠D+∠E 再根据邻补角表示出∠CGF 然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2α【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ,∠D+∠E ,再根据邻补角表示出∠CGF ,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B ,∠2=∠D+∠E ,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.16.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B∠2=∠C+∠D∠3=∠E+∠F∠4=∠G+∠H∴∠A+∠B+∠C+∠D+∠E +∠F+解析:360°【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.17.180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和【详解】解:∵AB∥DC∴∠B+∠C=180°∴∠B的外角与∠C的外角的和为180°∵六边形ABCDEF的外角和为360解析:180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和.【详解】解:∵AB ∥DC ,∴∠B +∠C =180°,∴∠B 的外角与∠C 的外角的和为180°,∵六边形ABCDEF 的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B 和∠C 的外角的和为180° 18.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键. 19.45°【分析】如图作射线BF 与射线BE 根据平行线的性质和三角形的外角性质可得∠ABE+∠EDC =90°然后根据角平分线的定义和三角形的外角性质即可求出答案【详解】解:如图作射线BF 与射线BE ∵AB ∥解析:45°【分析】如图,作射线BF 与射线BE ,根据平行线的性质和三角形的外角性质可得∠ABE +∠EDC =90°,然后根据角平分线的定义和三角形的外角性质即可求出答案.【详解】解:如图,作射线BF 与射线BE ,∵AB ∥CD ,∴∠ABE =∠4,∠1=∠2,∵∠BED =90°,∠BED =∠4+∠EDC ,∴∠ABE +∠EDC =90°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠1+∠3=12∠ABE+12∠EDC=45°,∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD=45°,故答案为:45°.【点睛】本题考查了平行线的性质、角平分线的定义和三角形的外角性质,属于常考题型,熟练掌握上述知识是解题的关键.20.360°【分析】根据三角形的外角性质和三角形的内角和求出即可【详解】解:∵∠BHI=∠A+∠B∠DIF=∠C+∠D∠FGH=∠E+∠F∴∠BHI+∠DIF+∠FGH=∠A+∠B +∠C+∠D+∠E+∠解析:360°【分析】根据三角形的外角性质和三角形的内角和求出即可.【详解】解:∵∠BHI=∠A+∠B,∠DIF=∠C+∠D,∠FGH=∠E+∠F,∴∠BHI+∠DIF+∠FGH=∠A+∠B+∠C+∠D+∠E+∠F,∵∠BHI+∠DIF+∠FGH=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点睛】本题考查了三角形的外角和定理,三角形的外角性质的应用,主要考查学生运用定理进行推理的能力,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的外角和等于360°.三、解答题21.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE 与AB 相交于点G ,如图所示:∵CF 平分∠DCE ,∠DCF=25°,∴∠DCE=50°,∵AB ∥DC ,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE 与AB 、BF 相交于点M 、N ,如图所示:设∠ABF=x ,∠DCF=y ,∵∠EBF=2∠ABF ,CF 平分∠DCE ,∴∠EBF=2x ,∠ABE=3x ,∠FCE=y ,∠DCE=2y ,∵AB ∥DC ,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y ,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x ,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y ,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.22.(1)15°;(2)()12F ACB B ∠=∠-∠ 【分析】(1)结合题意,根据三角形内角和性质,得BAC ∠;再根据AD 平分BAC ∠,得BAD ∠;利用三角形外角和性质,得ADC ∠;最后结合EF AD ⊥计算,即可得到答案;(2)结合(1)的解题思路计算,即可得到答案.【详解】(1)∵40B ∠=,70ACB ∠=∴180180407070BAC B ACB ∠∠∠=--=-︒-︒=︒︒︒∵AD 平分BAC ∠ ∴11703522BAD BAC ∠=∠=⨯︒=︒ ∴75ADC B BAD ∠=∠+∠=︒∵EF AD ⊥∴90907515F ADC ∠=︒-∠=︒-︒=︒; (2)∵180BAC B ACB ∠∠∠=--∵AD 平分BAC ∠ ∴()1121118090222B BAD BA ACB B A C CB ∠=∠-∠-∠∠⨯-==-∠ ∴111190902222B ACB B AC ADC B B BAD B -∠-∠=+∠-∠=∠+∠=∠+∠ ∵EF AD ⊥ ∴()111902922900B ACB DC B B A AC F ⎛⎫∠=-∠=-= ⎪+∠∠∠-∠⎭-⎝ 故答案为:()12F ACB B ∠=∠-∠. 【点睛】本题考查了三角形内角和、三角形外角、角平分线、直角三角形的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、直角三角形两个锐角互余的性质,从而完成求解.23.30°【分析】由三角形的内角和可求得∠BAC ,则由角平分线定义可求得∠EAC ,三角形的内角和可求得∠DAC 即可.【详解】解:在△ABC 中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B -∠C=180°-20°-80°=80°;∵AE 是△ABC 的角平分线,∴∠EAC=12∠BAC=12×80°=40°; ∵AD 是△ABC 的高∴∠ADC=90°;又∵在△ADC 中,∠C=80°∴∠DAC=180°-∠C -∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC -∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中. 24.(1)//AC DF ,理由见解析;(2)40︒.【分析】(1)先根据平行线的判定可得//BD CE ,再根据平行线的性质可得D CEF ∠=∠,然后根据等量代换可得C CEF ∠=∠,最后根据平行线的判定即可得;(2)设A x ∠=,从而可得25C x ∠=+︒,再根据三角形的外角性质可求出x 的值,然后根据平行线的性质即可得.【详解】(1)//AC DF ,理由如下:175,2105∠=︒∠=︒,12180∴∠+∠=︒,//BD CE ∴,D CEF ∴∠=∠,又C D ∠=∠,C CEF ∴∠=∠,//AC DF ∴;(2)设A x ∠=,则25C x ∠=+︒,由三角形的外角性质得:2A C ∠=∠+∠,即10525x x ︒=++︒,解得40x =︒,即40A ∠=︒,由(1)已证://AC DF ,40F A ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、三角形的外角性质等知识点,熟练掌握平行线的判定与性质是解题关键.25.1260︒【分析】先利用外角和360度除以每个外角的度数求出边数,再利用多边形内角和公式计算得出答案.【详解】 解:这个多边形的边数为36040=9(条), ∴180(92)1260︒⨯-=︒,∴这个多边形的内角和是1260︒.【点睛】此题考查多边形的角度计算,多边形的外角和定理,多边形的内角和计算公式,根据多边形的每个外角都等于40°求出多边形的边数是解题的关键.26.(1)33°;(2)123°【分析】(1)AM 与BC 交于E ,AD 与MC 交于F ,利用角平分线性质和三角形外角性质可得,BEM ∠是ABE △和MCE 的外角,MFD ∠是MAF △和FCD 的外角,列出关于AMC ∠的方程组,计算得出AMC ∠的度数.(2)AN 与BC 交于点G ,AD 与BC 交于点F ,根据角平分线性质和三角形外角性质可得,BFD ∠是ABF 和FCD 的外角,AGC ∠是NGC 和ABG 的外角,列出关于ANC ∠的方程组,计算得出ANC ∠的度数.【详解】解:(1)AM 与BC 相交于E ,AD 与MC 相较于F ,如图:∵MA 和MC 是∠BAD 和∠BCD 的角平分线,∴设∠BAM=∠MAD=a ,∠BCM=∠MCD=b ,∵∠BEM 是△ABE 和△MCE 的外角,∴∠M+∠BCM=∠B+∠BAM ,即:∠M+b=24°+a①,又∵∠MFD 是△MAF 和△CDF 的外角,可得∠M+a=42°+b②,①式+②式得2∠M=24°+42°,解得:∠M=33°,∴=33AMC ∠︒.(2)AN 与BC 相交于G ,AD 与BC 相较于F ,如图:∵NA 和NC 是∠EAD 和∠BCD 的角平分线,∴设∠EAN=∠NAD=m ,∠BCN=∠NCD=n ,∵∠BFD 是△ABF 和△FCD 的外角,∴∠B+∠BAD=∠D+∠BCD ,即:24°+(180°-2m )=42°+2n ,可得m+n=81°①,又∵∠AGC 是△NGC 和△ABG 的外角,可得∠N+n=24°+(180°-m ),得∠N=204°-(m+n )②,①式代入②式,得∠N=204°-81°=123°,∴123ANC ∠=︒.【点睛】本题考查了角平分线的性质和三角形外角性质,用设未知数列方程组的方法计算角度是解题关键.。
三角形章节同步测试题基础卷(满分:100分,时间:45分钟)一、精心选一选(每小题3分,共24分)1.请根据凸多边形的定义,判断下列选项中不是凸多边形的是( )2.小华在计算四个多边形的内角和时,得到下列四个答案,则他计算不对的是( ) A .0720 B .01080 C .01440 D .01900 3.随着一个多边形的边数增加,它的外角和( )A .随着增加B .随着减少C .保持不变D .无法确定4.过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则这个多边形的内角和等于( )A .0720 B .0900 C .01080 D .012605.若四边形ABCD 中,∠A :∠B :∠C :∠D=1:2:4:5,则∠A+∠D 等于( ) A .030 B .075 C .0180 D .0210 6.能进行镶嵌的正多边形组合是( )A .正三角形和正八边形B .正五边形和正十边形C .正方形和正八边形D .正六边形和正八边形7.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是( )A .0110 B .0108 C .0105 D .0100 8.能构成如图所示的图案的基本图形是( )ABCDA B CDC DE4二、细心填一填(每小题4分,共32分)9.正十边形的内角和等于 度,每个内角等于 度. 10.如果正多边形的一个外角为072,那么它的边数是 . 11.如图是三个完全相同正多边形拼成的无缝隙,不重叠图形的一部分,这种正多边形是正 边形.12.“三江”黄金广场用三种不同的正多边形地砖铺设(每种只选一块),其中已知选好了用正方形和正六边形这两种,还需再选用 ,使这三种组合在一起的广场铺满.13.多边形每一个内角都等于0140,则从此多边形一个顶点出发的对角线有 条. 14.若一个多边形的各边长相等,其周长为63厘米,且内角和为0900,那么它的边长为 厘米.15.过a 边形的一个顶点有7条对角线,正b 边形的内角和与外角和相等,c 边形没有对角线,d 边形有d 条对角线,则代数式ab dc )( = .16.小华骑自行车在一个正多边形广场上训练,在训练中小华发现,每5分钟就要转弯一次,当他汽车一圈回到出发点发现正好用了30分钟,则此多边形的内角和为 .三、专心解一解(共44分)17.(5分)小华想:2012年奥运会在伦敦举办,设计一个内角和为02012的多边形图案多有意义,他的想法能实现吗?请说明理由.18.(7分) 小华画了一个八边形,请问: (1)从八边形的一个顶点出发,可以引几条对角线?它们将八边形分成几个三角形?(2)请你求出八边形的内角和是外角和的几倍? 19.(7分)如图,已知五边形ABCDE 中,AE ∥CD ,∠A=0130,∠C=0135,求∠B 的度数.20.(8分)小华从点A 出发向前走10m ,向右转036然后继续向前走10m ,再向右转036,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回点A 时共走多少米?若不A BCDE第19题图第11题图ADEFGQ P能,写出理由.21.(8分)如图,求∠A+∠B+∠C+∠D+∠E+∠F +∠G 的度数.22.(9分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪.(1)图1中草坪的周长为 ; (2)图2中草坪的周长为 ; (3)图3中草坪的周长为 ;(4)如果多边形边数为n ,其余条件不变,那么,你认为草坪的周长为 .加强卷(满分:50分,时间:30分钟)一、精心选一选(每小题3分,共15分)1.若一个多边形的每个外角都是锐角,那么这个多边形的边数至少是( ) A .3 B .4 C .5 D .62.鹿鸣社区里有一个五边形的小公园(如图所示),王老师每天晚饭后都要到公园里去散步,已知图中的∠1=095,王老师沿公园边由A 点经B →C →D →E 一直到F 时,他在行程中共转过了( )A .0265 B .0275 C .0360 D .04453.一个多边形的每一个内角都是0144,则它的内角和等于( ) A .01260 B .01440 C .01620 D .018004.四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的一个外角为0105,则∠C 的度数为( ) A .075 B .090 C .0105 D .0120 5.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地第22题图图1图2 图31 ABCDE F第2题图砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是( )A .54B .54C .60D .66 二、细心填一填(每小题3分,共15分)6.若一个多边形的每个外角都等于030,则这个多边形的对角线总条数为 . 0140,7.一个多边形的每一个外角都相等,且比它的内角小则这个多边形的边数是 .8.一个四边形的四个内角中做多有 个钝角,最多有个锐角.9.一个正方形的截取一个角后,得到的图形的内角和可能是 .10.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图所示的正五边形ABCDE ,其中∠BAC= .(提示:由AB=AC ,可得∠BAC=∠BCA )三、专心解一解(共20分)11.(8分)多边形除一个内角外,其余各内角和为01200. (1)求多边形的边数;(2)此多边形必有一外角为多少度?12.(12分)如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 、∠1及∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.参考答案基础卷一、1~4 ADCA ;5~8 CCDD .二、9.1440,45; 10.5; 11.六; 12.正十二边形; 13.6; 14.9; 15.3; 16.0540.三、17.解:不能,理由如下.设存在n 边形的内角和为02012,有02012180)2(=-n ,解得n ≈13.18.ABCDE第10题图∵多边形的边数不能为小数,∴不存在内角和为02012的多边形.18.解:(1)从八边形的一个顶点出发,可以引5条对角线?它们将八边形分成6个三角形.(2)2360180)28(0=-.故八边形的内角和是外角和的2倍. 19.解:∵AE ∥CD ,∴∠D+∠E=0180.∵ABCDE 是五边形,∴∠A+∠B+∠C+∠D+∠E=0180)25(-. 即0130+∠B 0135++0180=0540,解得∠B=095. 20.解:小华能回到A 点,当他回到A 点时共走了100m . 21.解:∵∠QPE=∠D+∠G ,又∠QPE+∠E+∠F+∠FQP=0360,即∠D+∠G+∠E+∠F+∠FQP=0360. ∴∠D+∠G+∠E+∠F=0360—∠FQP .∵∠A+∠B+∠C+∠AQC=0360,∴∵∠A+∠B+∠C=0360—∠AQC .故∠A+∠B+∠C+∠D+∠G+∠E+∠F=(0360—∠AQC)+(0360—∠FQP )=0720—(∠AQC+∠FQP )=0720—0180=0540.22.解:(1)R π;(2)R π2;(3)R π3;(4)R n π)2(-.加强卷一、1.C ; 2.B ; 3.B ; 4.C ; 5.D .二、6.54; 7.18; 8.3,3; 9.0180,0360或0540; 10.036. 三、11.解:(1)设该多边形的一个内角为0x ,边数为n , 依题意,有01200180)2(x n +=-.∵00012061801200⋅⋅⋅⋅⋅⋅=÷,∴01201806180)2(x n ++⨯=-. 又∵1800<<x ,∴180120=+x ,解60=x .把60=x 代入原方程,得0601200180)2(+=-n ,解得9=x . ∴该多边形的边数为9.(2)∵该多边形有一角为060,∴此多边形必有一外角为0120. 12.解:规律为∠1+∠2=2∠A .∵∠B+∠C=A ∠-0180,∠ADE+∠AED=A ∠-0180,又∠B+∠C+∠CDE+∠DEB=0360,即∠B+∠C+∠2+∠ADE+∠1+∠AED=0360. ∴A ∠-0180+∠1+∠2+A ∠-0180=0360, 整理,得∠1+∠2=2∠A .。
一、选择题1.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm2.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是( )A .5边形B .6边形C .7边形D .8边形3.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .44.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .65.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.56.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒7.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm8.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 9.以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm10.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . 11.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5二、填空题12.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;13.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.14.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.15.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____. 16.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______. 17.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.18.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 19.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.20.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.21.如图,在ABC 中,E 、D 、F 分别是AD 、BF 、CE 的中点,若DEF 的面积是1,则ABC S =______.三、解答题22.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.23.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 24.如图,//AE DF ,BE DF ⊥于点G ,190B ∠+∠=︒.(1)判断CD 与AB 的位置关系,并说明理由.(2)若50A ∠=︒,求出DEG ∠的度数.25.如图,ABC 中,AD 是高,,AE BF 是角平分线,它们相交于点,80O CAB ∠=︒,60C ∠=°,求DAE ∠和BOA ∠的度数.一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )A .三角形两边之和大于第三边B .三角形具有稳定性C .三角形的内角和是180D .直角三角形两个锐角互余2.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒3.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .64.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .215.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .86.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°7.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF8.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°9.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 10.下列长度的三条线段,能组成三角形的是( )A .3,5,6B .3,2,1C .2,2,4D .3,6,10 11.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤二、填空题12.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.13.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).14.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.15.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.16.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.17.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.18.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条. 19.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD 的面积是_________________20.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .21.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.三、解答题22.如图,已知在ABC 中,CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线.(1)求证:2A E ∠=∠.(2)若A ABC ∠=∠,求证://AB CE .23.题情景:在三角形纸片内部给定-些点,满足这些点连同三角形三个顶点没有三个点在一条直线上,以这些点为顶点,将纸片剪成-些小三角形纸片,一共能得到几个小三角形? 问题解决:甲同学绘制了如下三个图,分别在三角形内部取1个点、2个点,如下图所示:继续探究:在三角形内部取三个点,画出分割的图形,并经过观察计数完成表格: 内部点的个数1 2 3 n 得到三角形个数 3 5拓展联系:当纸片是四边形时,探究此时内部所取点的个数与得到三角心个数的关系,完成表格:内部点的个数1 2 3 n 得到三角形个数概括提升:设纸片的边数为m ,内部点的个数为n ,得到三角形的个数是x ,请直接写出x 与m 、n 的关系:______________.24.如图BC 平分∠ABE ,DC 平分∠ADE ,求证:∠E+∠A=2∠C25.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 2.一个多边形的外角和是360°,这个多边形是( )A .四边形B .五边形C .六边形D .不确定 3.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是( ) A .5边形 B .6边形 C .7边形 D .8边形 4.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5 5.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .86.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4 7.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2m B .3m C .5m D .7m8.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°9.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 10.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤ 11.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题12.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.13.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________14.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.15.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.18.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.19.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.20.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.21.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题22.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数;(2)求B 的度数. 23.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?24.已知一个多边形的内角和比它的外角和的3倍还多180度.(1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.25.平面内,四条线段AB,BC,CD,DA首尾顺次连接,∠ABC=24°,∠ADC=42°.(1)∠BAD和∠BCD的角平分线交于点M(如图1),求∠AMC的大小.(2)点E在BA的延长线上,∠DAE的平分线和∠BCD平分线交于点N(如图2),求∠ANC.。
第九讲 三角形的边与角三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知识有:三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段。
角度的计算、图形的计数等方面有广泛的应用.解与三角形的边与角有关的问题时,往往要用到数形结合及分类讨论法,即用代数方法(方程、不等式)解几何计算题及简单的证明题,按边或角对三角形进行分类.熟悉以下基本图形、并证明基本结论:(1) ∠l +∠2=∠3+∠4;(2) 若BD 、CO 分别为∠ABC 、∠ACB 的平分线,则∠BOC=90°+21∠A ; (3) 若BO 、CO 分别为∠DBC 、∠ECB 的平分线,则∠BOC=90°-21∠A ; (4) 若BE 、CE 分别为∠ABC 、∠ACD 的平分线,则∠E=21∠A .注: 中线、角平分线、高是三角形中的重要线段,它们的差别在于高随着三角形形状的不同,可能在三角内部、边上或外部.代数法解几何计算问题的基本思路是通过设元,运用几何知识建立方程(组)、不等式(组),将问题转化为解方程(组)或解不等式(组).例题求解【例1】 在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,4∠C =7∠A ,则∠B 的度数为 .(北京市竞赛题)思路点拨 设∠C =x °,根据题设条件及三角形内角和定理把∠A 、∠B 用x 的代数式表示,建立关于x 的不等式组.【例2】以1995的质因数为边长的三角形共有( )A .4个B .7个C .13个D .60个(河南省竞赛题)思路点拨 1995=3×5×7×19,为做到计数的准确,可将三角形按边分类,注意三角形三边应满足的关系制约.【例3】 (1)如图,BE 是∠ABD 的平分线.CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC=140°,∠BGC=110°,求∠A 的大小.(“希望杯”邀请赛试题)(2)在△ABC 中,∠A=50°,高BE 、CF 交于O ,且O 不与B 、C 重合,求∠BOC 的度数. (“东方航空杯”——上海市竞赛题)思路点拨 (1)运用凹边形的性质计算.(2)由O 不与B 、C 重合知,∠B 、∠C 均非直角,这样,△ABC 既可能是锐角三角形又可能是钝角三角形,故应分两种情况讨论.【例4】 周长为30,各边长互不相等且都是整数的三角形共有多少个?(20XX 年河南省竞赛题)思路点拨 不妨设三角形三边为a 、b 、c ,且a <b <c ,由三角形三边关系定理及题设条件可确定 c 的取值范围,以此作为解题的突破口.注 如图,在凹四边ABCD 中,∠BDC=∠A +∠B +∠C .请读者证明.解所研究的问题的图形形状不惟一或几何固形位置关系不确定或与分类概念相关的命题时.往往用到分类讨论法.【例5】 (1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.(大原市竞赛题)(2)现有长为150cm 的铁丝,要截成n(n>2)小段,每段的长为不小于l ㎝的整数.如果其中任意3小段都不能拼成三角形,试求n 的最大值,此时有几种方法将该铁丝截成满足条件的n 段.(第17届江苏省竞赛题)思路点拨 (1)设三角形各边需用火柴杆数目分别为x 、y 、3x ,综合运用题设条件及三角形边的关系等知识,建立含等式、不等式的混合组,这是解本例的突破口.(2)因n 段之和为定值150㎝,故欲n 尽可能的大,必须每段的长度尽可能小,这样依题意可构造一个数列.学力训练1.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是 . (20XX 年河南省竞赛题)2.一条线段的长为a ,若要使3a —l ,4a+1,12-a 这三条线段组成一个三角形,则a 的取值范围是 .3.如图,在△ABC 中,两条角平分线CD 、BE 相交于点F ,∠A =60°,则∠DFE = 度.4.如图,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =α,∠DBE =β,则∠DCE = . (用α、β表示). (山东省竞赛题)5.若a 、b 、c 为三角形的三边,则下列关系式中正确的是( )A .02222>---bc c b aB .02222=---bc c b aC .02222<---bc c b aD .02222≤---bc c b a(江苏省竞赛题)6.△ABC 的内角A 、B 、C 满足3A>5B ,3C ≤2B ,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.如图,△ABC 内有三个点D 、E 、F ,分别以A 、B 、C 、D 、E 、F 这六个点为顶点画三角形,如果每个三角形的顶点都不在另一个三角形的内部,那么,这些三角形的所有内角之和为( )A .360°B .900°C .1260°D .1440° (重庆市竞赛题)8.如图,在Rt △ABC 中,∠C =90°,∠A =30°,∠C 的平分线与∠B 的外角平分线交于E 点,连结AE ,则∠AEB 是( )A .50°B .45°C .40°D .35° (山东省竞赛题)9.如图,已知∠3=∠1+∠2,求证:∠A+∠B+∠C+∠D =180°.10.如图,已知射线ox 与射线oy 互相垂直,B ,A 分别为ox 、oy 上一动点,∠ABx 、∠BAy 的平分线交于C .问:B 、A 在ox 、oy 上运动过程中,∠C 的度数是否改变?若不改变,求出其值;若改变,说明理由.11.已知三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,这样的三角形共有 个. 12.三角形的三个内角分别为α、β、γ,且α≥β≥γ,α=2γ,则β的取值范围 .13.已知△ABC 的周长是12,三边为a 、b 、c ,若b 是最大边,则b 的取值范围是 .14.如图,E 和D 分别在△ABC 的边BA 和CA 的延长线上,CF 、EF 分别平分∠ACB 和∠AED ,若∠B =70°,∠D=40°,则∠F 的大小是 .15.已知△ABC 中,∠B=60°,∠C>∠A ,且(∠C)2=(∠A)2+(∠B)2,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定( “希望杯”邀请赛试题)16.不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么,最大边上的高与最小边上的高的比值k 的取值范围是( )A .143<<kB .131<<k C . 1<k<2 D .121<<k 17.已知三角形的三边的长a 、b 、c 都是整数,且a ≤b<c ,若b=7,则这样的三角形有( )A .14个B .28个C .21个D .49个18.如果三角形的一个外角大于这个三角形的某两个内角的2倍,那么这个三角形一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.直角或钝角三角形19.如图,已知DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.20.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.(美国数学邀请赛试题)21.将长度为2n(n为自然数,且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边的长,且满足a≤b≤c的一个三角形.(1)就n=4,5,6的情况,分别写出所有满足题意的(a,b,c);(2)有人根据(1)中的结论,便猜想:当铅丝的长度为2n(n为自然数且n≥4)时,对应(a,b,c)的个数一定是n-3,事实上,这是一个不正确的猜想,请写出n=12时的所有(a,b,c),并回答(a,b,c)的个数;(3)试将n=12时所有满足题意的(a,b,c),按照至少两种不同的标准进行分类.(河北省初中数学创新与知识应用竞赛试题)22.阅读以下材料并填空.平面上有n个点(n≥2),且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;有5个点时,可连成l0条直线……(2)归纳:考察点的个数n和可连成直线的条数S发现:(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3.条直线;当有4个点时,可连成6条直线;当有5个点时,可连成1 O条直线;(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:点的个数可连成直线条数21=S2=212⨯33=S3=223⨯46=S4=234⨯510=S5=245⨯(3)推理:平面上有n个点,两点确定一条直线.取第一个点以有n种取法,取第二个点B 有(n-1)种取法,所以一共可连成n(n-1)条直线,但A B与BA是同一条直线,故应除以2,即Sn=21)-n(n.(4)结论:Sn=21)-n(n.试探究以下问题:平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作个三角形;当有4个点时,可作个三角形;当有5个点时,可作个三角形.Sn,发现:(填下表)(3)推理:(4)结论:(甘肃省中考题)。
内外角平分线问题类型一一内一外求角1.如图∠ACD是△ABC的外角∠A=40° BE平分∠ABC CE平分∠ACD且BE CE交于点E.(1)求∠E的度数;(2)请猜想∠A与∠E之间的数量关系不用说明理由.【答案】(1)∠E=20°;(2)∠A=2∠E.【解析】【分析】(1)根据角平分线的定义三角形内角和定理三角形外角的性质进行解答即可;(2)根据(1)中的推导过程进行推论即可.【详解】(1)∠BE平分∠ABC CE平分∠ACD∠∠ABC=2∠CBE∠ACD=2∠DCE由三角形的外角性质得∠ACD=∠A+∠ABC∠DCE=∠E+∠CBE∠∠A+∠ABC=2(∠E+∠CBE),∠∠A =2∠E∠∠A =40°∠∠E =20°.(2)∠A =2∠E .理由如下:∠BE 平分∠ABC CE 平分∠ACD∠∠ABC =2∠CBE ∠ACD =2∠DCE由三角形的外角性质得∠ACD =∠A +∠ABC∠DCE =∠E +∠CBE∠∠A +∠ABC =2(∠E +∠CBE ),∠∠A =2∠E【点睛】本题考查了角平分线的定义 三角形内角和定理 三角形外角的性质 熟练掌握以上知识点是解本题的关键.2.如图 在∠ABC 中 ∠A =30° E 为BC 延长线上一点 ∠ABC 与∠ACE 的平分线相交于点D 则∠D 等于( )A .10°B .15°C .20°D .30°【答案】B【解析】【分析】 先根据角平分线的定义得到12∠=∠ 34∠=∠ 再根据三角形外角性质得1234A ∠+∠=∠+∠+∠ 13D ∠=∠+∠ 则2123A ∠=∠+∠ 利用等式的性质得到12D A ∠=∠ 然后把A ∠的度数代入计算即可.【详解】解答:解:∠ABC ∠的平分线与ACE ∠的平分线交于点D∠12∠=∠34∠=∠∠ACE A ABC∠=∠+∠即1234A ∠+∠=∠+∠+∠∠2123A∠=∠+∠∠13D∠=∠+∠∠11301522D A∠=∠=⨯︒=︒.故选:B.【点睛】本题考查了三角形内角和定理和三角形外角性质、角平分线的性质等根据三角形内角和是180°和三角形外角性质进行分析是解题关键.3.如图∠ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P 若∠BPC=40° 则∠BAC的度数是____________.【答案】80°.【解析】【详解】试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ∠PCD=∠P+∠PCB 根据角平分线的定义可得∠PCD=12∠ACD ∠PBC=12∠ABC 然后整理得到∠PCD=12∠A 再代入数据计算即可得解.在∠ABC中∠ACD=∠A+∠ABC在∠PBC中∠PCD=∠P+∠PCB∠PB、PC分别是∠ABC和∠ACD的平分线∠∠PCD=12∠ACD ∠PBC=12∠ABC∠∠P+∠PCB=12(∠A+∠ABC)=12∠A+12∠ABC=12∠A+∠PCB∠∠PCD=12∠A∠∠BPC=40°∠∠A=2×40°=80°即∠BAC=80°.考点:三角形内角和定理.4.如图△ABC BD平分∠ABC且与∠ABC的外角∠ACE的角平分线交于点D 若∠ABC=m° ∠ACB=n° 求∠D的度数为()A.90°+12m°-12n°B.90°-12m°+12n°C.90°-12m°-12n°D.不能确定【答案】C【解析】【分析】由角平分线分别求出∠DBC和∠ACD 然后在∠BCD中利用三角形内角和定理可求出∠D.【详解】∠BD平分∠ABC∠∠DBC=12∠ABC=12m°∠∠ACB=n°∠∠ACE=180°-n°又∠CD平分∠ACE∠∠ACD=12∠ACE=()111809022-=-n n在∠BCD中∠DBC=12m° ∠BCD=∠ACB+∠ACD=1902+n∠∠D=1111 180DBC BCD=18090902222⎛⎫-∠-∠--+=--⎪⎝⎭m n m n故选C.【点睛】本题考查三角形中的角度计算 熟练运用三角形内角和定理是关键.5.如图 在ABC 中 点D 在边BA 的延长线上 ∠ABC 的平分线和∠DAC 的平分线相交于点M 若∠BAC =80° ∠AB C =40° 则∠M 的大小为( )A .20°B .25°C .30°D .35°【答案】C【解析】【分析】 先由80,BAC ∠=︒ 结合角平分线求解,,MAC MAB ∠∠ 再利用角平分线与40,ABC ∠=︒求解ABM ∠ 利用三角形的内角和定理可得答案.【详解】解:∠∠BAC=80°∠100,DAC ∠=︒ AM 平分,DAC ∠150,2MAC DAC ∴∠=∠=︒ 130,BAM BAC MAC ∴∠=∠+∠=︒∠ABC=40° BM 平分ABC ∠∠∠ABM=20°∠∠M=1802013030,︒-︒-︒=︒故选:C .【点睛】本题考查了角平分线的性质 三角形的内角和定理 邻补角的定义 熟记定理和概念是解题的关键. 6.如图 已知BD 为ABC 中ABC ∠的平分线 CD 为ABC 的外角ACE ∠的平分线 与BD 交于点D .若∠ABD =20° 50ACD ∠=︒ 则A D ∠+∠=( )A.70°B.90°C.80°D.100°【答案】B【解析】【分析】根据角平分线定义求出∠DCE、∠ACE、∠DBC根据三角形外角性质求出∠A、∠D即可求出答案.【详解】解:∠∠ABC的平分线与∠ACB的外角平分线交于D∠ABD=20° ∠ACD=55°∠∠ABD=∠DBC=12∠ABC=20° ∠ACD=∠DCE=12∠ACE=50°∠∠ABC=40° ∠ACE=100°∠∠A=∠ACE-∠ABC=60° ∠D=∠DCE-∠DBC=50°-20°=30°∠∠A+∠D=90°故选:B.【点睛】本题考查了三角形的外角的性质角平分线的性质熟练掌握性质定理是解题的关键.7.如图所示在Rt ABC△中∠ACB=90° ∠CAB=60° ∠ACB的角平分线与∠ABC的外角平分线交于E点则∠AEB=()A.50°B.45°C.40°D.35°【答案】B【分析】过点E 作ED BC ⊥ EH AB ⊥ EF AC ⊥ 利用角平分线性质结合三角形内角和即可得出答案.【详解】解:如图所示 过点E 作ED BC ⊥ EH AB ⊥ EF AC ⊥∠BE CE 是角平分线∠ED EH = ED EF =.∠EH EF =.∠EH AB ⊥ EF AC ⊥∠AE 是BAF ∠的角平分线.∠60CAB ∠=︒∠30CBA ∠=︒ 60=︒∠BAE∠75ABE ∠=︒ 由三角形内角和可得:45AEB ∠=︒.故答案为:45.【点评】本题考查的知识点是角平分线性质 综合利用角平分线的性质是解此题的关键.8.如图 在∠ABC 中 ∠A =80° ∠ABC 与∠ACD 的平分线交于点A 1 得∠A 1 ∠A 1BC 与∠A 1CD 的平分线相交于点A 2 得∠A 2 ∠ ∠A 3BC 与∠A 3CD 的平分线相交于点A 4 得∠A 4 则∠A 4的度数为( )A .5°B .10°C .15°D .20°【解析】【分析】根据角平分线的定义 三角形的外角性质及三角形的内角和定理可知11118022A A ∠=∠=⨯︒ 212118022A A ∠=∠=⨯︒ ⋯ 依此类推可知4A ∠的度数 【详解】解:ABC ∠与ACD ∠的平分线交于点1A11118022A ACD ACB ABC ∴∠=︒-∠-∠-∠ 11180()(180)22ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠ 11804022A =∠=⨯︒=︒ 同理可得 21211802022A A ∠=∠=⨯︒=︒ ⋯4480521A ∴∠=⨯︒=︒. 故选:A .【点睛】本题是找规律的题目 主要考查了三角形的外角性质及三角形的内角和定理 同时考查了角平分线的定义.解答的关键是掌握外角和内角的关系.类型二 内外角分线进阶9.如图 在四边形ABCD 中 ∠DAB 的角平分线与∠ABC 的邻补角的平分线相交于点P 且∠D +∠C =210° 则∠P =( )A .10°B .15°C .30°D .40°【答案】B【解析】利用四边形内角和是360︒可以求得150DAB ABC .然后由角平分线的性质 邻补角的定义求得 PAB ABP 的度数 所以根据ABP ∆的内角和定理求得P ∠的度数即可.【详解】解:210D C 360DAB ABC C D150DAB ABC .又DAB ∠的角平分线与ABC ∠的外角平分线相交于点P 111(180)90()165222PAB ABP DAB ABC ABC DAB ABC180()15P PAB ABP . 故选:B .【点睛】本题考查了三角形内角和定理、多边形的内角与外角.熟知“四边形的内角和是360︒”是解题的关键. 10.如图 在ABC 中 ∠ABC 和∠ACB 的角平分线交于点O 延长BO 与∠ACB 的外角平分线交于点D若∠DOC =48° 则∠D =_____°.【答案】42【解析】【分析】根据角平分线的定义和三角形的内角和定理即可得到结论.【详解】解:∠∠ABC 和∠ACB 的角平分线交于点O∠∠ACO =12∠ACB∠CD 平分∠ACE ∠∠ACD =12∠ACE∠∠ACB +∠ACE =180°∠∠OCD =∠ACO +∠ACD =12(∠ACB +∠ACE )=12×180°=90°∠∠DOC =48°∠∠D =90°﹣48°=42°故答案为:42.【点睛】本题考查了角平分线和三角形内角和 解题关键是熟练运用相关性质进行计算求角.11.如图 等腰ABC 中 顶角42A ∠=︒ 点E F 是内角ABC ∠与外角ACD ∠三等分线的交点 连接EF 则BFC ∠=_________︒.【答案】14【解析】【分析】根据等腰三角形的性质和三角形的内角和定理可求∠ABC 和∠ACB 再根据三角形外角的性质可求∠ACD 再根据三等分线的定义与和差关系可求∠FBC 和∠BCF 再根据三角形的内角和定理可求∠BFC .【详解】解:∠等腰△ABC 中 顶角∠A=42︒ ∠∠ABC=∠ACB=12×(180︒-42︒)=69︒∠∠ACD=111︒∠点E F 是内角∠ABC 与外角∠ACD 三等分线的交点 ∠∠FBC=13×69︒=23︒ ∠FCA=23×111︒=74︒∠∠BCF=143︒∠∠BFC=180︒-23︒-143︒=14︒.故答案为:14.【点睛】本题考查了等腰三角形的性质三角形内角和定理以及三角形外角的性质解答此题的关键是找到角与角之间的关系.12.如图在△ABC中∠A=96° 延长BC到D∠ABC与∠ACD的平分线相交于点A1则∠A1=__ 若∠A1BC 与∠A1CD的平分线相交于点A2则∠A2=__ … 以此类推则∠An﹣1BC与∠An﹣1CD的平分线相交于点An则∠An的度数为__.【答案】48° 24° 96°×1 () 2n【解析】【分析】利用角平分线的定义和三角形内角与外角的性质计算.【详解】解:∠A1B、A1C分别平分∠ABC和∠ACD∠∠ACD=2∠A1CD∠ABC=2∠A1BC而∠A1CD=∠A1+∠A1BC∠ACD=∠ABC+∠A∠∠A=2∠A1=96°∠∠A1=48°同理可得∠A1=2∠A2即∠A=2×2∠A2=96°∠∠A2=24°∠∠A=2n n A∠∠1962nnA⎛⎫∠=︒⨯ ⎪⎝⎭.故答案为48° 24° 96°×1 ()2n.【点睛】本题考查了三角形的内角和定理三角形的一个外角等于与它不相邻的两个内角的和的性质角平分线的定义熟记性质并准确识图然后求出后一个角是前一个角的一半是解题的关键.13.如图在五边形ABCDE中∠A+∠B+∠E=310° CF平分∠DCB FC的延长线与五边形ABCDE外角平分线相交于点P 求∠P的度数【答案】∠P=25°.【解析】【分析】延长ED BC相交于点G.由四边形内角和可求∠G=50° 由三角形外角性质可求∠P度数.【详解】解:延长ED BC相交于点G.在四边形ABGE中∠∠G=360°-(∠A+∠B+∠E)=50°∠∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=1 2∠G=12×50°=25°.【点睛】本题考查了三角形内角和定理三角形角平分线性质外角的性质熟练运用外角的性质是本题的关键.类型三综合解答14.如图∠XOY=90° 点A B分别在射线OX OY上移动BE是∠ABY的平分线BE的反向延长线与∠OAB的平分线相交于点C试问∠ACB的大小是否发生变化如果不变求出∠C的度数.【答案】不变45°【解析】【分析】根据角平分线的定义、三角形的内角和、外角性质求解.【详解】解:∠∠ABY=90°+∠OAB AC平分∠OAB BE平分∠ABY∠∠4=12∠ABY=12(90°+∠OAB)=45°+12∠OAB即∠4=45°+∠1又∠∠4=∠C+∠1∠∠C=45°.【点睛】本题考查的是三角形内角与外角的关系解答此题目要注意:①求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;②三角形的外角通常情况下是转化为内角来解决.15.如图∠CBF, ∠ACG是∠ABC的外角, ∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD DE交于点D,E.(1)∠DBE的度数;(2)若∠A=70,求∠D的度数;(3)若∠A=α,求∠E 的度数(用含α的式子表示).【答案】(1)90DBE ∠=︒;(2)35D ∠=︒;(3)1902E α∠=︒- 【解析】【分析】(1)根据角平分线的定义可得11,,22DBC ABC EBC FBC ∠=∠∠=∠ 再根据平角的定义可得出结论; (2)根据角平分线的定义可得11,,22DCG ACG DBC ABC ∠=∠∠=∠ 再根据三角形外角的性质可推出2A D ∠=∠则可求出∠D 的度数;(3)由第(2)问的结论可知1122D A α∠=∠= 再加上第(1)问的结论90DBE ∠=︒ 则可表示出∠E 的度数.【详解】(1)∠BD 平分ABC ∠ BE 平分,FBC ∠ ∠11,,22DBC ABC EBC FBC ∠=∠∠=∠ ∠180ABF ∠=︒ ∠1()902DBE DBC EBC ABC FBC ∠=∠+∠=∠+∠=︒ (2)∠CD 平分ACG ∠, BD 平分ABC ∠ ∠11,,22DCG ACG DBC ABC ∠=∠∠=∠ ∠ACG A ABC ∠=∠+∠∠22DCG A DBC ∠=∠+∠∠DCG D DBC ∠=∠+∠∠222DCG D DBC ∠=∠+∠∠2A D ∠=∠ ∠11703522D A ∠=∠=⨯︒=︒ (3)由(2)知1122D A α∠=∠= ∠90DBE ∠=︒ ∠1902E α∠=︒- 【点睛】本题主要考查角平分线的定义及三角形外角的性质 掌握角平分线的定义及三角形外角的性质是解题的关键.16.已知 在四边形ABCD 中 ∠F 为四边形ABCD 的∠ABC 的平分线及外角∠DCE 的平分线所在的直线构成的锐角 若∠A =α ∠D =β(1)如图① 当α+β>180°时 ∠F =____(用含α β的式子表示);(2)如图② 当α+β<180°时 请在图②中 画出∠F 且∠F =___(用含α β的式子表示); (3)当α β满足条件___时 不存在∠F .【答案】(1)12(α+β)﹣90°;(2)90°﹣12(α+β);(3)α+β=180°.【解析】【分析】(1)根据四边形的内角和定理表示出∠BCD 再表示出∠DCE 然后根据角平分线的定义可得∠FBC=12∠ABC ∠FCE=12∠DCE 三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC=∠FCE 然后整理即可得解;(2)与(1)的思路相同得到∠FBC=12∠ABC ∠FCE=12∠DCE 由外角性质得到∠F+∠FBC=∠FCE 通过等量代换求解即可;(3)根据∠F的表示∠F为0时不存在.【详解】解:(1)如图:由四边形内角和定理得∠BCD=360°﹣∠A﹣∠D﹣∠ABC∠∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180° 由三角形的外角性质得∠FCE=∠F+∠FBC∠BF、CF分别是∠ABC和∠DCE的平分线∠∠FBC=12∠ABC ∠FCE=12∠DCE∠∠F+∠FBC=12(∠A+∠D+∠ABC﹣180°)=12(∠A+∠D)+12∠ABC﹣90°∠∠F=12(∠A+∠D)﹣90°∠∠A=α ∠D=β∠∠F=12(α+β)﹣90°;(2)如图3由(1)可知∠BCD=360°﹣∠A﹣∠D﹣∠ABC∠∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°∠∠FCE =∠F+∠FBC∠∠FBC =12(360°﹣∠ABC ) ∠FCE =180°﹣12∠DCE∠∠F=∠FCE ﹣∠FBC=180°﹣12(∠A+∠D+∠ABC ﹣180°)﹣12(360°﹣∠ABC )∠∠F=90°﹣12(∠A+∠D )∠∠F =90°﹣12(α+β);(3)当α+β=180°时∠∠F =90°﹣118002⨯︒= 此时∠F 不存在.【点睛】本题考查了三角形的外角性质 三角形的内角和定理 多边形的内角和公式 此类题目根据同一个解答思路求解是解题的关键.17.如图 90MON ∠=︒ 点A 、B 分别在OM 、ON 上运动(不与点O 重合).(1)如图1 BC 是ABN ∠的平分线 BC 的反方向延长线与BAO ∠的平分线交于点D .①若60BAO ∠=︒ 则D ∠为多少度?请说明理由.②猜想:D ∠的度数是否随A 、B 的移动发生变化?请说明理由.(2)如图2 若13ABC ABN ∠=∠ 13BAD BAO ∠=∠ 则D ∠的大小为 度(直接写出结果); (3)若将“90MON ∠=︒”改为“MON α∠=(0180α︒<<︒)” 且1ABC ABN n ∠=∠ 1BAD BAO n∠=∠ 其余条件不变 则D ∠的大小为 度(用含α、n 的代数式直接表示出米).【答案】(1)①45° 理由见解析;②∠D 的度数不变;理由见解析(2)30 ;(3)a n【解析】【分析】(1)①先求出∠ABN=150° 再根据角平分线得出∠CBA=12∠ABN=75°、∠BAD=12∠BAO=30° 最后由外角性质可得∠D度数;②设∠BAD=α 利用外角性质和角平分线性质求得∠ABC=45°+α 利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α 得∠BAO=3α 继而求得∠ABN=90°+3α、∠ABC=30°+α 根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β 分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=n+β 由∠D=∠ABC-∠BAD得出答案.【详解】解:(1)①45°∠∠BAO=60° ∠MON=90°∠∠ABN=150°∠BC平分∠ABN、AD平分∠BAO∠∠CBA=12∠ABN=75° ∠BAD=12∠BAO=30°∠∠D=∠CBA-∠BAD=45°②∠D的度数不变.理由是:设∠BAD=α∠AD平分∠BAO∠∠BAO=2α∠∠AOB=90°∠∠ABN=∠AOB+∠BAO=90°+2α∠BC平分∠ABN∠∠ABC=45°+α∠∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α∠∠BAD=13∠BAO∠∠BAO=3α∠∠AOB=90°∠∠ABN=∠AOB+∠BAO=90°+3α∠∠ABC=13∠ABN∠∠ABC=30°+α∠∠D=∠ABC-∠BAD=30°+α-α=30°;(3)设∠BAD=β∠∠BAD=1n∠BAO∠∠BAO=nβ∠∠AOB=α°∠∠ABN=∠AOB+∠BAO=α+nβ∠∠ABC=1n∠ABN∠∠ABC=an+β∠∠D=∠ABC-∠BAD=an+β-β=an.【点睛】本题主要考查角平分线和外角的性质熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。