《全等三角形》同步练习【1】
- 格式:doc
- 大小:135.68 KB
- 文档页数:3
《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。
八年级数学上册《第十二章全等三角形》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1. 下列汽车标志中,不是由多个全等图形组成的是( )A. B. C. D.2. 已知△AEC≌△ADB,若∠A=50°,∠ABD=40°则∠1的度数为( )A. 40°B. 25°C. 15°D. 无法确定3. 如图△ABC≌△DEC,点B,C,D在同一条直线上,且CE=2,CD=4则BD的长为( )A. 1.5B. 2C. 4.5D. 64. 若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为( )A. 30B. 27C. 35D. 405. 已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x−2,2x+1若这两个三角形全等,则x的值为( )A. 2B. 2或73C. 73或32D. 2或73或326. 如图AC⊥BE,DE⊥BE若△ABC≌△BDE,AC=5,DE=2则CE等于( )A. 2.5B. 3C. 3.5D. 47. 如图,在△ABC中,在边BC上取一点D,连接AD,在边AD上取一点E,连接CE.若△ADB≌△CDE,∠BAD=α,则∠ACE的度数为( )A. αB. α−45°C. 45°−αD. 90°−α8. 已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AE上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°则下列叙述何者正确?( )A. EF=ECB. EF=ECC. EF≠ECD. EF≠EC9. 如图,点B,E,C,F在同一条直线上,AC与DE相交于点M,△ABC≌△DEF下列结论不正确的是( )A. ∠A=∠DB. AB//DEC. EM=ECD. BE=CF10. 如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置AB=6,DO=2,平移距离为4,则阴影部分面积为( )A. 20B. 24C. 28D. 30二、填空题11. 如图△ABC≌△DEF,则此图中相等的线段有______对.12. 如图△ABC≌△DBE,∠ABC=80°,∠D=65°,则∠C的度数为______.13. 如图△ABC≌△A′B′C′,其中∠A=35°,∠B′=120°则∠C的大小为______ 度.14. 如图,△ABC≌△FDE,AB=FD,BC=DE,AE=20cm,FC=10cm则AF的长是______ cm.15. 如图,如果△ABC≌△CDA,AB=10,AC=12,BC=8则△ACD的周长等于______ .16. 为了庆祝神舟十五号的成功发射,学校组织了一次小制作展示活动,小明计划制作一个如图所示的简易模型,已知该模型满足△ABD≌△ACE,点B和点C是对应顶点,若AB=8cm,AD=3cm则DC=______ cm.17. 如图,在△ABC中,D、E分别是BC、AB边上的点,且△ADC≌△ADE≌△BDE则∠B=______ .18. 下面图形是由几个全等图形组成的,其中AB=3cm,CD=2AB则AF=.19. 一个三角形的三条边的长分别是5,8,10,另一个三角形的三条边的长分别是5,4x+2,2y−2,若这两个三角形全等,则x+y的值是.20. 如图△ADB≌△EDB,△BDE≌△CDE点A,D,C在一条直线上,点B,E,C在一条直线上,则∠C= ______ .三、解答题21. 如图所示,已知四边形ABCD与四边形A′B′C′D′全等∠A=125°,∠B=75°,∠C=70°试求出∠D′的度数.22. 如图△ACE≌△DBF,AC=6,BC=4求AD的长度.23. 如图△ABC≌△DEF,点A,F,C,D在同一条直线上,已知AF=2cm.(1)判断线段BC与线段EF的数量关系和位置关系,并说明理由;(2)求线段CD的长度.24. 如图,在△ABC中,AD和CE分别是△ABC的边BC,AB上的高AD,CE相交于点F,已知△ABD≌△CFD.(1)若∠BAD=30°,求∠ACE的度数;(2)若FD=6,AD=8,AB=10求EF的长.25. 如图△ABC≌△DEF,点A对应点D,点B对应点E,点B、F、C、E在一条直线上.(1)求证:BF=EC;(2)若AB=3,EF=7求AC边的取值范围.参考答案1、B2、B3、D4、A5、A6、B7、C8、B9、C10、A11、412、35°13、2514、515、3016、517、30°18、27cm19、7.5或720、30°21、∵四边形ABCD与四边形A′B′C′D′全等,∴∠A′=∠A=125°,∠B′=∠B=75°,∠C′=∠C=70°.又∵四边形的内角和为360°,∴∠D′=360°−∠A′−∠B′−∠C′=360°−125°−75°−70°=90°.22、因为△ACE≌△DBF,所以AC=DB所以AC−BC=DB−BC,所以AB=DC.因为AC=6,BC=4所以CD=AB=AC−BC=6−4=2所以AD=AC+CD=6+2=8.23、解:(1)BC=EF,BC//EF,理由:∵△ABC≌△DEF∴BC=EF,∠BCA=∠EFD∴BC//EF.(2)∵△ABC≌△DEF∴AC=DF∴AC−CF=DF−CF∴CD=AF=2cm.24、解:(1)∵AD和CE分别是△ABC的边BC,AB上的高∴∠AEC=∠ADC=90°∵△ABD≌△CFD∴AD=CD∴△ACD是等腰直角三角形∴∠CAD=∠ACD=45°∵∠BAD=30°∴∠EAC=∠BAD+∠CAD=75°∴∠ACE=90°−∠EAC=15°(2)∵△ABD≌△CFD,FD=6,AD=8,AB=10∴BD=FD=6,AD=CD=8,AB=CF=10.∵△ACD是等腰直角三角形∴AC=√ 2AD=8√ 2.设AE=x,则BE=AB−AE=10−x.∵∠AEC=∠BEC=90°∴CE2=AC2−AE2=BC2−BE2∴(8√ 2)2−x2=(6+8)2−(10−x)2解得x=85∴CE2=(8√ 2)2−(85)2=313625∴CE=56 5∴EF=CE−CF=565−10=65.25、(1)证明:∵△ABC≌△DEF∴BC=EF∴BC−CF=EF−CF ∴BF=EC(2)解:∵△ABC≌△DEF,EF=7∴BC=EF=7在△ABC中BC−AB<AC<BC+AB∴7−3<AC<7+3即4<AC<10.。
八年级数学上册《第十二章全等三角形》同步训练题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A.3 B.4 C.3或5 D.3或4或52.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°3.如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°4.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°5.如图ΔABC≌ΔDCB,若∠A=100°,∠DBC=30°则∠ABD的度数为()A.10°B.20°C.30°D.50°6.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.如图,△ ABC≌△ ADE,若∠BAE=135°,∠DAC=55°,那么∠CFE的度数是()A.80°B.60°C.40°D.20°8.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC.其中正确的有()个.A.2 B.3 C.4 D.5二、填空题9.如图△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=°.10.如图△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠BAD的度数等于.11.如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=40°,PB=PF,则∠APF= °.12.如图,已知△ABC≌△ADE,∠B=25°,∠E=98°,则∠EAD的度数为.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°则∠BED的大小为.三、解答题14.如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.15.如图,已知△ABC≌△DEF,且∠A=75°,∠B=35°,ED=10cm,求∠F的度数与AB的长.16.如图,已知△ABC≌△ABD,∠CAD=90°,∠CBA=20°求∠D的度数.17.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.如图,A,D,E三点在同一直线上,且△BAD≌△ACE .(1)你能说明BD、DE、CE之间的数量关系吗?(2)请你猜想△ABD满足什么条件时BD//CE .参考答案1.C2.B3.C4.D5.B6.D7.C8.A9.9010.70°11.8012.57°13.100o14.解:∵△ABC≌△DEF,∠A=32°,∠B=48°∴∠D=∠A=48°,∠E=∠B=32°在△DEF中,∠D+∠E+∠DFE=180°解得:∠DFE=100°∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+CF∴BF=EC∵BF=3∴EC=3.15.解:∵∠A=75°,∠B=35°∴∠ACB=180°-∠A-∠B=70°∵△ABC≌△DEF,DE=10cm∴∠F=∠ACB=70°,AB=DE=10cm16.解:∵△ABC≌△ABD,∠ABC=20°∴∠ABD=∠ABC=20°∵∠CAD=90°∴∠DAB=45°∴∠D=180°−∠DAB−∠DBA=115° .17.解:∵△ABF≌△DCE∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;∴AF∥ED,AC=BD,BF∥CE18.解:∵△ABC≌△ADE∴∠DAE=∠BAC= 12(∠EAB﹣∠CAD)= 12(1200−100)=550.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°19.(1)解:结合图形∵△BAD≌△ACE∴AD=CE∵A,D,E三点在同一直线上∴AE=AD+DE∴BD=CE+DE;(2)解:假如BD//CE则∠BDE=∠E∵△BAD≌△ACE∴∠ADB=∠E∴∠ADB=∠BDE又∵∠ADB+∠BDE=180∘∴∠ADB=∠BDE=90∘∴当∠ADB=∠E=90∘时。
八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。
(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2、全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。
3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、单选题1.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=()A.95°B.120°C.55°D.60°2.如图,点B、F、C、E在一条直线上,AB∥DE,AC∥DF,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.BF=EC3.如图,已知,要说明,还需从下列条件①,②,③,④中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个4.如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为()A.40°B.45°C.50°D.60°5.如图,AB=AD,∠BAC=∠DAC=25°,则∠BCA的度数为()A.25°B.50°C.65°D.75°6.如图,方格纸中有四个相同的正方形,则∠1+∠2+∠3为()A.90°B.120°C.135°D.150°7.如图,是的平分线,D,E,F分别是射线、射线、射线上的点,连接.若添加一个条件使,则这个条件可以为()A.B.C.D.8.如图,已知的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则的面积是()A.64 B.48 C.32 D.42二、填空题9.如图,已知∠ACB=∠DBC,请增加一个条件,使△ABC≌△DCB,你添加的条件为.10.如图,AC=DB,AO=DO,则、两点之间的距离为.11.如图,点在等边三角形内部, AD=AE ,若,则需添加一个条件:.12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图,在中,AB=AC,分别过点B、C作经过点A的直线的垂线段、CE,若厘米,厘米,则的长为.三、解答题14.如图,在△ABC中,AC=BC,直线l经过点C,过A、B两点分别作直线l的垂线AE、BF,垂足分别为E、F,AE=CF,求证:∠ACB=90°15.如图,已知DE⊥AE,DF⊥AF,且DE=DF,B、C分别是AE、AF上的点,AB=AC求证:DB=DC16.如图,点B,F,C,E在一条直线上,FB=CE,AB//ED,AC//FD,交于O,求证:OA=OD.17.如图,在中,点D是线段上一点,以为腰作等腰直角,使于点G,交于点F.求证:.18.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)△ABD和△ECB全等吗?请说明理由;(2)若∠BDC=65°,求∠ADB的度数.参考答案1.B2.B3.C4.C5.D6.C7.A8.C9.AC=BD(答案不唯一)10.5511.或或或等12.213.14厘米14.证明:在Rt△ACE和Rt△CBF中∴Rt△ACE≌Rt△CBF(HL)∴∠EAC=∠BCF∵∠EAC+∠ACE=90°∴∠ACE+∠BCF=90°∴∠ACB=180°-90°=90°.15.解:∵DE⊥AE,DF⊥AF,且DE=DF∴AD平分∠FAE∴∠CAD=∠BAD又AD=AD,AB=AC∴△ACD≌△ABD∴DB=DC.16.证明:∴∵∴∵∴在和中∴∴在和中∴∴.17.证明:∵∴∵,即∴∴∵∴∴∵∴.18.(1)解:△ABD和△ECB全等,理由如下:∵AD∥BC∴∠ADB=∠CBE在△ADB和△EBC中∴△ADB≌△EBC(ASA);(2)解:∵△ADB≌△EBC ∴BC=BD∴∠BDC=∠BCD=65°∴∠DBC=50°∴∠ADB=50°.。
八年级数学上册《第十二章全等三角形》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法错误的是()A.全等三角形的对应边相等B.全等三角形的角相等C.全等三角形的周长相等D.全等三角形的面积相等2.已知△ABC≌△DEF,且∠A=100°,∠E=35°,则∠F=()A.35°B.45°C.55°D.70°3.如图,已知△ABC≌△CDA,下列结论:(1)AB=CD,BC=DA;(2)∠BAC=∠DCA,∠ACB=∠CAD;(3)AB//CD,BC//DA.其中正确的结论有( ) 个.A.0 B.1 C.2 D.34.如图所示.在△ABC中,∠A:∠ABC:∠C=3:5:10,又△A′B′C≌△ABC,则∠BCA′:∠BCB′等于()A.1:2 B.1:3 C.2:3 D.1:45.如图△ABC≌△DEC,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.15°B.25°C.35°D.65°6.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠D=30°,∠CGF=88°则∠E的度数是()A.50°B.44°C.34°D.30°7.如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D//EB′//BC,BE、CD交于点F.若∠BAC=40°,则∠BFC的大小是()A.105°B.110°C.100°D.120°8.如图,在长方形ABCD中AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A.2 B.4 C.4或65D.2或125二、填空题:(本题共5小题,每小题3分,共15分.)9.若△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是,∠ACB的对应角是.10.△ABC中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠DEF=11.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC= °12.如图△ABD≌△EBC,AB=3cm,AC=8cm则DE = cm.13.如图,坐标平面上,△ABC≌△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC,若A、B、C的坐标分别为(﹣3,1)、(﹣6,﹣3)、(﹣1,﹣3),D、E两点在y轴上,则F点到y轴的距离为三、解答题:(本题共5题,共45分)14.如图,A.B.C.D在同一直线上,且△ABF≌△DCE,那么AF∥DE、BF∥CE、AC=BD吗?为什么?15.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.16.如图所示,A,D,E三点在同一直线上,且△BAD≌△ACE,求证:BD=CE+DE.17.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.18.如图A,E,C三点在同一直线上,且△ABC≌△DAE(1)线段DE,CE,BC有怎样的数量关系?请说明理由.(2)请你猜想△ADE满足什么条件时DE//BC,并证明.参考答案:1.B 2.B 3.D 4.D 5.B 6.C 7.C 8.D9.DF;∠DFE10.40°11.8012.213.414.解答:∵△ABF≌△DCE,∴∠A=∠D,∠ABF=∠DCE,AB=CD,∴ AF//DE,∠FBC=∠ECB(等角的补角相等),AB+BC=CD+BC,∴BF//CE,AC=BD15.解:∵△ABC≌△ADE∴∠DAE=∠BAC=12(∠EAB﹣∠CAD)=12(120°−10°)=55°.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.16.证明:∵△BAD≌△ACE∴BD=AE∵AE=AD+DE∴BD=CE+DE.17.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°∴∠D=∠A=50°,∠E=∠F=40°∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE∴AC=BD∴AC﹣BC=DB﹣BC∴AB=CD∵AD=16,BC=10∴AB=CD=12(AD﹣BC)=3.18.(1)解:DE=CE+BC.理由:∵△ABC≌△DAE∴AE=BC DE=AC.∵A,E,C三点在同一直线上∴AC=AE+CE∴DE=CE+BC.(2)解:假如DE//BC则∠DEC=∠C.∵△ABC≌△DAE∴∠AED=∠C∴∠AED=∠DEC.又∵∠AED+∠DEC=180°∴∠AED=∠DEC=90°∴当△ADE满足∠AED=90°时。
1 / 811.2 全等三角形的判定(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,•则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,AB=AC ,BD=CD ,求证:∠1=∠2.6、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .7、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .8、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.12.2 全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA2 / 8D CBA 4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CDADCFO3 / 8例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( )AABD C EO12 3AFDOBEC4 / 8①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
全等三角形一.基础知识1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形。
3、把两个全等的三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做。
“全等”用“”表示,读作。
4、全等三角形有这样的性质:全等三角形的相等,相等。
二、基础训练5、如图所示,△ABC≌△DEF,对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____;对应边有:____和____,____和____,_____和_____.6、如图(1),点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠A OB与________,∠OBA与________,∠BAO与________.7、如图(2),已知△ABC中,AB=3,AC=4, ∠ABC=118°,那么△ABC沿着直线AC翻折,它就和△ADC重合,那么这两个三角形________,即____________所以DA=______,∠ADC=_____°。
8、如图△ ABD ≌△CDB,若AB=4,AD=5,BD=6,则BC= ,CD=______,三、拓展与提高9、如图,已知△ABC≌△ADE,∠C=∠E,BC=DE,其它的对应边有:,对应角有:。
想一想: ∠ BAD= ∠ CAE吗?为什么?CABDE10、找一找:请指出下列全等三角形的对应边和对应角 1、 △ ABE ≌ △ ACF对应角是: ;对应边是: 。
2、 △ BCE ≌ △ CBF对应角是: ;对应边是: 。
八年级数学上册《第十二章全等三角形》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形是全等图形的是()A.B.C.D.2.下列说法错误的是()A.如果两个图形全等,那么它们的形状和大小一定相同;B.图形全等,只与形状,大小有关,而与它们的位置无关;C.全等图形的面积相等,面积相等的两个图形是全等图形;D.全等三角形的对应边相等,对应角相等.3.如图,某人不小心将一块正五边形玻璃打碎成四块,若想到玻璃店配一块与原来一样大小的五边形玻璃,那么最省事的方法应该带玻璃碎片()A.①B.①②C.①③D.①③④4.已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13 B.3 C.4 D.65.如图,△ABC≌△A'B'C',则∠C的度数是()A.107°B.73°C.56°D.51°6.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为()A.6cm B.7cm C.4cm D.3cm7.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED8.如图ΔABC≌ΔA′B′C,∠BCB′=30∘则∠ACA′的度数为()A.30∘B.45∘C.60∘D.15∘二、填空题9.如图,△ABC的三个顶点分别在格子的3个顶点上,请你试着再在图中的格子的顶点上找出一个点D,使得△DBC与△ABC全等,这样的三角形有个.10.在平面直角坐标系中,已知A(0,0),B(3,0),C(1,2)若△BAD≌△ABC,则点D的坐标为.11.如图,若△ABC≌△DEF,AC=4,AB=3,EF=5则△ABC的周长为.12.如图,△ACB≌△ADB,△ACB的周长为20,AB=8,则AD+BD=.13.如图,△ ADB≌△ ECB,且点A的对应点是点E,点D的对应点是点C,若∠ CBD=40°,BD ⊥ EC,则∠ D的度数为.三、解答题14.如图,△ABE≌△DCE,点A,C,B在一条直线上,∠AED和∠BEC相等吗?为什么?15.如图所示,A,D,E三点在同一直线上,且△BAD≌△ACE,求证:BD=CE+DE.16.如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P.若∠ABE=160°,∠DBC=30°求∠CBE的度数.17.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.18.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.参考答案1.B2.C3.A4.D5.B6.D7.B8.A9.310.(2,2)或(2,-2)11.1212.1213.50°14.解:相等;理由:∵△ABE≌△DCE∴∠AEB=∠DEC∴∠DEC-∠AEC=∠AEB-∠AEC即:∠AED=∠BEC.15.证明:∵△BAD≌△ACE∴BD=AE AD=CE∵AE=AD+DE∴BD=CE+DE.16.解:∵△ABC≌△DBE∴∠ABC=∠DBE,即∠ABD+∠DBC=∠DBC+∠CBE ∴∠ABD=∠CBE∵∠ABE=160°∠DBC=30°∴∠ABD+∠DBC+∠CBE=∠ABE=160°∴∠ABD=∠CBE=12(∠ABE−∠DBC)=12(160°−30°)=65°.17.(1)证明:∵△ABD≌△CFD∴∠BAD=∠DCF又∵∠AFE=∠CFD∴∠AEF=∠CDF=90°∴CE⊥AB;(2)解:∵△ABD≌△CFD∴BD=DF∵BC=7,AD=DC=5∴BD=BC﹣CD=2∴AF=AD﹣DF=5﹣2=3.18.(1)解:∵△ABC≌△DEB,DE=10,BC=4∴AB=DE=10,BE=BC=4∴AE=AB﹣BE=6;(2)解:∵△ABC≌△DEB,∠D=30°,∠C=70°∴∠BAC=∠D=30°,∠DBE=∠C=70°∴∠ABC=180°﹣30°﹣70°=80°∴∠DBC=∠ABC﹣∠DBE=10°.。
1.1 探索勾股定理1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 5.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 . 7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 . 9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.ACB12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?16.如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.观测点A17.如图,在四边形ABCD 中,∠BAD=90°,∠DBC=90°,AB=3,AD=4,BC=12,求CD 的长。
全等三角形
知识点1:全等形与全等三角形的定义
1.如图11.1-1,△AOC ≌△BOD ,则对应角是__________,对应边是___________. 2.如图11.1-2,把△ABC 绕A 点旋转一定角度,得到△ADE ,则对应角__,对应边是__.
图11.1-1 图11.1-2 图11.1-3
3.如图11.1-3所示,图中两个三角形能完全重合,下列写法正确的是( )
A .△ABE ≌△AF
B B .△ABE ≌△ABF
C .△ABE ≌△FBA
D .△AB
E ≌△FAB
4.如图11.1-4,5个全等的正六边形A 、B 、C 、D 、E ,请仔细观察A 、B 、C 、D 四个图案,其中与E 图案完全相同的是( )
图11.1-4
5.如图11.1-5,△ABC ≌△ADE ,∠1=∠2,∠B=∠D ,指出其它的对应边和对应角.
知识点2:全等三角形性质的应用
6.如图11.1-6,两个三角形全等,其中某些边的长度及某些角的度数已知,则∠2的度数为________.
图11.1-6 图11.1-7
7.如图11.1-7,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8,AD=6,BD=7,则BE 的长是( ) A .1 B .2 C .4 D .6
A
C
B
D
E
O
A
B
C D
图11.1-5
8.如图11.1-8,△ABC 与△DEF 是全等三角形,则图中的相等线段有( )
A .1
B .2
C .3
D .4
图11.1-8 图11.1-9
9.如图11.1-9,△ABC 与△DBE 是全等三角形,则图中相等的角有( )
A .1对
B .2对
C .3对
D .4对
10.如图11.1-10,△ABC ≌△FED ,则下列结论错误的是( )
A .EC=BD
B .EF ∥AB
C .DF=B
D D .AC ∥FD
11.如图11.1-11,A 、B 、C 、D 在同一直线上,且△ABF ≌△DCE ,那么AF ∥DE 、BF ∥CE 、 AC=BD 吗?为什么?
12.如图11.1-12,△ABD
≌△EBC ,AB=3cm ,BC=4.5cm . (1)求DE 的长;
(2)判断AC
与BD 的位置关系,并说明理由.
E
A
C
D
E
B F
图11.1-11
图11.1-12
参考答案
1.∠A与∠B、∠C与∠D、∠AOC与∠BOD;AO与BO、CO与DO、AC与BC
2.∠BAC与∠DAE、∠B与∠D、∠BCA与∠E;AB与AD、AC与AE、BC与DE 3.B(点拨:全等三角形的对应顶点的字母写在对应的位置上)
4.D(点拨:将四个图形进行旋转,看哪个图形与E完全一致)
5.对应边是:AB与AD、AC与AE、BC与DE;另一对应角是:∠BAC与∠DAE.6.52°(点拨:∠α=180°-83°-45°=52°)
7.B
8.D(点拨:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC-EC=EF-EC,即BE=CF.故有4组相等线段)
9.D (点拨:∵△ABC≌△DBE,∴∠A=∠D,∠C=∠E,∠ABC=∠DBE,∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE,故有4对相等的角)10.C(点拨:DF与BD不是对应边)
11.∵△ABF≌△DCE,∴∠A=∠D,∠ABF=∠DCE,AB=CD,∴AF//DE,∠FBC=∠ECB (等角的补角相等),AB+BC=CD+BC,∴BF//CE,AC=BD
12.(1)∵△ABD≌△EBC,∴AB=BE,BD=BC,∴DE=BD-BE=4.5-3=1.5(cm);(2)∵△ABD≌△EBC,∴∠ABD=∠EBC,又∠ABD+∠EBC=180°,∴∠EBC=90°,∴AC⊥BD.。