结构力学第5章静定平面刚架
- 格式:ppt
- 大小:797.00 KB
- 文档页数:28
结构力学各章重要内容、知识点、难点1、绪论知识点:结构和结构的分类,结构力学的任务,结构的计算简图与杆件结构分类,荷载的分类。
重点:结构的计算简图选择原则、简化要点,结点和支座的变形和受力特性。
难点:活载,铰结点、刚结点、组合结点的特点。
2、平面体系的几何组成分析知识点:自由度、约束、瞬铰、多余约束等概念, 体系自由度计算公式,平面几何不变体系的组成规则,瞬变体系的特性,静定、超静定结构的几何组成。
重点:应用平面几何不变体系的组成规则分析平面杆系的几何组成。
难点:复杂平面杆系的几何分析。
3、静定梁和静定刚架知识点:截面法计算指定截面的内力,利用微分关系作内力图,分段迭加法画弯矩图,简支斜梁的计算,多跨静定梁的组成特点及计算。
静定平面刚架的特点、几何组成及型式,反力的计算,内力的计算和内力图的绘制,内力图的校核。
重点:分段迭加法画弯矩图;多跨静定梁反力、内力的计算及内力图绘制;静定平面刚架内力的计算和内力图。
难点:简支斜梁的计算;已知弯矩图,绘制剪力图、轴力图。
4、三铰拱知识点:三铰拱的组成和类型,三铰拱的反力和内力,三铰拱的受力特点,合重点:三铰拱的反力和内力计算。
难点:三铰拱截面剪力和轴力的计算。
5、静定桁架和组合结构知识点:桁架的特点和组成分类,结点法、截面法和联合法求桁架内力,组合结构的内力计算。
重点:特殊杆内力判断,结点法、截面法和联合法求桁架内力,组合结构的内力计算。
难点:复杂桁架内力计算,组合结构中梁式杆的弯矩图。
6、虚功原理和结构位移计算知识点:位移计算的目的;变形体系的虚功原理;结构位移计算的一般公式;静定结构在荷载作用下的位移计算;图乘法;静定结构由于温度变化及支座移动下的位移计算;线弹性结构的互等定理。
重点:静定结构在荷载作用下的位移计算。
难点:图乘法。
7、力法知识点:超静定结构和超静定次数,力法的基本结构、基本未知量、及其物理意义,利用对称性简化力法计算,超静定结构位移的计算。
1、杆系结构中梁、刚架、桁架及拱的分类,是根据结构计算简图来划分的。
(正确)2、定向支座总是存在—个约束反力矩(正确)和一个竖向约束反力。
(错误)3静力和动力荷载的区别,主要是取决于它随时间变化规律、加载速度的快慢。
其定性指标由结构的自振周期来确定。
(正确)4、铰结点的特性是被连杆件在连接处既不能相对移动,(正确)又不能相对转动。
(错误)5、线弹性结构是指其平衡方程是线性的,(正确)变形微小,(正确)且应力与应变之间服从虎克定律。
(正确)1、学习本课程的主要任务是:研究结构在各种外因作用下结构内力与()计算,荷载作用下的结构反应;研究结构的()规则和()形式等问题。
正确答案:位移,动,组成,合理2、支座计算简图可分为刚性支座与弹性支座,其中刚性支座又可分为()、()、()和()。
正确答案:链杆,固定铰支座,固定支座,滑动支座3、永远作用在结构上的荷载称为固定荷载,暂时作用在结构上的荷载称为()它包括()、()、()、()和()等正确答案:活载,风,雪,人群,车辆,吊车4、刚节点的特性是被连接的杆件载连接处既无()又不能相对();既可传递(),也可传递()正确答案:移动,转动,力,力矩第二章平面体系的几何构成分析1、图中链杆1和2的交点O可视为虚铰。
()O正确答案:正确2、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
()正确答案:正确3、在图示体系中,去掉1-5,3-5,4-5,2-5,四根链杆后,的简支梁12,故该体系具有四个多余约束的几何不变体系。
()12345正确答案:错误4、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
()正确答案:错误5、图示体系是几何不变体系。
()正确答案:错误2-2几何组成分析1.正确答案:几何不变,且无多余联系。
2.(图中未编号的点为交叉点。
)A B CDEF正确答案:铰接三角形BCD视为刚片I,AE视为刚片II,基础视为刚片III;I、II间用链杆AB、EC构成的虚铰(在C点)相连,I、III间用链杆FB和D处支杆构成的虚铰(在B点)相联,II、III 间由链杆AF和E处支杆构成的虚铰相联3.(图中未画圈的点为交叉点。
章节平面杆件结构按计算简图分类体系的几何组成与静力性的关系概述几何组成分析举例平面体系的几何组成分析几何组成分析中的几个概念平面体系的计算自由度静定梁和静定刚架静定平面刚架单跨静定梁多跨静定梁绪论几何不变体系和几何可变体系结构力学结构力学的研究对象和任务杆件结构的计算简图几何不变体系的简单组成规则静定结构的一般特性虚功原理和结构位移计算静定结构在荷载作用下的位移计算变形体系的虚功原理平面杆件结构位移计算的一般公式概述各种型式的结构受力特征 静定桁架和组合结构静定平面桁架三种简支桁架的比较概述三铰拱的内力计算三铰拱三铰拱的压力线和合理拱轴空间桁架静定组合结构静定结构在支座位移时的位移计算力法对称性的利用用弹性中心法计算无铰拱用力法计算超静定结构在荷载作用下的内力用力法计算超静定结构在支座位移和温度变化时的内力力法基本概念力法的典型方程超静定结构概述静定结构在温度变化时的位移计算算图乘法线性弹性结构的互等定理超静定结构的位移计算超静定结构内力图的校核超静定结构的一般特性概述截面直杆的转角位移方程位移法的基本概念位移法位移法的典型方程用位移法计算超静定结构在荷载作用下的内力用位移法计算超静定结构在支座位移和温度变化时的内力直接利用平衡条件建立位移法方程矩分配法的基本概念力矩分配法用力矩分配法计算连续梁和无结点线位移的刚架无剪力分配法影响线的概念静力法作静定粱的影响线结点荷载作用下粱的影响线静力法作静定桁架的影响线机动法作静定梁的影响线利用影响线求量值影响线移动荷载最不利位置的确定公路、铁路的标准荷载制及换算荷载简支梁的内力包络图和绝对最大弯矩机动法作连续梁的影响线连续梁的内力包络图知识点章编号节编号知识点编号结构及其分类31374结构力学研究对象31375结构力学的任务31376计算简图的定义31477选取计算简图的一般原则31478实际结构的简化31479平面杆件结构按计算简图分类31580几何不变体系和几何可变体系41681平面体系的几何组成分析41682自由度41783约束41784必要约束与多余约束41785实铰与虚铰41786几何组成分析41787体系的实际自由度S与体系的计算自由度W 41888平面体系的计算自由度算法一——刚片系的W 41889平面体系的计算自由度算法二——铰接链杆体系的W 41890体系的几何组成性质与计算自由度之间的关系41891几何不变体系的简单组成规则41992几何可变体系41993体系的几何组成分析及其步骤42094几何组成分析的方法及举例42095体系的几何组成与静力性的关系42196用截面法求指定截面的内力52297内力图的特征52298用区段叠加法作直杆段的弯矩图52299简支斜梁522100多跨静定梁的组成方式和特点523101多跨静定梁内力计算523102静定平面刚架的类型和特点524103求作静定平面刚架的内力图524104求作静定平面刚架的内力图的要点524105速绘静定平面刚架的弯矩图524106静定梁和静定刚架524107拱的分类625108三铰拱各部分名称625109带拉杆的拱625110三铰拱内力符号规定626111学三铰拱支反力的计算626112三铰拱的内力计算公式626113三铰拱的内力图绘制626114三铰拱的受力特点626115合力多边形627116三铰拱的压力线627117三铰拱的合理拱轴627118桁架的计算简图728119平面桁架的分类728120结点法729121结点平衡的特殊情况729122截面法729123结点法与截面法的联合应用729124对称桁架的受力计算729125静定平面桁架729126简支桁架的受力特点730127三种简支桁架的比较730128空间桁架的支座731129空间桁架的几何组成731130空间桁架的计算方法731131组合结构及其受力特点732132静定组合结构内力的计算方法732133静定组合结构732134各种型式的结构受力特征733135静定梁、刚架内力733136静定结构的一般特性734137位移835138计算位移的目的835139实功836140虚功836141刚体(系)的虚功原理836142变形体系的虚功原理836143虚功原理的两种形式836144实际状态837145虚拟状态837146结构位移计算的一般公式837147单位力设置法837148荷载引起的结构位移计算公式838149梁和刚架的位移计算838150桁架的位移计算838151组合结构的位移计算838152图乘法的适用条件839153图乘法原理839154图乘法的几点说明839155静定结构在支座位移时的位移计算840156温变引起的位移计算841157制造误差引起的位移计算841158功的互等定理842159位移互等定理842160反力互等定理842161反力与位移互等定理842162超静定结构和静定杆件结构分类943163超静定次数的确定943164超静定结构概述943165力法计算超静定结构的思路944166力法的基本未知量、基本结构及基本体944167系、典型方程力法的基本概念944168用力法计算一次超静定结构944169两次超静定结构的力法典型方程945170 n次超静定结构的力法典型方程945171力法典型方程中系数和自由项的计算945172结构的最后内力图945173力法解题步骤946174力法计算超静定梁946175力法计算超静定刚架946176力法计算超静定桁架946177力法计算超静定组合结构946178力法计算铰接排架946179力法计算两铰拱946180支座位移时超静定结构的计算947181温度变化时超静定结构的计算947182对称结构948183对称结构的受力特点948184利用对称性——选择对称的基本体系948185利用对称性——采用半结构948186弹性中心949187荷载作用时的计算949188温度变化时的计算949189支座位移时的计算949190超静定结构位移计算的思路950191荷载作用下超静定结构的位移计算950192支座位移时超静定结构的位移计算950193温度变化时超静定结构的位移计算950194平衡条件的校核951195位移条件的校核951196超静定结构的一般特性952197位移法的基本思路1053198杆端弯矩及杆端位移的正负号规定1054199单跨超静定梁的形常数和载常数1054200转角位移方程1054201位移法的基本未知量1055202位移法的基本结构1055203位移法方程1055204位移法典型方程的建立1056205位移法典型方程中系数及自由项的计算1056206方法位移法计算步骤1057207位移法算例1057208支座位移时位移法的计算1058209温度变化时位移法的计算1058210利用结点和截面平衡条件建立位移法方1059211程转动刚度1160212分配系数和传递系数1160213任意荷载作用时单结点结构的力矩分配1160214法力矩分配法1160215用力矩分配法计算连续梁1161216用力矩分配法计算无结点线位移的刚架1161217无剪力分配法的适用范围1162218无剪力分配法计算步骤和举例1162219移动荷载1263220影响线的定义1263221影响线1263222静力法作影响线的步骤1264223简支梁的影响线1264224影响线与内力图的区别1264225伸臂梁的影响线1264226结点荷载1265227结点荷载作用下影响线的作法1265228静力法作静定桁架的影响线1266229机动法及其原理1267230用机动法作影响线1267231集中荷载作用下的量值1268232分布荷载作用下的量值1268233最不利荷载位置1269234单个移动集中荷载的最不利位置1269235可任意布置的均布荷载的最不利位置1269236行列荷载的最不利位置1269237临界荷载位置的判定1269238铁路标准荷载1270239公路标准荷载1270240换算荷载12702411271242127124312722441272245连续梁的最不利荷载分布1273246连续梁的弯矩包络图1273247连续梁的剪力包络图1273248简支梁的内力包络图机动法作连续梁影响线的原理。
第一章1.图示预制混凝土柱插入杯型基础,杯口的空隙中采用沥青麻刀填充,构建结构力学计算简图时一般视其为固定支座。
答案:错2.对于桥涵工程来说,结构自重、覆盖在结构上的土压力以及水位不变的静水压力等都属于恒荷载。
答案:对3.超静定结构在任意荷载作用下,反力和内力仅凭平衡条件就可以完全确定。
答案:错4.()横跨德夯大峡谷,落差达400多米,创造了四项世界记录,其中包括大桥主跨1176m,是跨峡谷悬索桥当今的世界第一。
答案:矮寨大桥5.图示的公路桥梁一般在结构力学分析时采用计算简图()。
答案:6.结构力学中,杆件间的连接简化为结点,一般不包括()。
答案:活动结点7.按几何特征分类,结构一般可以分为()。
答案:板壳结构;实体结构;杆系结构;薄膜结构8.杆系结构按计算特点和求解方法可以分为()。
答案:静定结构;超静定结构9.以下()属于以受弯为主的结构。
答案:刚架;排架;梁10.静力荷载和动力荷载的本质区别在于()。
答案:其是否引起惯性力;其是否产生动力效应第二章1.固定铰支座和定向支座各相当于2个约束,但它们并不是等效的。
()答案:对2.用2根杆固定1个新点的装置就是二元体,这些链杆可以为直杆,曲杆或者折杆。
()答案:错3.图示体系为瞬变体系。
()答案:错4.根据平面杆系的自由度计算公式,图示杆系的计算自由度为0,但其实际自由度为1。
()答案:对5.图示连接4个刚片的复铰相当于()个约束。
答案:66.3个本身无多余约束的刚片,两两全部通过一个铰相连,这三个铰中一个为实铰,一个为虚铰,一个为无穷铰,那么这个体系是几何不变体系的条件是()。
答案:实铰到虚铰的连线与形成无穷铰的平行链杆不平行7.图示体系为()。
答案:有多余约束的几何不变体系8.图示刚架为有1个多余约束的几何不变体系,它的支座约束中,可以将()中的任意1个视为多余约束。
答案:B处的水平支座;A处的水平支座9.以下说法正确的是()。
一个体系上增加或去掉二元体,体系的几何组成保持不变。
模块1参考答案1.结构有哪几种分类?答:结构主要有:杆件结构,薄壁结构和实体结构三类。
2.结构力学的研究对象和研究任务是什么?答:结构力学的研究对象:结构力学的研究对象是杆件结构,薄壁结构和实体结构的受力分析将在弹性力学中进行研究。
严格地说,一般的杆件结构是空间结构,但它们中的大多数均可简化为平面结构。
所以,本门课程主要研究平面杆件结构,即组成结构的所有杆件及结构所承受的外荷载都在同一平面内的结构。
结构力学是研究结构的合理形式以及结构在受力状态下内力、变形、动力反应和稳定性等方面的规律性的科学。
研究的目的是使结构满足安全性、适用性和经济方面的要求。
建筑物、构筑物、结构物在各类工程中大量存在:(1)住宅、厂房等工业民用建筑物;(2)涵洞、隧道、堤坝、挡水墙等构造物;(3)桥梁、轮船、潜水艇、飞行器等结构物。
结构力学的任务:结构力学与材料力学、弹性力学有着密切的联系,他们的任务都是讨论变形体系的强度、刚度和稳定性,但在研究对象上有所区别。
材料力学基本上是研究单个杆件的计算,结构力学主要是研究杆件的结构,而弹性力学则研究各种薄壁结构和实体结构,同时对杆件也作更精确的分析。
结构力学研究杆件结构的强度、刚度和稳定性问题,其具体任务包括以下几个方面:(1)杆件结构的组成规律和合理的组成方式。
(2)杆件结构内力和变形的计算方法,以便进行结构强度和刚度的验算。
(3)杆件结构的稳定性以及在动力荷载作用下的反应。
结构力学是土木工程专业的一门重要的专业基础课,在各门课程的学习中起着承上启下的作用。
结构力学的计算方法很多,但所有方法都必须满足以下几个三个基本条件:(1)力系的平衡条件。
在一组力系作用下,结构的整体及其中任何一部分都应满足力系的平衡条件。
(2)变形的连续条件,即几何条件。
连续的结构发生变形后,仍是连续的,材料没有重叠和缝隙;同使结构的变形和位移应该满足支座和结点的约束条件。
(3)物理条件。
把结构的应力和变形联系起来的条件,即物理方程或本构方程。
1 结构力学多媒体课件1、刚架由梁和柱组成的结构,其结点全部或部分是刚结点。
2、刚架的形式2)简支刚架1)悬臂刚架2、刚架的形式3)三铰刚架4)主从刚架3、刚架的特点1)杆数少,净空大,便于使用3、刚架的特点2)刚结点的特点①变形:刚结点处的各杆端不能发生相对移动和相对转动,因而受力变形后,各杆杆端转动了同一角度,即各杆之间的夹角保持不变。
②受力:刚结点可承受和传递弯矩保持角度不变3、刚架的特点3)横梁和竖柱连成整体,使整体刚度增大,弯矩的峰值减少二、刚架中各杆的杆端内力1、支座反力的计算⑴求反力时要先根据支座的性质正确定出反力未知量个数,不能多、不能少。
⑵假定反力方向,由平衡方程确定其数值。
⑶应尽量利用一个平衡方程求一个未知力。
⑷求出反力后要有没有用过的平衡方程校核。
l /2l /2l /2l /2CBAPF AY =0.5PF BY =0.5PF AX=0.75P F BX =0.25P2m 2m 4mCBA4m2kN/mGFEDF AX =1KNF CX =1KNF CY =3KNF BY =7KN2、杆端内力的计算⑴方法:截面法⑵内力符号结点处有不同的杆端截面。
各截面上的内力用该杆两端字母作为下标来表示,并把该端字母列在前面。
——AB杆A端的轴力。
FN AB——AB杆A端的剪力。
FQ AB——AB杆A端的弯矩。
MAB2、杆端内力的计算⑶内力的正负规定轴力FN:以拉力为正,压力为负。
剪力FQ:以绕隔离体顺时针转为正,反之为负。
弯矩M:不规定正负,但弯矩图画在受拉侧。
F N FNF Q F QM AB M BAF NF NF QF Q MBAM AB 竖杆剪力图和轴力图可画在任一侧,但必须标出正负;弯矩图画在受拉一侧,可不标正负。
2、杆端内力的计算 ⑷正确选取脱离体⑸注意结点平衡∑F X =0 ∑F Y =0 ∑M D =0一般先求出支座反力及铰结点处的内约束力,然后将刚架拆成杆件,逐杆绘制其内力图,将各杆的内力图合在一起就是刚架的内力图。
5-1试找出下列结构中的零力杆(在零力杆上打上“0”记号)5-2 已知平面桁架的几何尺寸和载荷情况如题5-2图所示,用节点法计算桁架各杆的内力。
解:(a)、零力杆:74,76,65,68,43分析节点4,得P N -=45分析节点5,得 2- 1P N P N ==552,(b)、零力杆:26,61,63,48,83,85,37,71分析节点7:P N -=75 分析节点5:5254P N =1221233234434554N N N N N N N N =======(c)、支座反力:均为0分析节点1: P N P N 2,31512-== 分析节点2: P N P N 2,32523== 分析节点3: P N 235-= 分析节点4: 04543==N N (d)、零力杆:12,15,52,83,43,49支座反力:P R P R P R y x y 3.1,8.0,3.2223=-==分析节点5: P N 8.056-=分析节点6: P N P N -=-=6267,8.0 分析节点9: P N P N 6.0,26.09893=-= 分析节点8: P N 6.087=分析节点3: P N P N 1.1,27.13237=-= 分析节点7: P N 23.072-=5-3 用分解成平面桁架的方法求如题5-3图所示空间桁架各杆的内力。
解:零力杆:26,48,34,24,28122152316213337317383N P a N P P cN P N P N P N P NP ==-=-=-===-3 5-4 已知平面桁架的几何尺寸和受载情况如题5-4图所示。
求图中用粗线所示的杆件①,②,③的内力。
解:(a)、零力杆如图所示1340,3P M N ==∑由得 3210,M N P ==-∑由得310,3y F N P ==∑由得 (b)、2140,2M N P ==∑由得230,x F N P ==-∑由得250,y F N ==∑由得(c)、支座反力:均为0,结构简化为:PN F P N F PN M x y 31,032,032,03213====-==∑∑∑得由得由得由5-5 求如题5-5图所示平面桁架的内力。