所以
k
12
4
1 4
k
2
1
2k
3
0,
1 4
k
2
1
5
解得 k=4,即当 k=4 时,方程的两实根的积为 5.
第十七页,共二十五页。
(2)方程(fāngchéng)的两实根x1,x2满足|x1|=x2.
解:(2)由|x1|=x2 知: ①当 x1≥0 时,x1=x2,所以方程有两相等实数根, 故Δ=0 k= 3 ;
第二十一页,共二十五页。
17.当 t≤x≤t+1 时,求函数 y= 1 x2-x- 5 的最小值(其中 t 为常数).
2
2
解:函数 y= 1 x2-x- 5 的对称轴为 x=1.
2
2
(1) 当对称轴在所给范围左侧.即 t>1 时,当 x=t 时,
ymin= 1 t2-t- 5 ;
2
2
(2)当对称轴在所给范围之间.即 t≤1≤t+1 0≤t≤1 时:
15.解不等式 1 ≤3. x2
解:原不等式可化为 1 -3≤0 x2
3x 5 ≤0 x2
3x 5 ≥0 x2
3x 5 x 2 0
x 2 0
x<-2 或 x≥- 5 . 3
第二十页,共二十五页。
16.当-2≤x≤2时,求函数y=x2-2x-3的最大值和最小值. 解:作出函数的图象(tú xiànɡ).由图可知,当x=1时,ymin=-4, 当x=-2时,ymax=5.
x x
m 0, n0
或
x
x
m 0, n 0.
解得
x>m
或
x<n.
(2)不等式(x-