问 2:函y数 ax2bxc(a0)的图象 x轴与 的位置关系有
x1
x2
x1(x2)
yax2bxc y
问3:图像与x轴交点的纵坐标是多少? 此时相应的横坐标是否为ax2+bx+c=0的根?
0 x1
x2 x
当 y 0, 二次方程为 a2xbxc0
0时,二次函数与x轴有一个交点,说明二次方程有一个根. 0时,二次函数与x轴有两个交点,说明二次方程有两个根. 0时,二次函数与x轴没有交点,说明二次方程无实根.
x
|
x
1
2
观察4x2-4x+1 <0的解
o●
x
无解
例题讲解
例3 解不等式 -x2 +2x-3 > 0
解:∵ -x2 +2x-3 > 0 ∴x2 -2x+3 < 0
又∵△<0, ∴原不等式无解.
例题讲解 例4 解不等式: -3x2+6x>2
解:∵ -3x2+6x>2
∴ 3x2-6x+2<0
有两相异实根 x1,x2 (x1<x2)
有两相等实根
x1=x2= b
2a
{x|x<x1,或x>x2} {x|x≠
b
}
2a
{x|x1<x<x2}
Φ
没有实根
R
Φ
若a<0,可在不等式的两边同乘以-1
这张表是我们今后求解一元二次不等式的主
要工具,必须熟练掌握,其关键是抓住相应的二 次函数的图像。
记忆口诀:.(a>0且△>0) 大于0取两边,小于0取中间
抛物线