系统牛顿第二定律质点系牛顿第二定律
- 格式:docx
- 大小:1.70 MB
- 文档页数:3
系统牛顿第二定律(质点系牛顿第二定律)主讲:黄冈中学教师郑成1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=,在木楔的倾角α=30°的斜面上,有一质量m=的物块,由静止开始沿斜面下滑,当滑行至s=时,速度v=s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2)解法一:(隔离法)先隔离物块m,根据运动学公式得:v2=2as=s2<gsinθ=5m/s2可见物块m受到沿斜面向上的滑动摩擦力,对物体m为对象对斜面M:假设地面对M静摩擦力向右:f地+N′sin30°-f′cos30°=0而N′=N=,f′=f=地=-Nsin30°+fcos30°=-说明地面对斜面M的静摩擦力f地=,负号表示方向水平向左.可求出地面对斜面M的支持力N地N地-f′sin30°-N′cos30°-Mg=0N地= fsin30°+Ncos30°+Mg=<(M+m)g=110N因m有沿斜面向下的加速度分量,故整体可看作失重状态方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.=m1a1x+m2a2x+…+m n a nx =m1a1y+m2a2y+…+m n a ny解法二:系统牛顿第二定律:把物块m和斜面M当作一个系统,则:x:f地=M×0 +macos30°=水平向左y:(M+m)g-N地=M×0+masin30°N地=(M+m)g-ma sin30°=例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力解法一:隔离法N a=mgcosαN b=mgcosβN地=mg+mgcosβsinα+mgcosαsinβ=Mg+mg(sin2α+cos2α)=Mg+mgf地=N b′cosα-N a′cosβ=mgcosβcosα-mgcosαcosβ=0N解法二:系统牛顿第二定律列方程:(M+2m)g-N地=M×0+mgsin2α+mgsin2βN地=(M+m)g向右为正方向:f地= M×0+mgsinαcosα-mgsinβcosβ=0。
龙源期刊网
质点系中多质点非相同加速度下牛顿第二定律的应用
作者:李福奇
来源:《中学物理·高中》2014年第02期
在解决多个物体运动,具有相同加速度问题时,我们常常用到整体法和隔离法,只要我们分清物体的运动过程,灵活地选择研究对象,交叉使用整体法与隔离法就会让问题简化.在这
里关键在于,题目中多个运动物体问题有共同的速度,共同的加速度.
1问题的提出
如果在多个物体的研究对象中,系统中物体各自速度不一样,加速度也不同,整体法又怎么利用呢?对于这个问题,我进行了进一步的讨论.
2质点系动力学方程的推导。
质点系牛顿第二定律例题
牛顿第二定律是物理学中最重要的定律之一,也是经典力学的主要原理。
它是由英国的力学家及数学家牛顿提出的。
根据牛顿第二定律,当一个质点或物体受到外力作用时,其受力大小与作用力大小成比例,而其受力方向与作用力方向完全相反。
这就是牛顿第二定律,它可以用数学表达式表示:
F= ma
其中,F表示外力,m表示质量,a表示受力的加速度方向。
二、牛顿第二定律例题
1、问题描述
一个质量为m的质点在x轴上受到外力F,请问该质点的加速度是多少?
2、解答
根据牛顿第二定律,加速度a与外力F成正比,a=F/m,所以该质点的加速度为F/m。
- 1 -。
系统牛顿第二定律质点系
牛顿第二定律
Revised by BLUE on the afternoon of December 12,2020.
系统牛顿第二定律(质点系牛顿第二定律)
主讲:黄冈中学教师郑成
1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=0.02,在木楔的倾角α=30°的斜面上,有一质量m=1.0kg的物块,由静止开始沿斜面下滑,当滑行至s=1.4m时,速度v=1.4m/s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2)
解法一:(隔离法)先隔离物块m,根据运动学公式得:
v2=2as=0.7m/s2<gsinθ=5m/s2
可见物块m受到沿斜面向上的滑动摩擦力,对物体m为对象
对斜面M:假设地面对M静摩擦力向右:
+N′sin30°-f′cos30°=0
f
地
=-Nsin30°+fcos30°=-0.61N
而N′=N=,f′=f=4.3N f
地
=0.61N,负号表示方向水平向左.
说明地面对斜面M的静摩擦力f
地
可求出地面对斜面M的支持力N
地
-f′sin30°-N′cos30°-Mg=0
N
地
N
= fsin30°+Ncos30°+Mg=109.65N<(M+m)g=110N
地
因m有沿斜面向下的加速度分量,故整体可看作失重状态
方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.
=m
1a
1x
+m
2
a
2x
+…+m
n
a
nx
=m
1
a
1y
+m
2
a
2y
+…+m
n
a
ny
解法二:系统牛顿第二定律:
把物块m和斜面M当作一个系统,则:
x:f
地=M×0 +macos30°=0.61N水平向左 y:(M+m)g-N
地
=M×0+masin30°
N
地
=(M+m)g-ma sin30°=109.56N
例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力
解法一:隔离法
N
a =mgcosα N
b
=mgcosβ
N
地
=mg+mgcosβsinα+mgcosαsinβ=Mg+mg(sin2α+cos2α)=Mg+mg
f
地=N
b
′cosα-N
a
′cosβ=mgcosβcosα-mgcosαcosβ=0N
解法二:系统牛顿第二定律列方程:
(M+2m)g-N
地
=M×0+mgsin2α+mgsin2β
N
地
=(M+m)g
向右为正方向:f
地
= M×0+mgsinαcosα-mgsinβcosβ=0。