光栅编码
- 格式:pdf
- 大小:178.75 KB
- 文档页数:7
光栅与编码器介绍位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。
光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。
测量长度从1m、3m 达到30m和100m。
光栅与编码器介绍位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。
光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。
测量长度从1m、3m达到30m和100m。
MicroE光栅编码器的浅谈MicroE Systems Inc.始建于1994年,是GSI集团精密运动公司的成员公司。
MicroE系统公司提供世界领先技术的光学编码器和精密定位系统。
其产品在数据存储、半导体和电子制造业、自动化及机器人、运动控制子系统和电机、医疗设备、测量和仪表、宇航工程等领域有广泛的应用。
下面我们了解一下光栅编码器一些常用概念:一、编码器的分辨率是指编码器可读取并输出的最小角度变化,对应的参数有:每转刻线数(line)、每转脉冲数(PPR)、最小步距(Step)等。
二、编码器的精度是指编码器输出的信号数据对测量的真实角度的准确度,对应的参数是角度(°)角分(′)、角秒(″)。
三、影响编码器精度有4个部分:1:光学部分2:机械部分3:电气部分4:使用中的安装与传输接收部分,使用后的精度下降,机械部分自身的偏差。
①.编码器光学部分对精度的影响光学码盘—主要的是母板精度、每转刻线数、刻线精度、刻线宽度一致性、边缘精整性等。
光发射源—光的平行与一致性、光衰减。
光接收单元—读取夹角、读取响应。
光学系统使用后的影响—污染,衰减。
例如光学码盘,首先是母板的刻线精度.其次,加工的过程,光学成像的时间,温度,物理化学的变化,污染等,都会影响到码盘刻线的宽度和边缘性。
所以,即使是一样的码盘刻线数,各家能做到的精度也是不同的。
②.编码器机械部分对精度的影响轴的加工精度与安装精度。
轴承的精度与结构精度。
码盘安装的同心度,光学组建安装的精度。
安装定位点与轴的同心度。
例如,就轴承的结构而言,单轴承支撑结构的轴承偏差无法消除,而且经使用后偏差会更大,而双轴承结构或多支承结构,可有效降低单个轴承的偏差。
③.编码器电气部分对精度的影响源的稳定精度—对光发射源与接收单元的影响。
读取响应与电气处理电路带来的误差;电气噪音影响,取决于编码器电气系统的抗干扰能力;例如,如果电子细分,也会带来的误差,按照德国海德汉提供的介绍,海德汉编码器的细分电气误差与正余弦曲线的误差约在原始刻线宽度的1%左右。
光栅、编码器基本知识位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。
光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。
测量长度从1m、3m 达到30m和100m。
光栅与编码器介绍位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。
光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。
测量长度从1m、3m 达到30m和100m。
光栅式结构光传感器的编码方法随着生产自动化水平的提高,人们对生产环节的监控水平的要求也越来越高,视觉检测系统能满足生产线上检测的实时性要求,并且具有一定的柔性,精度适中,因此得到了广泛地应用。
一般来说,视觉检测系统包括结构光传感器、多线结构光传感器、双目视觉传感器。
本文主要讨论多线结构光传感器,即光栅式结构光传感器。
1光栅式结构光传感器原理光栅式结构光传感器是一种基于主动三角法的视觉传感器。
由光投射器在空间投射出一系列光平面,每个光平面通过摄像机建立与象平面间的透视对应,几何结构。
图1光栅式结构光传感器结构在第K个光平面上以O(K)L为原点建立直角坐标系O(K)Lx(K)Ly(K)L,其它为摄像机模型结构。
则有点的象面坐标与其在光平面坐标的关系[1]如下:可见,若要求得点的光平面坐标必须知道点属于哪个光平面。
故光栅式结构光传感器存在着光条的识别问题,通过光条编码可以解决这个问题。
2结构光编码2.1结构光编码问题概述由于线结构光传感器获得的信息较少(只能获得一个光平面内的位置信息),人们相应地开发了光栅式结构光传感器和网格式结构光传感器。
但点的匹配问题也相应地出现了。
为了解决点的对应问题,人们将投射的光进行编码。
Altschulter[2]和Posdamer[3]采用了激光光闸的编码技术。
128×128激光网格通过一个可编程的空间光调制器投射到物体表面,在象面上产生点阵模型。
可编程的空间光调制器[4]通过编程可以使某些激光束通过,而某些激光束被阻挡。
通过对应于不同激光束的一系列图像,可以解决点的对应问题。
文献[5]提出了一种使用灰度码的时间序列编码方案。
对于通常的三维静态物体,这两种方法能够很好地完成点的对应,但对于动态实时的问题这些方法显然不能使用。
对于动态实时的问题,我们希望有一种通过单一图像即可解决点的匹配的方案。
Boyer 和Kav[6]使用一种彩色的光条,通过相邻光条的颜色进行编码。
MicroE的光栅编码器MicroE Systems Inc.是一家总部设在麻萨诸塞州内蒂克市的美国公司,隶属于GSI集团公司精密运动部门。
其主要产品精密光栅编码器居世界领先地位。
更多技术内容及应用请联系北京艾玛特科技有限公司销售主管欧玉涛137******** MicroE的光栅编码器不仅具备高精度、高集成、全系列、低价格,它还拥有体积小、重量轻、高速度、安装快速、调整方便、可编程插补放大及强大的软件管理功能。
所有MicroE激光读数头均可应用于直线和圆形光栅。
MicroE光栅编码器主要有三个系列:(1)MercuryII系列,MicroE公司最新推出的同时适用于金属光栅和玻璃光栅的产品,分辨率可达1.2纳米,单只栅尺长度50米,高速运行;(2)MercuryI系列,主要特点是尺寸小,速度快,精度高,玻璃光栅,分辨率到5纳米,速度可以到7.2米/秒;(3)ChipEncoder 系列,读数头是芯片式,尺寸仅有7x11毫米,分辨率可以到1微米,价格低廉,适于小型设备大批量采购。
美国MicroE公司的光栅编码器具有微型、高速、智能的特点,是运动系统信号反馈的关键部件。
配备特有的智能软件,可以实现对编码器输出频率、分辨率的可编程控制,辅助编码器产品的安装调试,其分辨率范围从5μm到1.2nm,行程最长50米,能够实现用同一个读数头读取圆光栅、直线光栅、金属光栅和玻璃光栅,使用方便。
所有光栅都有零位信号输出,MII系列更具备粘贴式的左右限位,减小安装空间和节约成本。
MicroE公司编码器系列是光栅编码器产品微型化、智能化、高速化的典范。
独特的PuerPrecision光学系统、SmartPrecision电子细分系统和SmartPrecision软件,保证了MicroE编码器多功能和高性能的特性。
MicroE编码器产品现有MercuryII系列、Mercury系列、ChipEncoder系列和DRC系列。