配对设计与配对资料的假设检验
- 格式:ppt
- 大小:125.00 KB
- 文档页数:17
常⽤的假设检验⽅法(U检验、T检验、卡⽅检验、F检验)⼀、假设检验假设检验是根据⼀定的假设条件,由样本推断总体的⼀种⽅法。
假设检验的基本思想是⼩概率反证法思想,⼩概率思想认为⼩概率事件在⼀次试验中基本上不可能发⽣,在这个⽅法下,我们⾸先对总体作出⼀个假设,这个假设⼤概率会成⽴,如果在⼀次试验中,试验结果和原假设相背离,也就是⼩概率事件竟然发⽣了,那我们就有理由怀疑原假设的真实性,从⽽拒绝这⼀假设。
⼆、假设检验的四种⽅法1、有关平均值参数u的假设检验根据是否已知⽅差,分为两类检验:U检验和T检验。
如果已知⽅差,则使⽤U检验,如果⽅差未知则采取T检验。
2、有关参数⽅差σ2的假设检验F检验是对两个正态分布的⽅差齐性检验,简单来说,就是检验两个分布的⽅差是否相等3、检验两个或多个变量之间是否关联卡⽅检验属于⾮参数检验,主要是⽐较两个及两个以上样本率(构成⽐)以及两个分类变量的关联性分析。
根本思想在于⽐较理论频数和实际频数的吻合程度或者拟合优度问题。
三、U检验(Z检验)U检验⼜称Z检验。
Z检验是⼀般⽤于⼤样本(即⼤于30)平均值差异性检验的⽅法(总体的⽅差已知)。
它是⽤标准的理论来推断差异发⽣的概率,从⽽⽐较两个的差异是否显著。
Z检验步骤:第⼀步:建⽴虚⽆假设 H0:µ1 = µ2 ,即先假定两个平均数之间没有显著差异,第⼆步:计算Z值,对于不同类型的问题选⽤不同的计算⽅法,1、如果检验⼀个样本平均数(X)与⼀个已知的总体平均数(µ0)的差异是否显著。
其Z值计算公式为:其中:X是检验样本的均值;µ0是已知总体的平均数;S是总体的标准差;n是样本容量。
2、如果检验来⾃两个的两组样本平均数的差异性,从⽽判断它们各⾃代表的总体的差异是否显著。
其Z值计算公式为:第三步:⽐较计算所得Z值与理论Z值,推断发⽣的概率,依据Z值与差异显著性关系表作出判断。
如下表所⽰:第四步:根据是以上分析,结合具体情况,作出结论。
v1.0 可编辑可修改假设检验一、假设检验的概念统计推断包括两大方面的内容,其一为参数估计(如总体均数的估计),另一方面,即假设检验(hypothesis test)。
假设检验过去亦称显著性检验(significance test)。
其基本原理和步骤用以下实例说明。
例为研究某山区成年男子的脉搏均数是否高于一般成年男子的脉搏均数。
某医生在一山区随机抽查了 25名健康成年男子,求得其脉搏的均数为 74.2次/分,标准差为6.0次/分。
根据大量调查,已知健康成年男子脉搏均数为72次/分;能否据此认为该山区成年男子的脉搏均数高于一般成年男子的脉搏均数本例可用下图表示。
显然,本例其目的是判断是否μ>μ0。
从所给条件看,样本均数X与已知总体均数μ0不等,造成两者不等的原因有二:①非同一总体,即μ#μ0;②同一总体即μ=μ0,两个均数不相等的原因在于抽样误差。
假设检验的目的就是要判断造成上面两个均数不等的原因是哪一个。
也就是说,是解决样本均数代表性如何的问题。
上例是,样本均数比已知总体均数大,有可能是由于抽样误差引起,也有可能是由于所调查的样本人群的生活环境、生活习惯、遗传或其他原因所致,如何判断呢,这就需要利用统计学方法----假设检验方法。
假设检验也是统计分析的重要组成部分。
(提问:统计分析包括参数估计和假设检验)下面我们以例题所提出的问题学习假设检验的基本步骤,同时学习样本均数与总体均数比较的t检验。
假设检验一般都是有“名”的,比如t检验,大家要知道假设检验的命名通常是以所要计算的统计量来命名的,如t检验、F检验、X2检验等。
后面有进一步介绍。
二、假设检验的基本步骤(三)选定检验方法,计算检验统计量应根据研究目的、变量或资料类型、设计方案、检验方法的适用条件等选择检验方法,并计算统计量(test statistic)。
如两均数比较可选用t检验,(当样本含量较大,如n>100时可用u检验;两样本方差比较可选用F检验、率的比较可选用u检验或x2检验。
假设检验的基本步骤(三)假设检验的基本步骤统计推断1.建立假设检验,确定检验水准H0和H1假设都是对总体特征的检验假设,相互联系且对立。
H0总是假设样本差别来自抽样误差,无效/零假设H1是来自非抽样误差,有单双侧之分,备择假设。
检验水准,a=0.05检验水准的含义2.选定检验方法,计算检验统计量选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题,一般计量资料用t检验和u检验;计数资料用χ2检验和u检验。
3.确定P值,作出统计推理P≤a ,拒绝H0,接受H1P> a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误(四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论)u检验适用条件t检验适用条件t检验和u检验1.样本均数与总体均数比较2.配对资料的比较/成组设计的两样本均数的比较配对设计的情况:3点3. 两个样本均数的比较(1)两个大样本均数比较的u检验(2)两个小样本均数比较的t检验(五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误)1.两类错误拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误;接受错误的H0称Ⅱ型错误-存伪。
用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。
两者的关系:α愈大β愈小;反之α愈小β愈大。
2.假设检验中的注意事项(1)随机化:代表性和均衡可比性(2)选用适当的检验方法(3)正确理解统计学意义(4)结论不绝对(5)单侧与双侧检验的选择四.分类变量资料的统计描述(一)相对数常用指标及其意义1.率2.构成比3.相对比(二)相对数应用注意事项1.观察例数要足够多2.不能犯以比代率的错误3.计算加权平均率或合并率4.可比性,消除混杂因素的影响(可采用标准化方法或分层分析方法。
配对设计的统计检验方法-概述说明以及解释1.引言1.1 概述概述部分的内容是对整篇文章的引言进行介绍,主要包括以下几个方面:首先,概述部分应该对配对设计的统计检验方法进行简要的介绍。
我们知道,在科学研究中,经常需要对两组或多组相关数据进行比较和分析。
而配对设计作为一种特殊的实验设计方法,能够在一定程度上消除外部因素的影响,使得研究结果更加准确和可靠。
因此,配对设计的统计检验方法显得尤为重要。
其次,在文章的概述部分,我们将简要描述配对设计的原理和背景。
配对设计是指在实验中,每个实验对象或样本都与其他样本有一定的关联或配对,例如同一实验对象的两个不同时期的测量结果、对照组和实验组之间的比较等。
通过配对设计,我们可以控制相关变量的影响,提高实验的可靠性和精确性。
然后,我们将介绍配对设计的优势和应用领域。
相比传统的独立设计,配对设计能够减小样本之间的变异性,提高实验结果的效度。
除此之外,配对设计还能够减少样本量需求,提高实验的效率。
在实际应用中,配对设计被广泛应用于医学研究、心理学实验、教育评估等领域。
最后,概述部分将总结本文的主要目的和结构。
文章的目的是介绍配对设计的统计检验方法,并针对其优势和应用进行探讨。
文章结构分为引言、正文和结论三个部分。
引言部分将对配对设计的概念和原理进行解释,正文部分将详细介绍配对设计的优势和应用,结论部分将总结配对设计的统计检验方法,并展望未来的发展方向。
这样,读者能够在概述部分对文章的主要内容和结构有个整体的了解,为后续的阅读打下基础。
2. 正文2.1 配对设计的概念和原理2.2 配对设计的优势和应用3. 结论3.1 配对设计的统计检验方法总结3.2 未来发展方向1.2 文章结构文章以介绍配对设计的统计检验方法为主题,按照以下结构进行阐述:引言:在这一部分,首先对整个文章的背景和目的进行概述,介绍配对设计的研究意义和应用背景。
接着,详细叙述本文的结构,即各个章节的内容和组织方式。
假设检验的基本原理与方法假设检验是统计学中常用的一种分析方法,用于判断样本结果是否能够代表总体行为或相比之下,两个总体是否在某个方面有显著差异。
本文将介绍假设检验的基本原理和常用方法。
一、假设检验的基本原理假设检验的基本原理是建立两个互相矛盾的假设,再通过收集样本数据来验证这些假设,并基于样本数据作出统计推断。
通常情况下,我们首先提出一个原假设(H0),该假设是待验证的假设,一般认为没有变化或效应;然后提出一个备择假设(H1),该假设是与原假设相对立的假设,表示存在某种差异或效应。
在进行假设检验时,我们需要确定一个显著性水平(α),常见的有0.05和0.01。
根据样本数据计算出的统计量与临界值进行比较,若统计量的值落在拒绝域(即临界值的范围内),则拒绝原假设,接受备择假设;若统计量的值不在拒绝域内,则无法拒绝原假设,即无法证明两个总体存在显著差异或效应。
二、假设检验的常用方法1. 单样本t检验单样本t检验用于检验一个样本均值是否与某个已知的理论值相等。
它假设样本来自正态分布总体,通过计算样本均值与理论值之间的差异以及样本的标准差,得到t统计量。
然后在t分布的临界值表中查找相应的临界值,并与计算得到的t统计量进行比较,以进行假设检验。
2. 独立样本t检验独立样本t检验用于比较两个独立样本均值是否存在显著差异。
它假设两个样本来自正态分布总体,并且两个样本是独立的。
通过计算两个样本均值的差异以及两个样本的标准差,计算得到t统计量。
然后在t分布的临界值表中查找相应的临界值,并与计算得到的t统计量进行比较,进行假设检验。
3. 配对样本t检验配对样本t检验用于比较同一组个体在两个时间点或两种不同条件下的均值是否存在显著差异。
它假设配对样本来自正态分布总体,并通过计算样本均值的差异以及配对样本的标准差,计算得到t统计量。
然后在t分布的临界值表中查找相应的临界值,并与计算得到的t统计量进行比较,进行假设检验。
4. 卡方检验卡方检验用于比较观察频数与理论频数之间的差异是否显著。