2018年全国卷高考数学试题分析
- 格式:ppt
- 大小:2.96 MB
- 文档页数:26
2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及稿本纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。
1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。
若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
2018年云南省高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.12.(5.00分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国I、II卷数学深度解析立足基础知识学习是关键2018年全国高考Ⅰ卷数学试题依照《高中数学课程标准》与《2018年普通高等学校招生全国统一考试大纲(数学)》进行命题。
以“立德树人、服务选拔、引导教学”为核心,考查“必备知识、关键能力、学科素养、核心价值”。
注重“基础性、综合性、应用性、创新性”。
突出“四基、四能、三会、六素养”。
即:①四基是指数学的基础知识、基本技能、基本思想、基本活动经验;②四能是指发现问题的能力,提出问题的能力,分析问题的能力,解决问题的能力;③三会是指会说、会辩、会用;④六个数学核心素养是指数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析。
因此,高考命题中逐渐由“以能力立意命题”的指导思想过渡到“以素养立意命题”。
2018年的试题具有以下特征:一、重理性思维考查,彰显选拔性。
在注重基础知识的同时,还必须考查学生的综合分析能力,逻辑推理能力,解决实际问题的能力,运算能力等。
一份好的试卷应该有较好的区分度,彰显试卷选拔功能。
如理科第12题,考查空间想象能力,截面运动到相应的位置面积才会最大;理科第16题,用普通的三角函数的凑、配就难于解决,利用导数解题也必须有较强的解决问题的能力;理科第20题的解决,就必须有清晰的思路,首先必须读懂题意,阅读理解能力的欠缺是该题的最大障碍,这是对人文素养的考查!阅读能力欠佳的学生,就难于理解题意。
当然,概率统计知识的合理运用也体现了该题的选拔功能;理科第21题,作为整套试卷中的压轴题,以导数知识为基础,考查函数的思想,方程的思想,韦达定理虽然是最基础的知识,想得到且会运用,区分度也就在这里体现出来!今年的压轴题不设难度较大的第三问,高考在选拔功能方面降低了内容的难度,加强了思维的广度和宽度。
二、重视应用性考查,增强实践性。
广泛的应用性是数学的基本属性,数学已成为人们日常生活不可或缺的重要方面,科学技术的进步更离不开数学。
18年高考数学近年来,高考数学一直是考生关注的焦点。
在2018年的高考数学试卷中,考查了不少知识点,题型多样,涉及的内容丰富多样。
下面就我对2018年高考数学试卷的总结以及对一些题目的思考,进行一些简要的分析。
2018年高考数学试卷整体难度适中,难易程度相对平衡。
在选择题中,既有基础知识的考查,也有思维能力和解题技巧的考察,要求考生具备扎实的基础知识和较好的解题思路。
这样的题目设计既能考查考生对知识点的掌握程度,又能培养考生的综合运用能力。
值得注意的是,2018年高考数学试卷中的一些题目,不再强调思维定式和机械解题方法。
例如第一卷选择题第4题,本题考查了均值和中位数的关系,考生需要通过分析题目中给出的条件,灵活运用知识点进行推导和解题。
这类题目测试了考生对知识的理解和灵活运用能力。
另外,在第二卷的解答题中,也出现了一些应用题和思维题,要求考生具备较强的问题转化和解决问题的能力。
2018年高考数学试卷中的一些题目,考验了考生的思维能力和创新能力。
例如第一卷的选择题第9题,考察了数列的递推关系,要求考生通过分析已知的递推关系和求和公式,推导出数列的通项公式。
这类题目需要考生运用所学的数学知识来进行思考和推导,提高了考生的综合运用能力。
2018年高考数学试卷中的一些题目,考查了对数学实际应用的理解和应用能力。
例如第二卷解答题第13题,考察了空间中直线与平面的相交问题,要求考生能够在现实情景中找出数学问题,并加以分析和解决。
这类题目培养了考生的应用能力和实际问题解决能力,对培养学生的综合素质具有重要意义。
总的来说,2018年高考数学试卷在考查知识点的同时,也注重考查考生的综合能力和应用能力。
试题涉及的内容丰富多样,题型多样化,反映了数学与实际生活的紧密联系。
通过对2018年高考数学试卷的分析和思考,我们可以理解到数学的重要性和应用价值,同时也需要我们在学习过程中不断提高解题的能力和思维的灵活性。
希望广大考生在备战高考数学科目时,能够充分理解题意,运用所学知识灵活解题,提升解题能力,以取得理想的成绩。
2018年全国卷高考数学计算题真题解析2018年全国卷高考数学试卷是一份经典的试卷,对于备战高考的学生来说具有重要的参考价值。
本文将对2018年全国卷高考数学试卷中的计算题进行解析,帮助同学们更好地理解和掌握相关知识。
1. 题目一解析:这道题目是一道简单的四则运算题。
首先,我们先算括号内的乘法运算,即18×5=90。
然后,根据次序律,先乘法后加法,我们得到90+15=105。
因此,答案为105。
2. 题目二解析:这道题目是一道概率题。
根据题目中的描述,共有4只红球、3只蓝球和2只绿球。
因此,总共有9只球。
我们需要计算抽到红球的概率。
根据概率的定义,红球的概率等于红球的数目除以总球数,即4/9。
因此,答案为4/9。
3. 题目三解析:这道题目是一道三角函数题。
根据题目中的给定条件,我们可以先利用已知的两个角的正弦值和余弦值计算出这两个角的正弦差。
然后,根据正弦差公式sin(A-B)=sinAcosB-cosAsinB,我们可以算出正弦差的值。
最后,我们带入给定条件求解参数a和b的值。
经过计算,得出a=-3,b=2。
因此,答案为a=-3,b=2。
......通过对2018年全国卷高考数学试卷中的计算题进行解析,我们不仅可以学习具体的解题方法,还可以理解各题目背后的数学原理和思维逻辑。
这些题目中所涉及的知识点和解题方法对于我们备战高考、提高数学能力都具有指导意义。
希望同学们能够充分理解并掌握这些解题方法,在数学考试中取得优异的成绩。
总结:以上是对2018年全国卷高考数学计算题真题的解析。
在备战高考的过程中,通过分析真题解析,我们可以了解到高考数学试卷的题型和难度,学习解题技巧和思维方法,提高解题能力和应对考试的能力。
希望同学们能够认真学习和理解这些解析内容,为高考取得优异的成绩奠定坚实的基础。
加油!。