圆锥曲线基本知识-椭圆
- 格式:ppt
- 大小:427.00 KB
- 文档页数:21
圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。
早在两千多年前,古希腊数学家对它们已经很熟悉了。
古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。
阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数)直角坐标:x^2+y^2=r^2 (r 为半径)3)椭圆参数方程:x=X+acosθ y=Y+bsinθ (θ为参数)直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 14)双曲线参数方程:x=X+asecθ y=Y+btanθ (θ为参数)直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴)y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)5)抛物线参数方程:x=2pt^2 y=2pt (t为参数)直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 )x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。
圆锥曲线——椭圆①基础知识:一、 第一定义:平面内 的轨迹叫椭圆。
其中 叫做椭圆的焦点(F 1 F 2)。
叫做椭圆的焦距(|F 1 F 2|)。
★思考:|PF 1|+|PF 2|=|F1F2|时的轨迹是什么?|PF 1|+|PF 2|<|F1F2|时呢?二、 第二定义:平面内 的轨迹叫椭圆。
其中定直线为: 定点为: 定值为: 范围:(0<e <1)。
三、标准方程。
椭圆的标准方程为: 或 (a>b>0)。
注意:标准方程说表示的椭圆及中心在坐标原点、长短轴在坐标轴上的椭圆。
如何判断焦点所在坐标轴:看分母、焦点在分母大的那一轴。
例如:x 24+y 23=1 ,两个分母分别为:4、3 。
∵4>3 又∵4是X 项的分母 ∴焦点在X 轴上。
四、参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数)四、椭圆的简单几何性质。
①、范围。
以焦点在X 轴的椭圆为例:∵ x 2a 2+y 2b 2=1(a >b >0) ∴x 2a 2≤1 y 2b2≤1 ∴|x|≤a |y|≤b 即:-a ≤x ≤a -b ≤y ≤b②、对称性。
关于X 、Y 轴成轴对称。
关于原点成中心对称。
③、顶点。
坐标轴和椭圆的四个交点:A 1 、A 2 、B 1 、B 2。
长轴:|A 1A 2| 短轴:|B 1B 2|连接B 、F 。
构成RT △OBF |OB|=b |OF|=c |BF|=a ∴ a 2=b 2+c 2(重要的性质) ④、离心率。
椭圆的离心率:e=ca(0<e <1) e 越大越扁 e 越小越近圆。
⑤、扩展。
通径:过焦点且垂直于长轴。
焦半径:椭圆上一点到椭圆焦点的连线。
焦半径公式:若M (x 0,y 0) |MF 1|=a+ex 0 |MF 2|=a-ex 0★规律及其解题方法提炼:1.椭圆中任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .2.过焦点弦的所有弦长中,垂直于长轴的弦是最短的弦,而且它的长为 把这个弦叫椭圆的通径.3.求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).BOF4.从一焦点发出的光线,经过椭圆(面)的反射,反射光线必经过椭圆的另一焦点.5.过椭圆外一点求椭圆的切线,一般应用判别式Δ=0求斜率,也可设切点后求导数(斜率).6.求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:(1)中心是否在原点,(2)对称轴是否为坐标轴.★解题技巧①、求椭圆的标准方程。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
高中圆锥曲线知识点总结全面经典高中数学椭圆的知识总结:椭圆的定义:椭圆是平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2)时,动点P的轨迹。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。
需要注意的是,若PF1+PF2=F1F2,则动点P的轨迹为线段F1F2;若PF1+PF2<F1F2,则动点P的轨迹无图形。
椭圆的参数方程:当焦点在x轴上时,椭圆的参数方程为{x=a*cosθ。
y=b*sinθ},其中θ为参数;当焦点在y轴上时,椭圆的参数方程为{x=a*sinθ。
y=b*cosθ}。
椭圆的几何性质:(1)椭圆的范围为- a≤x≤a。
- b≤y≤b;(2)椭圆的焦点为两个焦点(±c,0);(3)椭圆具有对称性,有两条对称轴x=0,y=0,一个对称中心(0,0),四个顶点(±a,0),(0,±b),其中长轴长为2a,短轴长为2b;(4)椭圆的离心率为e=c/a,椭圆的形状由离心率e决定,e越小,椭圆越圆;e越大,椭圆越扁。
点与椭圆的位置关系:(1)点P(x,y)在椭圆外部当且仅当a²+b²1.直线与圆锥曲线的位置关系:(1)当Δ>0时,直线与椭圆相交;(2)当Δ=0时,直线与椭圆相切;(3)当Δ<0时,直线与椭圆相离。
例如,直线y-kx-1=0与椭圆5x²+m²=1恒有公共点,当且仅当m²≤5/(1+k²)。
焦点三角形:椭圆上的一点与两个焦点所构成的三角形。
弦长公式:若直线y=kx+b与圆锥曲线相交于两点A、B,且x1,x2分别为A、B的横坐标,则AB=√(1+k²(x1-x2)²);若y1,y2分别为A、B的纵坐标,则AB=√(1+(y1-y2)²/k²);若弦AB所在直线方程设为x=ky+b,则AB=√(1+k²(y1-y2)²)。
圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。
圆锥曲线知识点总结(一)——椭圆2、典型题型题型1:椭圆的定义的应用例1、命题甲:动点P 到两定点A 、B 的距离之和常数),0(2 a a PB PA ;命题乙:P 点轨迹是椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分且必要条件 D 、既不充分也不必要条件 规律总结:变式训练1、已知两定点21F F 、,且1021 F F ,动点P 分别满足下列条件时的轨迹是什么?(1)1021 PF PF (2)1621 PF PF (3)621 PF PF变式训练2、已知动圆P 过定点A (-3,0),并且在定圆B :64)3(22y x 的内部与定圆相切,则动圆的圆心P 的轨迹是( )A 、线段B 、直线C 、圆D 、椭圆变式训练3、已知椭圆1162522 y x 上一点P 到某一焦点的距离为3,则点P 到另一个焦点的距离为 。
变式训练4、椭圆1162522 y x 的左右焦点分别为21F F 、,经过右焦点的直线交椭圆于A 、B 两点,则三角形AB 1F 的周长为 。
题型2:求椭圆的标准方程(方法 ) 例2、求满足下列条件下的椭圆的标准方程(1)满足方程22)2(y x +22)2(y x =10的点的轨迹。
(2)以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0);(3)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);(4)焦点在y 轴上,且经过两个点(0,2)和(1,0);(5)焦点在坐标轴上,且经过点A (3,-2)和B (-23,1);(6)与椭圆92x +42y =36有共同焦点,且经过点(2,-3);(7)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8。
规律与方法:题型3:椭圆标准方程的形式特征例3、设曲线方程为15222 my m x ,求曲线为椭圆时,m 的取值范围是 。
变式训练1:已知方程192522 m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是 。
圆锥曲线与方程基本知识概要2.1 椭 圆一.椭圆及其标准方程1.椭圆的定义(第一定义):平面内与两定点F 1,F 2的距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
2.标准方程:①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±C ,0)②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±C )这里椭圆 c ²=a²-b²注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b(2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴和短轴,它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比a c 称为椭圆的离心率,用e 表示,即e=ac(0<e <1)因为a >c >0,所以0<e <1。