二次根式 培优专题(优.选)
- 格式:doc
- 大小:100.50 KB
- 文档页数:5
二次根式综合性大题训练(培优)1.阅读材料:康康在学习二次根式后、发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的康康进行了以下探索:设a+b√2=(m+n√2)2(其中a、b、m、n均为正整数),则有a+b√2=m2+2n2+2mn√2(有理数和无理数分别对应相等),∴a=m2+2n2,b=2mn,这样康康就找到了一种把式子a+b√2化为平方式的方法.请你仿照康康的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b√3=(c+d√3)2,用含c、d的式子分别表示a、b,得:a=,b=;(2)若7−4√3=(e−f√3)2,且e、f均为正整数,试化简:7−4√3;(3)化简:√7+√21−√80.2.观察下列各式:①√1+13=2√13,②√2+14=3√14;③√3+15=4√15,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.3.观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:√5049+164(仿照上式写出过程)4.小明在解决问题:已知a=2+√3,求2a2﹣8a+1的值.他是这样分析与解的:∵a=12+√3=2−√3(2+√3)(2−√3)=2−√3,∴a−2=−√3,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简√3+1+√5+√3+√7+√5+⋯+√121+√119.(2)若a=√2−1.求:①求3a2﹣6a+1的值.②直接写出代数式的值a3﹣3a2+a+1=;2a2−5a+1a+2=.5.先阅读下列的解答过程,然后作答:形如√m±2√n的化简,只要我们找到两个数a,b使a+b=m,ab=n,这样(√a)2+(√b)2=m,√a•√b=√n,那么便有√m±2√n=√(√a±√b)2=√a±√b(a>b),例如:化简√7+4√3.解:首先把√7+4√3化为√7+2√12,这里m=7,n=12;由于4+3=7,4×3=12,即(√4)2+(√3)2=7,√4•√3=√12,∴√7+4√3=√7+2√12=√(√4)2+(√3)2=2+√3.由上述例题的方法化简:(1)√13−2√42;(2)√7−√40;(3)√2−√3.6.细心观察下图,认真分析各式,然后解答下列问题:OA 22=(√1)2+1=2,S 1=√12(S 1是Rt △OA 1A 2的面积);OA 32=(√2)2+1=3,S 2=√22(S 2是Rt △OA 2A 3的面积); OA 42=(√3)2+1=4,S 3=√32(S 3是Rt △OA 3A 4的面积);…(1)请用含有n (n 为正整数)的式子填空:OA n 2= ,S n = ; (2)求1S 1+S 2+1S 2+S 3+1S 3+S 4+⋯+1S 99+S 100的值;(3)在线段OA 1、OA 2、OA 3、…、OA 2022中,长度为正整数的线段共有 条.7.已知a ,b 均为正整数.我们把满足{x =2a +3b y =3a +2b 的点P (x ,y )称为幸福点.(1)下列四个点中为幸福点的是 ; P 1(5,5);P 2(6,6);P 3(7,7);P 4(8,8) (2)若点P (20,t )是一个幸福点,求t 的值;(3)已知点P (√m +1,√m −1)是一个幸福点,则存在正整数a ,b 满足{√m +1=2a +3b √m −1=3a +2b ,试问是否存在实数k 的值使得点P 和点Q (12a +k ,12b ﹣k )到x 轴的距离相等,且到y 轴的距离也相等?若存在,求出k 的值;若不存在,请说明理由.8.阅读下列材料,并解答问题:①√2+√4=√4−√22=2−√22;②√4+√6=√6−√42=√6−22;③√6+√8=√8−√62=2√2−√62;④√8+√10=√10−√82=√10−2√22;……(1)直接写出第⑤个等式;(2)用含n(n为正整数)的等式表示你探索的规律;(3)利用你探索的规律,求√2+√4+√4+√6+√6+√8+⋯+√198+√200的值.9.一些含根号的式子可以写成另一个式子的平方,如3+2√2=(1+√2)2.设a+b√2=(m+n√2)2(其中a、b、m、n均为正整数),则有a+b√2=m2+2n2+2mn√2,∴a=m2+2n2,b=2mn.这样可以把部分a+b√2的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b√3=(m+n√3)2,用含m、n的式子分别表示a、b,得:a=,b=.(2)利用所探索的结论,找一组正整数a、b、m、n填空:+√5=(+√5)2;(3)化简√16−6√7−√11+4√710.数学阅读:古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a、b、c,则这个三角形的面积为S=√p(p−a)(p−b)(p−c),其中p=1 2(a+b+c).这个公式称为“海伦公式”.数学应用:如图1,在△ABC中,已知AB=9,AC=8,BC=7.(1)请运用海伦公式求△ABC的面积;(2)设AB边上的高为h1,AC边上的高h2,求h1+h2的值;(3)如图2,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.11.阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上如√5、√23、√3+1一样的式子,其实我们还可以将其进一步化简:√5=√5√5×√5=35√5;(Ⅰ)√2 3=√2×33×3=√63(Ⅱ)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−12=√3−1.(Ⅲ)以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:√3+1=√3+1=√3)22√3+1=√3+1)(√3−1)√3+1=√3−1.(Ⅳ)(1)请用不同的方法化简√5+√3.①参照(Ⅲ)式得√5+√3=.②参照(Ⅳ)式得√5+√3=.(2)化简:√3+1+√5+√3+√7+√5+⋯+√2n+1+√2n−1.12.观察下列等式:①√2−1=√2+1;②√3−√2=√3+√2;③√4−√3=√4+√3;…,(1)请用字母表示你所发现的律:即√n+1+√n=.(n为正整数)(2)化简计算:1+√2+√2+√3+√3+√4+⋯+√2016+√2017.13.观察下列各式:√1+112+122=1+11−12=112;√1+122+132=1+12−13=116;√1+132+142=1+13−14=1112,…请你根据以上三个等式提供的信息解答下列问题①猜想:√1+172+182==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算√8281+1100.14.阅读下列解题过程:√2+1=√2−1)(√2+1)×(√2−1)=√2−1(√2)2−12=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√2.请回答下列问题:(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.①√7+√6=;②√n+√n−1=;(2)应用:求√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9的值;(3)拓广:√3−1−√5−√3+√7−√5−√9−√7=.15.观察图形,认真分析下列各式,然后解答问题:OA1=1OA2=√12+12=√2;S1=12×1×1=12OA3=√2+12=√3;S2=12×√2×1=√22OA4=√3+12=√4;S3=12×√3×1=√32(1)推算出OA5=;(2)若一个三角形的面积是3,则它是第几个三角形?(3)用含n(n是正整数)的等式表达上述面积变化规律,即S n=;(4)求出s12+s22+s32+⋯⋯+s1002的值.。
二次根式培优题1. 若02=+a a ,则a 的取值范围是___________.2. 若代数式1681222+-++-x x x x 的结果是5—2x ,则x 的取值范围是__________.3. 已知ABC ∆的边长为c b a 、、(c b a 、、为整数),且满足04412=+-+-b b a ,求ABC ∆的周长.4. 若x 满足23)31(2x x --=-,则x 的整数解的个数有_____个.5. 在实数范围内分解因式: (1) 32-a ; (2)742-a ; (3))0,0(2>>++y x y xy x 。
6. 已知实数a 满足()a a a =-+-220072006,那么2006-a 的值是_______.7. 若m 满足等式y x y x m y x m y x --⋅+-=-++--+19919932253,试确定m 的值.8. 要使代数式2113----x x 有意义,实数x 的取值范围是_______________。
9. 比较大小:25 , 32 , 23---.10.化简:(1) )0(48342>+-y y y ;(2)()()()0222222>--+ab b a b a(2)161213b -; (4)23322-; (5)b a 3--;(6) )0(12122>>+-b a bab a a ;(7)32416++⨯。
11。
把下列各式中根号外的因式移到根式内:(1) x y xy -; (2)aa --⋅-11)1(。
12。
计算:(1)3232245-;(2)3612-;(3))5131(15-÷(3)()()201220112323-⨯+;(4)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212;(5)()()()()13132131322+--++-(6) ()()632632+--+(7) ba b a aba b a a a +----;(8)()()233623346++++13。
数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列各式中,正确的是( )A 2=±B =C 3=-D 2=5.下列计算正确的是( )A =B 3=C =D .21= 6.下列式子中,是二次根式的是( )A B CD .x7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.已知a ( )A .0B .3C .D .99.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .912.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.15.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.)230m m --≤,若整数a 满足52m a +=a =__________.18.()()22223310x y x y ++-+=,则222516x y +=______.19.已知4a2(3)|2|a a +--=_____.20.化简:3222=_____.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+(211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子. 试题解析:(1)2211145++=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B.此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B===,故该选项错误;C3D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A是二次根式,符合题意;B是三次根式,不合题意;C、当x<0D、x属于整式,不合题意;故选:A.【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.16.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.18.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。
专题01 二次根式的混合运算(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.53一.填空题(共12小题,满分24分,每小题2分)1.(2分)(2023•原平市模拟)计算的结果为 7 .解:===7,故答案为:7.2.(2分)(2023春•嘉定区期末)计算:= .解:原式=2﹣+3=.故答案为:.3.(2分)(2023春•莱州市期中)计算:×= 3﹣2 .解:原式=[(3+2)(3﹣2)]2012•(3﹣2)=(9﹣8)2012•(3﹣2)=3﹣2.故答案为:3﹣2.4.(2分)(2023春•西塞山区期中)已知实数a在数轴上的位置如图所示,则化简的结果为 a+1 .解:由实数a在数轴上的位置可得0<a<1,所以=a+1.故答案为:a+1.5.(2分)(2022•市南区三模)(温州)计算:+﹣(2+)0= 3 解:+﹣(2+)0=2+2+﹣1=3+1.6.(2分)(2022春•钦北区校级期中)已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于 ﹣9 .解:由m=1+,得(m﹣1)2=2,即m2﹣2m=1,故7m2﹣14m=7,同理,得3n2﹣6n=3,代入已知等式,得(7+a)(3﹣7)=8,解得a=﹣9.7.(2分)(2023•封丘县校级开学)计算:= .解:原式=3﹣=3﹣=2.故答案为:2.8.(2分)(2023春•威县校级期末)嘉淇想通过“由特殊到一般”的方法探究下面二次根式的运算规律,下面是他的探究过程,请补充完整.(1)具体运算,发现规律.式子1:;式子2:;式子3:;式子4: =4(写===4也可) ;(2)观察、归纳,得出猜想.若n为正整数,则式子n为: =n .解:(1)根据规律可得,=4.故答案为:=4(写===4也可);(2)运算规律为:=n.故答案为:=n.9.(2分)(2023春•邗江区期中)“黑白双雄,纵横江湖;双剑合壁,天下无敌”.其意指两个人合在一起,取长补短,威力无比.在二次根式中有这样相辅相成的例子:,它们的积是有理数,我们说这两个二次根式互为有理化因式,在进行二次根式计算时利用有理化因式可以去掉根号,令(n为非负数),则;.则= 2023﹣ .解:=2023×(+++•••+)=2023×(+++•••+)=2023×(1﹣+﹣+﹣+﹣)=2023×(1﹣)=2023﹣.故答案为:2023﹣.10.(2分)(2023春•铁岭县期中)计算:(+1)2022(﹣1)2023= ﹣1 .解:原式=[(+1)(﹣1)]2022×(﹣1)=(2﹣1)2022×(﹣1)=﹣1.故答案为:﹣1.11.(2分)(2023春•高邮市期末)若,则bc的值为 ﹣3 .解:∵a﹣6=(b+c)2=b2+2bc+2c2=b2+2c2+2bc,∴2bc=﹣6,∴bc=﹣3.故答案为:﹣3.12.(2分)(2023春•东丽区期末)计算:(+2)(﹣2)= 3 .解:原式=()2﹣22=7﹣4=3,故答案为:3.二.选择题(共6小题,满分12分,每小题2分)13.(2分)(2023春•通河县期末)下列计算中,结果错误的是( )A.B.C.D.解:A、与不属于同类二次根式,不能运算,故A符合题意;B、5﹣2=3,故B不符合题意;C、÷=,故C不符合题意;D、(﹣)2=2,故D不符合题意;故选:A.14.(2分)(2022秋•昌图县期末)下列运算中,正确的是( )A.=B.=4C.2=2D.=解:A、与不属于同类二次根式,不能运算,故A不符合题意;B、==2,错误,故B不符合题意;C、2﹣=,错误,故C不符合题意;D、,故C符合题意.故选:D.15.(2分)(2022秋•安化县期末)下列各式不成立的是( )A.B.=C.D.解:A、﹣=3﹣=,A选项成立,不符合题意;B、=÷,B选项成立,不符合题意;C、==,C选项不成立,符合题意;D、==﹣,D选项成立,不符合题意;故选:C.16.(2分)(2022秋•绥中县校级期末)下列运算正确的是( )①,②=3,③,④=2,⑤=﹣3,⑥=3.A.1个B.2个C.3个D.4个解:①不是同类二次根式,不能加减,故①运算错误;②==3,故②运算正确;③=,故③运算正确;④÷===2,故④运算正确;⑤=|﹣3|=3,故⑤运算错误;⑥=3,故⑥运算错误.故选:C.17.(2分)(2022秋•方城县期中)下列计算正确的是( )A.2+3=5B.2×3=6C.=﹣6D.÷(+)=+解:A.2和3不能合并同类二次根式,故本选项不符合题意;B.2×3=(2×3)=6,故本选项符合题意;C.=6,故本选项不符合题意;D.÷(+)====,故本选项不符合题意;故选:B.18.(2分)(2022秋•长安区期中)下列计算正确的是( )A.2+3=5B.2×3=6C.5﹣2=3D.÷(+)=+解:A.2和3不能合并同类二次根式,故本选项不符合题意;B.2=(2×3)=6,故本选项符合题意;C.5和﹣2不能合并同类二次根式,故本选项不符合题意;D.÷(+)==,故本选项不符合题意;故选:B.三.简答题(共6小题,满分24分)19.(4分)(2023•江北区开学)计算下列各式:(1);(2).解:(1)原式=3++3﹣=3+;(2)原式=3﹣4+4+2﹣+=7﹣2﹣+.20.(4分)(2022秋•宝山区期末)计算:.解:原式=(4)2﹣72++=48﹣49++=﹣1++.21.(4分)(2023春•永顺县期末)计算:(1);(2).解:(1)原式=4﹣2+=4﹣2+=4﹣2+4=2+4;(2)原式=2+5﹣=6.22.(4分)(2023春•龙华区校级月考)(1)计算:.(2)解不等式组:.解:(1),=,=3+1﹣2,=2;(2)解不等式2+x<6﹣3x,得x<1,解不等式,得x≤4,∴不等式组的解集为:x<1.23.(4分)(2023•和平区校级开学)计算:(1);(2).解:(1)=(3﹣2)×=×=3;(2)=3+﹣5=﹣.24.(4分)(2023春•新宾县期末)计算:(1);(2).解:(1)原式=﹣1+3﹣1+=﹣1+3﹣1+2=3;(2)原式=3﹣(2﹣)+3﹣1=3﹣2++3﹣1=4.四.解答题(共6小题,满分40分)25.(6分)(2023春•雄县期中)嘉琪同学计算:,部分解题步骤如下.解:.(1)在以上解题步骤中用到了 BD (从下面选项中选出两个).A.等式的基本性质B.二次根式的化简C.二次根式的乘法法则D.通分(2)算到这里,他发现算式好像变得更复杂了,请用一种简便的方法解答此题.解:(1)观察可知把变为用到了二次根式的化简,然后把变为用到了通分,故答案为:BD;(2)===.26.(6分)(2023春•禹州市期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简= ,= ,= ﹣ .(2)化简:.解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.27.(6分)(2023春•铁西区期中)在进行二次根式的化简时,我们有时会碰到形如,,这样的式子,其实我们还可以将其进一步化简:==;==;===.像这样,把代数中分母化为有理数过程叫做分母有理化.化简:(1)(2)(n为正整数);(3)求的值.解:(1)==﹣.(2)==﹣;(3)=+++...+=﹣1+﹣+﹣+...+﹣=﹣1.=2﹣1.28.(6分)(2023春•绥棱县期末)在进行二次根式的化简与运算时,如遇到,,这样的式子,还需做进一步的化简,这种方法叫分母有理化.,①,②,③参照③式方法化简:.解:====.29.(8分)(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①= ,②= ;(2)计算:.解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.30.(8分)(2022春•开州区期中)我们知道平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何将双重二次根式(a>0,b>0,a±2>0)化简呢?如能找到两个数m,n(m>0,n>0),使得()2+()2=a即m+n=a,且使=即m•n=b,那么=|±|,双重二次根式得以化简;例如化简:;∵3=1+2且2=1×2,∴3+2=()2+()2+2×∴=1+由此对于任意一个二次根式只要可以将其化成的形式,且能找到m,n(m>0,n>0)使得m+n =a,且m•n=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1)填空:= ﹣ ;= + ;(2)化简:①②(3)计算:+.解:(1)填空:=﹣;=+;(2)①==+;②==﹣;(3)+=+=+=+=.故答案为﹣;+。
一、选择题1.下列二次根式中是最简二次根式的为( ) ABCD2.a 的值可能是( ) A .2-B .2C .32D .83.已知x 1x 2,则x₁²+x₂²等于( ) A .8 B .9C .10D .114.化简) ABCD5.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .536.已知a 满足2018a -a ,则a -2 0182=( ) A .0B .1C .2 018D .2 0197.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()123A .BC .D8.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .10.已知,5x y +=-,3xy =则y x x y x y+的结果是( ) A .23B .23-C .32D .32-二、填空题11.比较实数的大小:(1)5?-______3- ;(2)514-_______12 12.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.15.观察下列等式:第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________16.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行13 154173219254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是(用含 n 的代数式表示). 17.把 18.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____. 19.3y =,则2xy 的值为__________.20.下列各式:是最简二次根式的是:_____(填序号)三、解答题21.计算及解方程组: (1-1-)(2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可;(2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的: 因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题: (1)计算:= - .(2)…(3)若a ,求4a 2-8a +1的值. 【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.23.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.26.一样的式子,其实我3====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=.考点:分母有理化.27.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4 =+4 =-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D =故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2. 故选:B . 【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.3.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.4.C解析:C 【解析】根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x. 故选C .5.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0, a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数,∴x >0,y <0.将x=-y 代入原式得:原式=()()()()2222313x x x x x x x x +---=--+-. 故选B .【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.6.D解析:D【解析】【分析】根据二次根式的被开数的非负性,求的a 的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可.【详解】解:等式2018a -=a 成立,则a ≥2019,∴,,∴a-2019=20182,∴a-20182=2019.故选D .【点睛】本题主要考查的是二次根式有意义的条件,求得a 的取值范围是解题的关键.7.B解析:B【解析】【分析】由图形可知,第n(n =案.【详解】由图形可知,第n (n=∴第8=, 则第9行从左至右第5=, 故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为8.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab >0,解得a >0,b >0,因此可知A (a ,b )在第一象限.故选A9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x <0,y <0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可. 【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x <0,y <0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=∴304<< 12 故答案为:< ,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 12.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x −a)=(y+b)(y −b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 13.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.14.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换.15.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键. 18.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.19.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】② ③ 是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,③4故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
《二次根式》培优习题训练 【知识要点】1.二次根式的定义:形如的式子叫二次根式,其中 叫被开方数,只有当是一个非负数时,才有意义.2. ()()a aa 20=≥.3. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系.(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数.(3)a 2和()a 2的运算结果都是非负的.4、性质:(1)非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.(2).()()a aa 20=≥性质既可正用,也可反用, 反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:a a a =≥()()20(3) a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.5、(1)最简二次根式:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.(2)同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
6、(1)分母有理化:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们 的积不含有二次根式,就说这两个代数式互为有理化因式。
有 理化因式确定方法如下:①单项二次根式:a =来确定,如:,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a +与a -,,分别互为有理化因式。
(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式 7、二次根式的运算:(1)二次根式的乘法法则:两个因式的算术平方根的积, 等于这两个因式积的算术平方根。
二次根式培优试题一、选择题(本大题共32小题)1.下列四个数:-3,-,-π,-1,其中最小的数是()A.-πB.-3C.-1D.-2.已知整数m满足m<<m+1,则m的值为()A.4B.5C.6D.73.在实数,3.1415926,0.123123123…,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个4.实数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0B.a-b>0C.<0D.|a|•|b|<05.如果m>0,n<0,m<|n|,那么m,n,-m,-n的大小关系是()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m6.已知无理数x=+2的小数部分是y,则xy的值是()A.1B.-1C.2D.-27.下列计算正确的是()A.=2B.3+=3C.+=D.+=38.化简的值为()A.4B.-4C.±4D.29.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.-1B.-1C.2D.10.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16-8B.-12+8C.8-4D.4-211.实数的平方根()A.3B.-3C.±3D.±12.若=x-5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>513.若的小数部分为a,的小数部分为b,则a+b的值为()A.0B.1C.-1D.214.实数a、b在数轴上的位置如图所示,则化简|a-b|-|a|的结果为()A.-2a+bB.-bC.-2a-bD.b15.一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A.1B.-1C.2D.-216.已知一个数的两个平方根分别是a+3与2a-15,这个数的值为( )A.4B.±7C.-7D.4917.若3a-22和2a-3是实数m的平方根,则的值为()A.7B.5C.25D.1918.下列二次根式中,与是同类二次根式的是()A. B. C. D.19.的算术平方根是( )A.2B.±2C.D.±20.当0<x<3时,化简-的正确结果是()A.4B.-4C.2-2xD.2x-221.已知y=,则的值为()A. B.- C. D.-22.已知x=,y=,则x2+xy+y2的值为()A.16B.20C.2D.423.计算(+1)2016(-1)2017的结果是()A.-1B.1C.+1D.324.下面的推导中开始出错的步骤是()①2==,②-2==,所以③2=-2,④2=-2.A.①B.②C.③D.④25.已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.726.若,则x2015+y2016的值()A.0B.1C.-1D.227.下列说法错误的是( )A. B.-3 C.2的平方根是 D.28.如图,数轴上A,B两点表示的数分别为-1和,点B关于点A的对称点为C,则点C所表示的数为()A.-2-B.-1-C.-2+D.1+29.计算的结果是( )A.6B.C.2D.30.在下列说法中正确的有( )①两个无理数的和与差一定是无理数;②两个无理数的积与商一定是无理数;③一个无理数与一个有理数的和仍是无理数;④一个无理数与一个有理数的积仍是无理数.A.0个B.1个C.2个D.3个31.下列计算正确的是()A. B. C. D.32.把a根号外的因式移入根号内的结果是()A. B. C. D.二、填空题(本大题共17小题)33.的相反数是 ______ ,绝对值是 ______ .34.的立方根是 ______ .35.已知a,b为两个连续的整数,且a<b,则a+b= ______ .36.已知:≈44.91,≈14.0,则≈ ______ .37.一个实数的两个平方根分别是a+2和2a-5,则a= ______ .38.若,则= ______ .39.如果是整数,则正整数n的最小值是 ______ .40.定义新运算“☆”:a☆b=,则2☆(3☆5)= ______ .41.若的平方根为±3,则a= ______ .42.已知|a-2007|+=a,则a-20072的值是 ______ .43.已知某数的两个平方根分别是a+3与2a-15,则a= ______ ,这个数= ______ .44.已知a、b为实数,且ab≠0,那么-= ______ .45.定义运算“@”的运算法则为:x@y=,则(2@6)@8= ______ .46.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[-1]= ______ .47.观察下面的各个等式:=-1,,,,…从上述等式中找出规律,并用这一规律计算:()(+1)=____________.48.计算:+…+= ______ .49.若实数a、b满足(a-5)2+=0,则a+b=____________.三、计算题(本大题共13小题)50.计算:(1)2-6+3(2)-+; (3)×÷(4)+2-(-)(5)-+-|-| (6)3÷+(-1)2 (7) (8)(3-4)÷ (9) |-|+|-2|-|-1| (10)+-+(-1)2016 (11)(2-3)2-(-)(+)51. 解方程:(1)(x-2)2=25. (2) 27(x+1)3=125四、解答题(本大题共8小题,共64.0分)52.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解的:∵a===2-∴a-2=-∴(a-2)2=3,a2-4a+4=3∴a2-4a=-1∴2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2-8a+1的值.53.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:==;===-1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====-1.请任用其中一种方法化简:①;②.54.若的整数部分为a,小数部分为b,求a2+b-的值.55.如图,化简.56.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.。
二次根式竞赛培优题(含解析)一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.39940002.计算:=()A.B.C.D.3.的结果是()A.B.C.D.4.的值是()A.B.C.1D.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为.7.化简=.8.化简.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为.10.方程的解是x=11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=.12.计算:=(其中a>0)13.的值为.14.已知:对于正整数n,有,若某个正整数k满足,则k=.15.若n为整数,且是自然数,则n=.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为.17.若u、v满足v=,则u2﹣uv+v2=.18.已知a为实数,且与都是整数,则a的值是.19.使得++=1的一组正整数(a,b,c)为:.20.计算﹣20062的结果是.21.设=.22.若,,则x6+y6的值是.23.当时,的值为.24.已知,,则k=.25.当1≤x≤2时,经化简等于.26.计算=.27.已知x=,那么+1的值是.28.化简:,得到.29.=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).二次根式竞赛培优题(含解析)参考答案与试题解析一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.3994000【分析】设1998=a,把被开方数变形后,利用多项式的乘法法则计算后,加上a2再减去a2,前三项结合提取a2,剩下的三项利用完全平方公式化简,接着三项合并后提取2a,整体再利用完全平方公式化简,从而得到被开方数为一个数的完全平方,利用化简公式=|a|及a大于0即可得到最后结果.【解答】解:设1998=a,则1997×1998×1999×2000+1=(a﹣1)a(a+1)(a+2)+1=a4+2a3+a2﹣a2﹣a2﹣2a+1=a2(a+1)2﹣2a(a+1)+1=[a(a+1)﹣1]2,所以==1998×1999﹣1=3994001.故选:A.【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的化简公式=|a|的运用.2.计算:=()A.B.C.D.【分析】根据每个加数的特点,推出一般规律为,将所得式子化简,分别取n=1,2,3,…,40,寻找抵消规律,得出结论.【解答】解:∵=()=()=()=(﹣)∴分别取n=1,2,3, (40)原式=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)=.故选:B.【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.3.的结果是()A.B.C.D.【分析】把每个加数分母有理化,然后通分计算即可.【解答】解:=()=.故选:D.【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.4.的值是()A.B.C.1D.【分析】认真观察式子的特点,总结规律,可发现,,,据此作答.【解答】解:由题意可知第k项是∴原式=(++=1﹣=1﹣=.故选:B.【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律答题.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6【分析】找到1000<5×x2<2000中符合x的整数值即可得出答案.【解答】解:由题意得:与=20,是同类二次根的被开方数一定为5,由此及题意可:1000<5×x2<2000,x可取15、16、17、18、19,共5个.故选:C.【点评】本题考查同类二次根式的知识,有一定难度,关键是根据同类二次根式的形式得出的同类二次根式应该满足.二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为3998000.【分析】由等式可知=x1,=x2,…解得x1=x2=x3=…=x1999=2,由此代入求得数值即可.【解答】解:∵,∴=x1,=x2,…∴x1=x2=x3=…=x1999=2,∴x1+2x2+3x3+…+1999x1999=2×(1+2+3+ (1999)=2×(1999+1)×1999÷2=3998000.故答案为:3998000.【点评】此题考查二次根式的化简求值,解答此题的关键是找出对应关系,求出x1、x2、x3、…、x1999的值.7.化简=2011.【分析】先根据平方差公式和二次根式的性质得到=,然后根据同样的方法由内到外依次化简即可得到答案.【解答】解:∵=,∴原式=======2011.故答案为2011.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了平方差公式.8.化简后2.【分析】由于===﹣1,其他根式也可以进行同样的化简,然后合并同类二次根式即可求解.【解答】解:=﹣1+﹣++++++=3﹣1=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,解题的关键是利用完全平方公式化简二次根式从而达到化简题目的目的.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为10.【分析】利用不等式≤,结合S1+S2+S3+…+S n >10,解不等式即可.【解答】解:∵S i表示第i个三角形的面积,由不等式≤n,得≤n=n,而S1+S2+S3+…+S n=,S1+S2+S3+…+S n>10,∴n>10,即n2(n+1)>800,n为正整数,n的最小值为9.但n=9时,代入S1+S2+S3+…+S n<10,不符合题意,故n=10.【点评】本题考查了二次根式的运用.利用均值不等式和不等式的传递性解题.10.方程的解是x=2011【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.【解答】解:原方程化为:+++…+=,通分得=,解得x=2011.故答案为:2011.【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各分式的分母有理化,寻找抵消规律.11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=﹣.【分析】首先将M式中各个分式进行分母有理化,再求出N式的值,代入代数式求值即可解答.【解答】解:将M分母有理化可得M=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1.N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+(1993﹣1994)=﹣1×997=﹣997,∴==﹣.故答案为﹣.【点评】本题主要考查分母有理化的方法,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.12.计算:=4(其中a>0)【分析】仔细观察会发现有以下规律:第1项加上第8项等于1,第2项加上第7项等于1,依此类推最后求得的结果4.【解答】解:第一项与最后一项相加得:+,=+,=,=1,同理可得:第二项与倒数第二项的和也是1;第三项与倒数第三项的和也是1;所以原式=1+1+1+1=4.故应填:4.【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑思维能力,是一道不错的规律型问题.13.的值为1998999.5.【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设k=2000,将所求算式转化为关于k的算式,将被开方数配成完全平方式,开平方,再将k的值代入即可.【解答】解:设k=2000,原式=====,当k=2000时,原式=1998999.5.故本题答案为:1998999.5.【点评】本题考查了二次根式的化简求值,当算式数字较大,并且数字之间有联系时,用换元法解题,可使运算简便.14.已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.15.若n为整数,且是自然数,则n=﹣14或﹣7或﹣2或5.【分析】设=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n 的值即可.【解答】解:∵设=p(P为非负整数),则n2+9n+30=p2,∴4n2+36n+120=4p2,∴(2n+9)2+39=4p2,∴(2p+2n+9)(2p﹣2n﹣9)=39,∴或或或,解得或或或,∴n=﹣14或﹣7或﹣2或5.故答案为:﹣14或﹣7或﹣2或5.【点评】本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为2012.5.【分析】根据新定理得f()=,f()=,则f()+f()=1;f()=,f()=,则f()+f()=1,由此得到f()+f()=1(n≥2的整数),所以原式=+.【解答】解:f()=,∵f()==,f()=,则f()+f()=1,f()==,f()==,则f()+f()=1,∴f()+f()=1,∴=+=2012.5.故答案为2012.5.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了阅读理解能力.17.若u、v满足v=,则u2﹣uv+v2=.【分析】根号里面的式子大于等于0,从而可得≥0,﹣≥0,从而能得出u和v的值,继而可得出答案.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子大于等于0这个知识点比较关键.18.已知a为实数,且与都是整数,则a的值是或.【分析】由是正整数可得,a是含﹣2的代数式;再由是整数,可得化简后为﹣2的代数式分母有理化后,是1或﹣1,据此确定a的值.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.【点评】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.19.使得++=1的一组正整数(a,b,c)为:答案不唯一;如(288,8,8),(48,24,8).【分析】由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为()2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是﹣1,则第二个复合二次根式化简后必为﹣,第三个复合二次根式化简后必为,最后求的a,b,c的值.【解答】解:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y﹣2,(x,y为正整数,x>y),所以有=x+y,﹣=﹣2.∴a+1=(x+y)2,a=4xy,∴(x﹣y)2=1,即x﹣y=1.则每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后为﹣1,而要消掉,则第二个复合二次根式化简后必为﹣,要消掉,则第三个复合二次根式化简后必为.最后正好为﹣=1.所以=(﹣1)2=3﹣=3﹣,则a=8,同理得b=24,c=48.故得到一组正整数(a,b,c)为:8,24,48.故答案为8,24,48.【点评】本题考查了二次根式的性质和二次根式的化简:.20.计算﹣20062的结果是2005.【分析】先把“2005×2006×2007×2008+1=(20052+3×2005+1)2”化为完全平方的形式,再开平方,然后再来求值.【解答】解:∵2005×2006×2007×2008+1=2005×(2005+3)×(2005+1)(2005+2)+1=(20052+3×2005)×(20052+3×2005+2)+1=(20052+3×2005)2+2(20052+3×2005)+1=(20052+3×2005+1)2∴=20052+3×2005+1;∴﹣20062=20052+3×2005+1﹣20062=(2005+2006)(2005﹣2006)+3×2005+1=2005;故答案为:2005.【点评】本题主要考查了二次根式的化简求值.解答此题的难点是化“2005×2006×2007×2008+1”为完全平方的形式,并开平方,然后再利用平方差公式求出20052﹣20062=(2005+2006)(2005﹣2006)的值.21.设=.【分析】把已知条件的左边相乘得,这样出现了所求代数式,设=z,代入变形所得的等式,逐步变形,消去x、y,即可求得z.【解答】解:据条件式令=z,则(1)式化为:z+xy+=9,即有9﹣z=xy+,平方得,81﹣18z+z2=x2y2+(x2+1)(y2+4)+2xy(2),又由z2==x2(y2+4)+y2(x2+1)+2xy,代入(2)得,81﹣18z=4,所以.即=,故答案为:.【点评】此题考查二次根式的化简求值,难度较大,多次利用已知条件求解.22.若,,则x6+y6的值是40.【分析】根据题意可求出x2+y2,x2﹣y2,利用平方差公式可求得x4﹣y4,(x2﹣y2)(x4﹣y4)=x6+y6﹣x2y4﹣y2x4,由此可得答案.【解答】解:由题意得:x2+y2=2++2﹣=4,x2﹣y2=2+﹣(2﹣)=2,x4﹣y4=(x2+y2)(x2﹣y2)=8,又(x2﹣y2)(x4﹣y4)=x6+y6+x2y4+y2x4,∴可得:x6+y6=32﹣x2y2(x2+y2)=32+2×4=40.故答案为:40.【点评】本题考查二次根式的乘除法运算,有一定难度,关键是熟练运用平方差及完全平方公式.23.当时,的值为.【分析】利用完全平方公式对代数式化简再把代入化简的结果计算即可.【解答】解:原式=﹣,∵,∴=2005,∴x<,∴原式=﹣+x,=x,当时,原式=.故答案为.【点评】本题考查的是二次根式的化简求值和二次根式的性质=a(a≥0)的应用.24.已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.25.当1≤x≤2时,经化简等于2.【分析】先配成完全平方式,再根据二次根式的性质化简计算即可.【解答】解:∵1≤x≤2,∴=+=+1+1﹣=2.故答案为:2.【点评】考查了二次根式的性质,解题的关键是将根号内的式子配成完全平方式.26.计算=2010.【分析】因为=,=,=,…,可发现=1+=1+1﹣,=1+=1+﹣…,依此类推再把1+1﹣,1+﹣…相加可得问题答案.【解答】解:原式=++++…+,=1+1﹣+1+﹣+1+﹣+1+﹣…+1+﹣,=2010+(1﹣+﹣+﹣…+﹣),=2010+(1﹣),=2010.【点评】本题考查了二次根式的化简,在化简中注意有关数列的规律.27.已知x=,那么+1的值是2.【分析】先根据分母有理化得到x=﹣1,所以x+1=,然后将代数式化为含有(x+1)2的形式,把x+1的值代入求出代数式的值.【解答】解:∵x==﹣1,∴x+1=.原式=(3x3+10x2+5x+4)=[(3x3+6x2+3x)+3x2+(x2+2x+1)+3]=[3x(x+1)2+3x2+(x+1)2+3]=[3x•2+3x2+2+3]=[(3x2+6x+3)+2]=[3(x+1)2+2]=(3×2+2)=2.故答案是:2.【点评】本题考查的是二次根式的化简求值,先根据分母有理化把x的值化简,得到x+1=,再把代数式化成含有x+1的形式,然后代入代数式可以求出代数式的值.28.化简:,得到1.【分析】将被开方数的分子、分母提公因式,约分,再开平方,约分即可.【解答】解:原式=()1004=()1004()1004=1.【点评】本题考查了二次根式的化简求值,关键是将被开方数的分子、分母提公因式,约分.29.=﹣3.【分析】因为=,代入并通分计算即可.【解答】解:原式===﹣1﹣1﹣1=﹣3.故答案为:﹣3.【点评】此题考查二次根式的混合运算,关键是求=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).【分析】(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设=a,=b,=c,从而可将原式化简,继而可得出答案.【解答】解:(1)设n=1999,则原式===n2+3n+1,故原式=20002+1999;(2)原式=+++++++=﹣1+﹣+﹣+﹣+﹣+﹣+﹣+﹣,=﹣1,=3﹣1,=2;(3)原式=,=,=+,=﹣;(4)设=a,=b,=c,则原式=++,=,=0.【点评】本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.。
二次根式专题一 二次根式(0)a a ≥非负性的综合应用1。
已知实数,a b 满足120a b -+-=,则a b +=_______。
2。
若3245423y x x =-+-+,求(5)x y 的值。
3。
已知220xy y x +--=,求x 与y 的值。
专题二 利用二次根式的性质将代数式化简4。
把()1a b a b---化成最简二次根式正确的结果是( ) A 。
a b - B.b a - C.b a --D 。
a b --5.已知实数a 在数轴上的位置如图所示,则22(3)(5)a a -+-化简后为( )A 。
2B 。
-8 C.82a - D.22a --6.化简:222(2)(1)(2)x x x +--+-.7.已知2()1a <,化简:22(1)a a -。
二次根式的乘除运算专题一 二次根式的分母有理化1. 阅读下列运算过程:2323333⨯==⨯2525555⨯==⨯. 数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么化简6的结果是( ) A .2 B .6 C 66 2.化简65+,甲、乙两位同学的解法如下:6565(65)(65)-=++-=6—5;乙:5-6565-656565-6561=++=+=+))((.下列说法正确的是( )A .甲、乙的解法都正确B .甲正确,乙不正确C .甲、乙的解法都不正确D .乙正确、甲不正确 3.观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121+=1(21)2121(21)(21)⨯--=-+-=2—1, 132+=1(32)3232(32)(32)⨯--=-+-=3—2, 同理可得:143+=4-3,… .从计算结果中找出规律,并利用这一规律计算(121++132++143++…+120132012+)(20131+)的值.专题二 二次根式乘除中的规律与方法4. 计算:(1)(21)(21)+-=______;(2)(32)(32)+-=______; (3)(23)(23)+-=______;(4)552)=______;根据以上规律,请写出用n (n 为正整数)表示上述规律的式子:___________。
二次根式培优专题一、选择题1.下列各式中,不是二次根式的是( )A .45 B .3π- C .14 D .122、现有边长AB =10,BC =5的矩形纸片ABCD ,对角线BD 。
在AB 上取一点G ,以DG 为折痕,使DA 落在DB 上,则AG 的长是:( ) A 、555+ B 、5510+ C 、555- D 、5510-3.下列说法正确的是( )A .若a a -=2,则a<0 B .0,2>=a a a 则若 C .4284b a b a = D .5的平方根是54.下列式子一定是二次根式的是( ) A .2--x B .x C .22+x D .22-x5.下列各式中,一定能成立的是( )A .22)5.2()5.2(=- B .22)(a a = C .1-x 122=+-x x D .3392+⋅-=-x x x6.下列说法错误的是 ( ) A .962+-a a 是最简二次根式 B.4是二次根式C .22b a +是一个非负数 D.162+x 的最小值是47.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=38.二次根式132(3)mm ++的值是( ) A .23 B .32 C .22 D .09.化简2||(0)x x y x y --<<的结果是( ) A .x y 2- B .y C .y x -2 D .y -10.已知2218102x xx x ++=,则x 等于( ) A .4 B .±2 C .2 D .±4 11.若32+=a ,32-=b ,则a 与b 的关系是( ) A .互为相反数;B .互为倒数;C .互为负倒数;D .以上均不对。
12.已知:a=,b=,则a 与b 的关系是( ) A .ab=1 B .a+b=0 C .a ﹣b=0 D .a 2=b 213.若1≤x <2,则的值为( ) A .2x ﹣4 B .﹣2 C .4﹣2xD .214.已知,ab >0,化简二次根式a 的正确结果是( ) A . B . C .﹣ D .﹣15.把中根号外面的因式移到根号内的结果是( ) A .B .C .D .16.化简二次根式22aa a+-的结果是﹙ ﹚A .2--a B .2---a C .2-a D .2--a 17.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .218.已知a<02a 2a │可化简为( ) A .-a B .a C .-3a D .3a19.若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .320.已知:1080n 是整数,则满足条件的最小正整数n 为() A .2 B .3 C .30 D .120.二、填空1.实数在数轴上的位置如图1所示,化简————。
二次根式定义及性质化简公式:)0()(2≥=a a a 和⎩⎨⎧<-≥==)0()0(2a a a a a a例1 求下列二次根式有意义的条件:(1)1-x (2)x x -⋅+31 (3)31+x (4) 12+x(5)xx -+31 (6)2)1(-x (7)962+-x x (8)1062+-x x例2 已知满足求的平方根.例3 已知a 、b 满足等式.(1)求出a 、b 的值分别是多少?(2)试求的值.例4 已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足试求△ABC 的c边的长.例5 已知,求的值.课堂同步练习一、选择题:1、下列各式一定是二次根式的是()A. B. C. D.2、若式子有意义,则x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x=33、函数的自变量x的取值范围是()A.B.C.D.4、,则的值为()A.-6 B. 9 C.6 D.-96、如果,那么()A. B. C. D.7、若的整数部分为,小数部分为,则的值是()A. B. C. D.8、在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A.3a+b﹣cB.﹣a﹣3b+3cC.a+3b﹣3cD.2a9、若,为实数,且,则的值为()A.-1B.1C.1或7D.710、已知实数a满足,那么a﹣20002的值是( )A.1999B.2000C.2001D.2002二、填空题:11、函数的自变量的取值范围是____________.12、已知,则a b=13、当的值为最小值时,a的取值为.14、当1<x<2时,化简:+的结果为.15、已知x、y为实数,且y=﹣+4,则x﹣y=_________ .16、实数、在数轴上的位置如图所示,则化简的结果为 .17、若+|x+y﹣2|=0,则xy= .18、若,则a的取值范围是 .19、无论取任何实数,代数式都有意义,则的取值范围为 .20、化简:得.三、简答题:21、解方程组并求的值.22、已知y=,求3x+2y的算术平方根.求的平方根.23、已知:.24、已知:=0,求实数a,b的值.25、细心观察图形,认真分析各式,然后解答问题.(1)推算出S10的值;(2)请用含有n(n是正整数)的等式表示上述变化规律;(3)求出S12+S22+S32+…+S102的值.二次根式定义及性质同步测试题一、选择题:1、下列式子中:、、0、、、(a>0)二次根式的个数是()A.2个 B.3个 C.4个 D.5个2、若代数式在实数范围内有意义,则的取值范围是( )A. B. C. D.3、若代数式有意义,则实数x的取值范围是()A.B.C.D.且4、函数中自变量x的取值范围是()A. B. C. D.5、若二次根式有意义,则字母a应满足的条件是()A. B. C. D.6、若1<x<3,则|x﹣3|+的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2 7、估算+2的值是().A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间8、已知( )A. 2或12B. 2或-12C. -2或12D. -2或-12二、填空题:9、使得函数有意义的x的取值范围是;10、已知数a,b,c在数轴上的位置如图所示:化简:的结果是:___________________.11、若,则=12、已知,则x y的平方根为______.13、若=3,=2,且 ab<0,则 a﹣b= .14、观察分析下列数据,寻找规律:0,,,3,2 …那么第 10 个数据应是.第n个数应是。
第十六章二次根式(培优卷)一、单选题1.(2021·山东河东·七年级期末)2021=0的值为()A.0B.2021C.-1D.1【答案】D【分析】根据二次根式与绝对值的非负性,求出a,b的值,再代入求值,即可.2021=0≥0,2021b+≥0,=0,2021b+=0,∴a=2020,b=-20211=,故选D.【点睛】本题主要考查二次根式求值,掌握二次根式与绝对值的非负性,是解题的关键.2.(2021·福建南安·九年级期中)若x=y=222x xy y++的值为().A.2B.2021C.-D.8【答案】B【分析】先计算出x y+的值,再利用完全平方公式对222x xy y++进行分解,整体代入求值即可得出结论.【详解】解:∵x=,y=,∴x y+=.∴2222()22021x xy y x y=++==+.故选:B.【点睛】本题考查了二次根式的化简求值,利用完全平方公式计算是解决问题的关键.3.(2021·=.=关于解答过程,下列说法正确的是().A.两人都对B.甲错乙对C.甲对乙错D.两人都错【答案】B¹¹,故不能直接进行分母的有理化,故甲错误;乙分子因式分解,再与分母约分,故乙的做法是正确的.故选B.¹.4.(2021·河北八年级期中)墨迹覆盖了等式“=中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【答案】B===,=18=,23=,故选:B.【点睛】本题考查了二次根式的化简及加减乘除运算,熟练掌握二次根式的运算法则是解决本题的关键.5.(2021·湖北)已知按照一定规律排成的一列实数:﹣12,…则按此规律可推得这一列数中的第2021个数应是()A BCD.2021【答案】A【分析】根据题目中的数字,可以发现数字的变化特点,从而可以得到这一列数中的第2021个数.【详解】解:∵一列实数:﹣12,…,∴每三个数为一组,每组出现的特点一样,依次是这个数的负的算术平方根、算术平方根、立方根,∵2021÷3=673…2,∴这一列数中的第2021A.【点睛】此题主要考查实数的规律探索,解题的关键是根据已知的式子发现规律求解.6.(2021·山东青州·八年级期末)如图是一个无理数生成器的工作流程图,根据该流程图,下列说法:①当输出值y x为5或25;②当输入值为64时,输出值y③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的有( )A .4个B .3个C .2个D .1个.【答案】B【分析】根据运算规则以及无理数的定义即可求解.【详解】解:①当输出值y x =5或x =25或625等,故①说法错误;②输入值x 为648y =③对于任意的正无理数y ,都存在正整数x ,使得输入x 后能够输出y ,如输入π2,故③说法错误;④当x =1时,始终输不出y 值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①②③,共3个.故选:B .【点睛】此题主要考查了无理数的定义、算术平方根以及二次根式的性质与化简,注意:初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.(2021·山东河东·八年级期末)我们把形如b (a ,b型无理数,如12属于无理数的类型为().A 型BC 型D 【答案】B【分析】将代数式化简即可判断.【详解】2222=-62=-8=-B【点睛】本题考查了最简二次根式,熟练将代数式化简是解题的关键.8.(2021·浙江滨江·八年级期中)对式子m ,正确的结果是()AB.C.D【答案】C【分析】直接利用二次根式的性质化简求出答案.【详解】解:由题意可得:30m -³,∴0m £∴=故选:C 【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.9.(2021·全国·九年级专题练习)=x 、y 、z 为有理数.则xyz =( )A .34B .56C .712D .1318【答案】A【分析】将已知式子两侧平方后,根据x 、y 、z 的对称性,列出对应等式,进而求出x 、y 、z 的值即可求解.=∴3x y z +=+++x+y+z=3==,,x+y+z=31=23yz=43xz=2xy ìïïïï\íïïïïî()29xyz ,0,0,016x y z \=³³³,∴xyz =34,故选择:A .【点睛】本题考查二次根式的加减法,x 、y 、z 对称性,掌握二次根式加减法法则,利用两边平方比较无理数构造方程是解题关键.10.(2021·广西钦州·七年级期末)如图是一张正方形的纸片,下列说法:①若正方形纸片的面积是1,则正方形的长为1;②若一圆形纸片的面积与这张正方形纸片的面积都是2π,设圆形纸片的周长为C 圆,正方形纸片的周长为C 正,则C 圆<C 正;③若正方形纸片的面积是16,沿这张正方形纸片边的方向可以裁出一张面积为12的长方形纸片,使它的长和宽之比为3:2,其中正确的是( )A .①②B.①③C .②③D .①②③【答案】A【分析】利用算术平方根的概念判断①,由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法,从而判断②,采用方程思想求出长方形的长与宽,从而判断③.【详解】解:∵正方形纸片的面积是1,则AB 2=1,∴正方形的长AB∵一圆形纸片的面积与这张正方形纸片的面积都是2π,∴圆的半径r =,∴圆的周长C 圆为,正方形的周长C 正为C C 圆正1,∴C 圆<C 正,故②正确;设长方形长为3a ,宽为2a ,由题意可得:3a •2a =12,解得:a (负值已舍去),∴长方形的长为16,又∵>4,∴若正方形纸片的面积是16,沿这张正方形纸片边的方向不可以裁出一张面积为12的长方形纸片,使它的长和宽之比为3:2,故③错误;故选:A .【点睛】本题考查算术平方根的应用,实数的大小比较,掌握算术平方根的概念和二次根式的除法运算法=(a ≥0,b >0)是解题关键.二、填空题11.(2021·山东青州·八年级期末)已知2x =,则代数式24x ++的值等于 ___.【答案】5【分析】根据完全平方公式把原式变形,吧ax 的值代入计算即可.【详解】解:24x ++=231x +++=(21x +当2x =时,原式=(221+=4+1=5,故答案为:5.【点睛】本题考查的是二次根式的化简求值,灵活运用完全平方公式是解题的关键.12.(2021·江西·景德镇一中七年级期中)_______【答案】=故答案为:【点睛】本题考查了二次根式的性质与化简,熟练掌握运算法则是解题的关键.13.(2021·山东商河·八年级期中)计算:)20142)2015=______.2【分析】由平方差公式、以及积的乘方性质进行化简,即可求出答案.【详解】解:201420152)2),201420142)2)2)=+,20142)]2)=-,2014(1)2)=-,2=2-.【点睛】本题考查了整式乘法的运算法则,解题的关键是掌握平方差公式、以及积的乘方性质进行化简.14.(2021·河北·平泉市教育局教研室八年级期末)==a b =______.【答案】92a =,3b =,代入计算即可.=3=∴2a =,3b = ∴23=9a b =故答案为:9【点睛】本题考查二次根式的加减,根据知识点解题是重点.15.(2021·浙江金华市·八年级期末)对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:--2-=※________.【答案】1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2--=2--2--=43--=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.(2021·安徽八年级期中)在数学课上,老师将一长方形纸片的长增加,宽增加,就成为了一个面积为2192cm 的正方形,则原长方形纸片的面积为________2cm .【答案】18【分析】由题意可求得正方形的边长,从而可求得原长方形的长和宽,故可求得原长方形的面积.【详解】∵正方形纸片的面积为2192cm=,∴原长方形的长为=(cm ),宽为=cm ),∴原长方形纸片的面积为18=(2cm ).【点睛】本题考查了求一个数的算术平方根,二次根式的运算,关键是由正方形的面积求得正方形的边长.17.(2020·全国·八年级课时练习)已知x 、y 满足:1<x <y <100,且+..【分析】把已知的等式变形分解后,得到xy 的值.【详解】∵+,=0)=0,∵1<x <y <100【点睛】本题主要考查因式分解和二次根式的加减法,分解因式是解本题的关键.18.(2021·浙江杭州市·八年级模拟)比较下列四个算式结果的木小:(在横线上选填“>”、“<”或“=”)(1)①________;②__________;③_________.(2)通过观察归纳,写出反映这一规律的一般结论.【答案】(1)>,>,=;(2).两个数的平方的和大于等于这两个数乘积的2倍.【分析】(1)分别计算各部分,再比较大小;(2)根据题意找到规律,并用式子表示.【详解】解:(1),,∴>,,,∴>,,22(+2(22+2´22+2222a b ab +³225(32=+=+2(=-22(+2(´22181230==++=2´==22+2´´2221+=212=∴=,故答案为:>,>,=;(2)由题意可得:设两个实数a、b,则.通过观察上述关系式发现,等式的左边都是两个数的平方和的形式,右边是前面两数不平方乘积的2倍,通过几个例子发现两个数的平方的和大于等于这两个数乘积的2倍.【点睛】本题考查了二次根式的大小比较和混合运算,找到题中的规律,进行总结和描述是解题的关键.三、解答题19.(2021·山东·枣庄市台儿庄区教育局教研室八年级期中)(1(2)(3(41)【答案】(1)1;(2)2-;(3)4(4)3.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质化简,先算乘法,再化简二次根式,去绝对值,最后利用二次根式的加减运算法则计算得出答案;(3)直接利用二次根式的乘除运算法则化简,先算乘除,再利用二次根式的加减运算法则计算得出答案;(4)直接利用二次根式的乘法运算法则化简,先算乘除,再利用有理数的加减运算法则计算得出答案.【详解】解:(13212=-312122=--+=1;(2)62-2=--=2 --;(3=4=4=;(41)+131=+-21231=+-+-3=.【点睛】本题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.20.(2021·洛阳市第五中学八年级期中)2)2)=1a(a≥0)、+1)﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有1﹣1,22+2222a b ab+³次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1(2)计算:3的大小,并说明理由.2)2+;(3,理由见解析【分析】(1)根据题意可知,题目中思想为利用平方差公式进行二次根式的化简,根据化简方法,进行化简即可;(2)将二次根式的分母进行有理数因式,去除分母中的根号进行计算即可;(3)将代数式化为有理化因式的形式,进行大小的比较.【详解】(1(222+;(3,,.【点睛】此题主要考查了二次根式的化简求值,熟练利用有理化因式是解题关键.21.(2021·湖北沙区·三模)小颖利用平方差公式,自己探究出一种解某一类根式方程的方法.下面是她解5的过程.m,与原方程相乘得:×5m,x﹣2﹣(x﹣7)=5m,解之得m=1,1,与原方程相加得:+5+1,6,解之得,x=11,经检验,x=11是原方程的根.1.【答案】x=7【分析】根据借鉴题中的方法,即可计算求解.m,与原方程相乘得:)×)=m ,x ﹣3﹣(x ﹣6)=m ,解之得m =3,=3,与原方程相加得:)+)=3+1,4,解之得,x =7,经检验,x =7是原方程的根.22.(2021·江西)===2=.试求:(1(2n 为正整数)的值.(3)计算:)1L .【答案】(1(2(3)2020【分析】(1)用平方差公式计算即可;(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式,最后利用平方差公式即可得出答案.【详解】解:解:(1==;(2===(3)原式)11=++L)11=-20211=-2020=.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.23.(2021·四川大邑·八年级期中)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方.如,善于思考的小明进行了以下探索,若设a +b2(1=a ,b ,m ,n 均为整数),则有a =m 2+2n 2,b =2mn ,这样小明就找到一种把类似a +(1)若a +,当a ,b ,m ,n 均为整数时,用含m ,n 的式子分别表示a ,b,得:a = ,b = .(2)若a,当a ,m ,n 均为正整数时,求a 的值.(3.【答案】(1)m 2+7n 2,2mn ;(2)a =28或12;(3【分析】(1)仿照例题计算即可得;(2)仿照例题计算即可得;(3)先计算=7﹣=, 再计算即可.【详解】解:(1)∵a +,∴a +=m 2+2n 2(a,b ,m ,n 均为整数),∴a =m 2+7n 2,b =2mn ,故答案为:m 2+7n 2,2mn ;(2)∵a ,∴a m 2+2n 2(a ,b ,m ,n 均为整数),∴a =m 2+3n2,2mn =6,∴mn =3,①m =1,n =3,a =28,②m =3,n=1,a =12,综上所述:a =28或12;(3)∵=4﹣=7﹣ =+3=,2,∴.【点睛】此题考查二次根式的计算,完全平方公式的计算法则,正确理解被开方数的变化方式及完全平方公式的计算法则是解题的关键.24.(2020·江苏省初二月考)甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1.细心观察图形,认真分析下列各式,然后解答问题:222(22m m n =+=++2(m =+2(m =+2==2(222(m =+2(m =+2(222==)2+1=2,S 1)2+1=3,S 2;)2+1=4,S 3;….(1)请用含有n (n 是正整数)的等式表示上述变化规律,并计算出OA 10的长;(2)求出的值.【答案】(1)含有n (n 是正整数)的等式表示上述变化规律为:,OA 10;(2)【分析】(1)根据勾股定理分别求出OA 22、OA 32,OA 42及OA 2、OA 3、OA 4得到OA n 2及OA n 对应的S 值,再计算得到OA 10;(2)由(1)知S 1、S 2、S 3、、S 10,将结果代入代数式计算即可.【解析】(1)∵OA 1,OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,∴OA 22==1+1=2,∴OA 2,,∵OA 32=)2+1=3,∴, ∵OA 42==2+1=4,∴OA 4=2,,,∴,, ∴OA 102==10,∴OA 10,∴含有n (n 是正整数)的等式表示上述变化规律为:,OA 10;(2)由(1)知:,, ,,, ∴==.【点睛】此题考查图形类规律的探究,勾股定理计算线段长度,能依据图形得到线段的计算方法,并总结规律运用解题是关键.25.(2021·北京·八年级单元测试),3,…按下面的方式进行排列:222123210S S S S +++¼+21n +=554n S =L 22112OA A A +111211122S OA A A =××==22223OA A A +3OA =222311122S OA A A =××==22334OA A A +334311122OA A A S =××==L 2221121n n n n OA A A OA n --+===+111122n n n n S OA A A +=××==21+21n +=n S =1S =2S =3S =L 10S =222123210S S S S +++¼+2222+++¼+554,,那么(1所在的位置应记为;(2)在的位置上的数是,所在的位置应记为;(3)这组数中最大的有理数所在的位置应记为.【答案】(1);(2)(5,4);(3)(6,2)【分析】观察这组数字的规律为被开方数为从3开始的3的自然倍数,将30个数按题干方式排列后,依据题意表示即可:(1)(2)每个被开方数都是3的倍数,因此第四行第一列的数字为5个数,找出规律,位置即可确定;(3)由于最大得有理数为,依据每行有5个数,找出规律,位置即可确定.【详解】解:(1,故答案为:;(2)由题意得,每个被开方数都是3的倍数,因此第四行第一列的数字为∴(4,1)位置上的数是,每行有5个数,∴5,4),故答案为:(5,4);(3,它所在的位置记为第6行第2列,∴这组数中最大的有理数所在的位置应记为:(6,2),故答案为:(6,2).【点睛】题目主要考查二次根式的应用,坐标位置的确定,理解题意,确定被开方数存在的规律是解题的关键.3,M(1,5)(2,3)(4,1)()2,5=9=()2,5()2,572324¸=9=。
【最新整理,下载后即可编辑】二次根式典型习题训练一、概念(一)二次根式1x、x>0)1x y+(x≥0,y•≥0).(二)最简二次根式1y>0)化为最简二次根式结果是().A(y>0)By>0)C(y>0)D2.(x≥0)3._________.4. 已知〉xy0,化简二次根式_________.(三)同类二次根式1是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④2、是同类二次根式的有______3.若最简根式3a是同类二次根式,求a、b的值.【最新整理,下载后即可编辑】4.n是同类二次根式,求m、n的值.(四)“分母有理化”与“有理化因式”1.+的有理化因式是________;x-的有理化因式是_________.-的有理化因式是_______.2.把下列各式的分母有理化(1;(2;(3(4.二、二次根式有意义的条件:1.(1)当x在实数范围内有意义?(2)当x是多少时,+11x+在实数范围内有意义?(3)当x2在实数范围内有意义?(4)当__________2.x有()个.A.0 B.1 C.2 D.无数3.已知,求xy的值.4.5.若11m +有意义,则m 的取值范围是 。
6.要是下列式子有意义求字母的取值范围(1(2) (3)三、二次根式的非负数性1=0,求a 2004+b 2004的值.2,求x y 的3.2440y y -+=,求xy 的值。
四、⎪⎩⎪⎨⎧==a a a 2 的应用 1. a ≥0,比较它们的结果,下面四个选项中正确的是( ).A B C D .2.先化简再求值:当a=9时,求a ≥0x解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.3.若│1995-a│,求a-19952的值.4. 若-3≤x≤2时,试化简│x-2│5.化简).B C.D.A6.把(a-1a-1)移入根号内得().AB C.D.五、求值问题:求x2-xy+y2的值1.当x=2.已知a=3+23.已知4.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x 的值.52.236-()的值.(结果精确到0.01)6.先化简,再求值.(-(,其中x=32,y=27.7.当(结果用最简二次根式表示)8. 已知2310-+=x x六、大小的比较的大小。
第1页(共4页)二次根式培优练习题一•选择题(共14小题)1 •使代数式有意义的自变量x 的取值范围是()x-4A . x > 3 B. x >3 且 X M 4 C. x > 3 且 X M 4 D . x >32•若.■ .... .=3-a ,则a 与3的大小关系是( )A . a v 3 B. a W 3C . a >3D . a 》33.如果等式(x+1) °=1和寸⑶€=2- 3x 同时成立,那么需要的条件是()A . X M - 1 B. x v 二且 X M - 1 C. x W 二或 X M 1D . x <3 3 4.若ab v 0,则代数式 仁呪可化简为( )A . a . • B. a* C .- a. 1 ‘ D .- a 1 ‘5.已知xy v 0,则—•化简后为()A .丁 B .6 .如果实数a 、b 满足需%3=-曲麻,那么点(a , b ) A .第一象限B .第二象限C.第二象限或坐标轴上7.化简二次根式;一,结果正确的是( )A . ■8.若 a+ 「=0 成立,贝U a 的取值范围是( )A . a >0 B . a >0 C. a w 0 D . a v 09.如果ab >0,a+b v 0,那么下面各式:①命书,②濡=1,③*‘丸十濡=-b ,其 中正确的是()A .①② B •②③C .①③D .①②③10.下列各式中正确的是( )A .寸(_¥)2二但 的=± 3 C .(-占)2=4 D . 迈-五=2 11.在二次根式 '中与小是同类二次根式的有()X M - 1-一 丁 C .D .在( )D .第四象限或坐标轴上 B. - :. C. 、D .■'A. 2个B. 3个C. 4个D. 5个12. 若.,「「是一个实数,则满足这个条件的a的值有()A . 0个B. 1个C. 3个D.无数个13 .当a v0 时,化简一,一的结果是()A . —■. B . 一•、 C.亍 .D .—.14 .下列计算正确的是()A . : 二7(3)7(3)(1) 观察上面的解题过程,请直接写出式子 (2) 观察上面的解题过程,请直接写出式子利用上面所提供的解法,请求血十1十忑+忑+五“用十忑换+••+ —I — 7100 W99 的值.B•也丿以二如'b C + 5生田"5=13D4/252 -24Mt25+24) (25-24)-V49-7二•填空题(共13小题)15.二次根式讥十与.二-:••的和是一个二次根式,贝U 正整数 a 的最小值为 _________ ;其和 为^16 •已知 a 、b 满足7(2-a ) 2=&+3?且{二巧+1 =a - b+1,则 ab 的值为 ______ . 17.已知 | a-2007|+ . .- __________ i :-=a ,则 a - 20072 的值是 .18. ________________________________________________________________________ 如果・」泊勺值是一个整数,且是大于1的数,那么满足条件的最小的整数 a= _____________ . 19•已知 mn=5, m :+n J= ________ . 20.已知 av0,那么 | .: - 2a| 可化简为 _____ .21 .计算::_的结果为 _________________ .V322 .若最简二次根式2血尹1与-莎药是同类二次根式,则x ______________ .23 .若厂-f.,则 x= ________ ;若 x 2= (- 3) 2,则 x= _____ ;若(x - 1) 2=16,x= ______ . 24 .化简a的最后结果为 _______ .25 .观察分析,探求出规律,然后填空: 二,2, ■■,2. ■:, I , _____ ,…, _______ (第 n 个数).26 .把根号外的因式移到根号内:• I - J =-“*:'[-;p 27 .若a 是.丨的小数部分,则a (a+6) = ______ . 三.解答题(共7小题) 28 .阅读下列解题过程:鮎爲=〔暑誥黑巳=勝爲 ?砸卫卫-2低十界_ (晶+妬〕(讥i )2-(亦)2请回答下列问题:29•—个三角形的三边长分别为 厝、知莎、*桧(1) 求它的周长(要求结果化简);(2) 请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.30.如图,实数a、b在数轴上的位置,化简:31 •先阅读下列的解答过程,然后作答: 形如.厂丄■,的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样(.J 2+ ( b) 2=m,,那么便有Vb) + Vb (a> b)例如:化简占+4翻解:首先把.I I :;化为J • : . I :,这里m=7,n=12;由于4+3=7, 4X 3=12,即(.)2+ (■;)2=7, ? = ■:,••• .II:-2+.:';由上述例题的方法化简:(1) 1 ;• 一「;(2) .. H;(3 )『'-.;.32. 已知x=2-二,求代数式(7+4. ;) x2+ (2+ :;) x+ -;的值.33. 实数a、b在数轴上的位置如图所示,请化简:| a| -:-::.请你猜想:(3) 请你将猜想到的规律用含有自然数n (n》1)的代数式表达出来第4页(共4页)参考答案一•选择题(共14小题)1. C;2. B;3. D;4. C;5. B;6. C;7. D;8. C;9. B; 10. A; 11. B; 12. B; 13. A;14. D;二.填空题(共13小题)15. 6;^^E;16.±j-; 17. 2008; 18. 1; 19.土述;20.- 3a; 21.丄;22. 0; 23.±5;± 3; 5 或-3; 24.- 2^23; 25. 2^5;炼;26. 27. 2;三.解答题(共7小题)28. 一二_二-1 ; 29.; 30. ; 31. ; 32.; 33. ; 34.77第3页(共4页)。
1一一<m<3③已知,2二次根式培优一、知识的拓广延伸1、挖掘二次根式中的隐含条件一般地,我们把形如va(a>0)的式子叫做二次根式,其中a>°人方>0。
根据二次根式的定义,我们知道:被开方数a的取值范围是a>0,由此我们判断下列式子有意义的条件:厂_丿1/——x——1(1)7x——1+VI——x+;⑵;2vx2k、人jcc/八-x/2x+#L、*(x——2.5)0(3)x/1——x——3x——2;(4);(5)3——x+x+1Jx——22、<a2的化简教科书中给出:一般地,根据算术平方根的意义可知:恋药二a(a>°),在此我们可将其拓展为:石凯屮°>°)[-a(a<0)(1)、根据二次根式的这个性质进行化简:①数轴上表示数a的点在原点的左边,化简2a*広L1.'I"1++a2—2②化简求值:a':a;其中a二5,化简2m-J4m2+m+1-J m2一6m+9④町'(3——x)2=;⑤ 若为a,b,c 三角形的三边,则/a+b+c —W ——b ——c )2二 ⑥计算:\:(4—"I7)2+\‘,(\:'17-5)2=(2)、根据二次根式的定义和性质求字母的值或取值范围。
①若m-f l -2m+m 2二1,求m 的取值范围。
② 若J (2-x )2+J (6-2x )2二4-x ,则x 的取值范围是 ③ 若a f'2b -14+的-b ,求:a 2-2ab +b 2的值;④已知J2x -5+J 5-2x -3,求2xy 的值。
二.二次根式\a 的双重非负性质:①被开方数a 是非负数,即a >0②二次根式、万是非负数,即.a >0例1.要使朽=x +1有意义,则X 应满足().U2x -1A.1W x W3B.x W3且x 工丄C.1V x V3D.1V x W32222例2(1)化简Jx —1+Jl -x =.(2)若、匸17匸1=(x +y )2,则x —y 的值为()(A)-1.(B)1.(C)2.(D)3.例3(1)若8、b 为实数,且满足|a —2|+J -b 2=0,I]b —a 的值为()A.2B.0C.—2D ■以上都不是(2)已知x ,y 是实数,且(x +y -1)2与$2x —y +4互为相反数,求实数y x 的倒数。
12.1 二次根式培优第二阶——拓展培优练1.(2023春·安徽合肥·八年级合肥市庐阳中学校考期中)已知实数a ,b 在数轴上的对应点的位置如图所示,则化简()()22211a a b ++--结果为( )A .2a b +B .2a b -+C .2a b -D .2a b --2.(2023春·湖北武汉·八年级江夏一中校考阶段练习)已知a<0,0b ≠,3a b -( ) A .ab --B .-ab C .ab D .-ab 3.(2023春·广东惠州·20n 数n 的值是( )A .5B .1C .2D .34.(2023春·山西吕梁·八年级校考期中)已知a 221a a -+-______. 5.(2023春·重庆渝北·八年级为明学校校考阶段练习)两江新区某校数学兴趣小组同学在学习了二次根式之2a a 产生了浓厚的兴趣,他们研究了四个问题,并得到一些结论,其中正确的有____________. ①244a a a -+a 的变化而变化,当2a =时,此代数式有最小值2;②在2a <的条件下化简244a a a -+2;③当269a a a -+a 的取值范围是3a ≤;④()22693a a a -+=-a 必须满足3a ≥.6.(2023春·安徽亳州·八年级校考阶段练习)把 1a -_________. 7.(2023春·四川南充·八年级四川省南充高级中学校考阶段练习)已知,a b 都是实数,12212,b a a =--则2a 2ab +的值为___________.8.(2023春·全国·八年级专题练习)已知△ABC 的三边分别为a 、b 、c ,化简:()()()()2222a b c a b c b c a c a b ++------=___________.9.(2023上海市文来中学七年级期中)x ,y ,z 适合关系式:3532320042004x y m x y m x y x y +--++-=+-+--,求m -4的平方根.10.(2023春·山西吕梁·八年级校考期中)阅读材料,解答问题.例:若代数式()()2224a a -+-的值是常数2,则a 的取值范围24a ≤≤.分析:原式24a a =--+,而a 表示数x 在数轴上的点到原点的距离,2a -表示数a 在数轴上的点到数2的点的距离,所以我们可以借助数轴进行分析.解:原式24a a =--+在数轴上看,讨论a 在数2表示的点左边;在数2表示的点和数4表示的点之间还是在数4表示的点右边,分析可得a 的范围应是24a ≤≤(1)此例题的解答过程了用了哪些数学思想?请列举例说明.(2)()()2237a a --11.(2023春·江苏南京·八年级南京钟英中学校考阶段练习)知识回顾我们在学习《二次根式》这一章时,对二次根式有意义的条件和性质进行了探索,得到了如下结论: I a 0a ≥.II .二次根式的性质:①()20a a a =≥;2||a a .类比推广根据探索二次根式相关知识过程中获得的经验,解决下面的问题.(1)根式在实数范围内有意义的条件是 ,根式在实数范围内有意义的条件是 ;(2)写出n 3n ≥,n 是整数)在实数范围内有意义的条件和性质.12.(2023秋·湖南永州·八年级统考期末)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:(23121++=+,善于思考的小明进行了以下探索:设a b +(2m =+(其中a 、b 、m 、n 均为整数),则有2222a m n +=++∴222a m n =+,2b mn =.这样小明就找到了一种把部分a +决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b 的值;(2)试着把7+13.(2023春·江苏·次根式可以借助构造完全平方式进行化简.例1例2=3请用上述方法探索并解决下列问题:(1)(2)、、为正整数,求a的值.(3)若()2a m+=,且a m n。
第一讲 二次根式化简求值
一. 内容概述
根式的化简主要有以下几种思路:
1、 利用定义,通过平方去掉根号,将二次根式的问题转化成整式的定义
2、 将含根号的项看作一个整体,与整式进行同样的恒等变形或计算
3、 有多重根号时,将最外面的根号下的式子配成完全平方的形式
4、 利用共轭二次根式进行化简,即当出现了时,考虑果
二. 例题
例1、(1)设x =
求(1)(2)(3)(4)x x x x ++++的值
(2)若
a =
,求54222014a a a ++-
例2、(1
(2...
+++
(3
x>
例3、已知1
=例4、化简
(1
(2
(3
例5、(1)若0n >
(2
例6、设
x y =
=
例7、
例8
例9、设2),m a =
≤≤ 求109836m m m m ++++-
思考题
如果2a a =
+求
三. 课后练习
1
2、 若0n >
3、Rt △ABC 中,∠C=15°,∠A=90°,AB=1,(1)求AC
(2)求BC
4、12a =
,12b =,求22a ab b -+
5。