环戊烷异戊烷发泡体系在冰箱生产中的应用
- 格式:pdf
- 大小:149.05 KB
- 文档页数:3
LSFHLSFH(LOW SMOKE FREE OF HALOGEN)低烟无毒低煙無毒(LSFH)電纜有下列特點一、低發煙量:依美國ASTM-E662煙霧測試標準(燃燒20分鐘後之結果),LSFH材料之發煙量僅為一般PVC的44%,鳥坡林橡膠的39%,煙霧淡而均勻,無公害問題。
二、無毒氣產生:依IEC754-1測試,LSFH材質燃燒時完全無HCL或HF之毒氣產生,故不會對人體或設備造成任何損傷,安全性高。
三、耐燃性佳:依美國ASTM D2863測試,LSFH材質之含氧指數(Oxygen-Index O.I.)已達30以上,故耐燃性極佳。
LSFH材料之特性1. 耐熱性佳,可連續長期承受90℃之高溫工作環境。
2. 耐油性高,不受酸鹼的侵蝕,安定性良好。
3. 耐燃、耐火性佳可通過IEEE383美國大眾捷運系統(APTA)及國際運輸聯盟(UITP)NF C32-070等規範之耐燃等級試驗。
4. 低發煙量,其它材質之發煙量均比LSFH材質為高。
5. 無毒性故可絕對安全使用無公害問題。
LSFH材料之應用1. 高低壓輸配電電力電纜2. 一般室內用配線3. 儀表用電纜4. 一般控制用電纜5. 出口線6. 汽車用配線7. 高溫耐燃、耐火電纜8. 履帶往覆式移動用電纜9. 船舶電纜10. 通信信號電纜11. 光纖電纜12. 地下鐵用電纜PVCPVC材料是塑料装饰材料的一种。
PVC是聚氯乙烯材料的简称,是以聚氯乙烯树脂为主要原料,加入适量的抗老化剂、改性剂等,经混炼、压延、真空吸塑等工艺而成的材料。
PVC材料具有轻质、隔热、保温、防潮、阻燃、施工简便等特点。
规格、色彩、图案繁多,极富装饰性,可应用于居室内墙和吊顶的装饰,是塑料类材料中应用最为广泛的装饰材料之一。
PVC的优点主要有以下几方面:1.质量轻、隔热、保温、防潮、阻燃、耐酸碱、抗腐蚀。
2.稳定性、介电性好,耐用、抗老化,易熔接及粘合。
3.抗弯强度及冲击韧性强,破裂时延伸度较高。
环戊烷发泡工艺环戊烷发泡原理:环戊烷作为发泡剂主要是给聚氨酯和苯乙烯发泡。
戊烷发泡剂中戊烷主要为正戊烷和异戊烷,且占比达到99%以上时可做苯乙烯发泡剂,成品EPS,主要的机构如见龙机构等;此外正戊烷可用于建筑板材的发泡。
做聚氨酯发泡剂时主要是环戊烷,主要用途是冰箱门体的泡沫。
化学反应:戊烷在氧气中燃烧生成二氧化碳和水:C5H12+ 8 O2→5 CO2+ 6 H2O与其他烷烃类似,戊烷也可发生自由基氯代反应:C5H12+ Cl2→C5H11Cl + HCl此类反应无选择性,产物为1-、2-、3-氯代戊烷,以及多取代衍生物的混合物。
其他卤素也可与戊烷发生自由基取代反应。
环戊烷发泡后是否完全会挥发?环戊烷在使用中是一个发泡的过程,发泡完固化的过程。
所以是不会完成挥发的,一般都是会有残留的,具体还是要看发泡后的闭孔率是多少,有些所在发泡过后还会再挤压,把闭孔的泡泡挤破,形成有弹性的空腔。
但这不是通用的做法。
发泡剂是让目标对象成孔的物质,有物理发泡和化学发泡。
化学发泡剂是需要经过加热分解后释放出来二氧化碳和氮气等其他气体,在聚合物组成中形成细孔的化合物。
泡沫细孔通过物理形态变化,也就是通过压缩气体的膨胀、液体的挥发或固体的溶解形成,这个过程被称为物理发泡剂。
戊烷发泡剂是碳五类产品,比液化气重,比汽油轻。
安全性需要使用者弄明白爆炸的三要素,燃烧物、氧气、火种。
爆炸燃烧必须三要素齐全时才会发生。
因此不能简单的说戊烷发泡剂危险性。
液化气家家在用。
汽车到处都是。
戊烷作为发泡剂主要是给聚氨酯和苯乙烯发泡。
用于建筑板材的发泡。
戊烷发泡剂中戊烷主要为正戊烷和异戊烷且占比达到99%以上时可做苯乙烯发泡剂,成品EPS,此外正戊烷可用于建筑板材的发泡。
做聚氨酯发泡剂时主要是环戊烷,主要用途是冰箱门体的泡沫,回家看看你家冰箱上可能就贴着环戊烷的标签~~这个主要是因为以前用氟利昂发泡造成臭氧层空洞,后来换成了141b这样的,但是仍然有污染,戊烷就不会了,都是清洁产品。
冰箱发泡材料冰箱发泡材料有EVA 、EPDM、SBR、CR、NBR/PVC、PE、XPE/IXPE等发泡材料目前用于冰箱保温的主要应该是聚氨酯硬质泡沫塑料,它的保温性能好且成型方便。
保温层厚度越大保温效果会越好但同时带来初期成本高、保温层支撑强度不够等问题,故而应适可而止。
冰箱发泡保温层最新改进方案目前冰箱生产厂家还有部分在使用氟利昂发泡保温层(40-50厚度),如要改成环戊烷发泡要加厚(到90-100),才能达到能耗标准。
内胆吸附模、发泡模、抽屉注射模的改造投资约150万元。
近期国家耗能标准的实施,异氰酸脂的涨价,及真空绝热板应用,家电龙头企业又在大批改回到50厚度保温层。
这就给部分企业的产品改进带来了好的机遇。
最新改进方法如下;1;冰箱侧板内面用双面胶带各粘敷一片真空绝热板(12-15厚度)。
2;发泡灌注PU(30-35厚度)。
3;冷凝管改在后背。
此效果热倒率非常底,操作工艺简单,目前松下、伊莱克斯、海尔、科龙等公司都在使用此工艺。
冰箱领域各种发泡技术成本PUWORLD(2005/12/26)——随着生活水平的提高,人们的环保意识越来越强。
对冰箱能耗的要求也越来越严格,各国(如美国、欧盟、日本等)都颁布了新的冰箱节能法规,中国也于2004年下半年实行强制性的冰箱能效标签。
大部分冰箱厂家希望在CFC-11的替代的过程中,能够达到低成本和环保节能的目的,国内的聚氨酯化学厂家也正在寻找合适的技术途径帮助冰箱生产厂家,以求更好实现环保节能、低成本的目标目前在冰箱领域大规模使用的发泡剂种类主要有CFC-11、HCFC-141b和戊烷三大类,对原有的CFC-11生产线而言,改用戊烷发泡技术需对生产线进行改造,因生产能力不同设备改造费用也相差巨大,以年产30万台冰箱计,进行戊烷发泡技术改造费用约450万元,以投资回收期5年计,则每台冰箱分摊成本为3元;改用HCFC-141b,需对ABS板进行改性,以一台200升的冰箱为例,其改造成本将增加5元/台;而采用HFC-245fa发泡,设备几乎不用改造或改造很小,因此改造费用可以忽略。
冰箱用环戊烷聚氨酯硬泡中催化剂的功能论述与分析发表时间:2020-07-28T02:14:56.985Z 来源:《河南电力》2020年3期作者:孔军良[导读] 因为自身较高的活性,在发泡过程中的催化作用也较强,换句话说也就是凝胶反应不断增强带来了纤维时间的缩短。
(南京红宝丽聚氨酯有限公司江苏南京 210000)摘要:本文主要分析了环戊烷聚氨酯硬泡中催化剂的功能,重点介绍了环戊烷发泡体系中泡沫体物性和工艺特点。
在环戊烷聚氨酯硬泡中运用催化剂能有效提高发泡的流动性,而且能改善代表发泡流动性的泡沫上升的高度,同时还可以降低泡沫密度分布梯度,改善泡沫的流动性,从而更好满足生产过程中对其性能的要求。
关键词:环戊烷;聚氨酯;催化剂现阶段家用冰箱的市场发生了重要的变化,使用者对冰箱的体积和容量都有了更高的要求,因此冰箱生产制造厂需要适应市场需求来改进生产技术,制造大体积的冰箱,随着冰箱体积的增加,其箱体结构也越来越复杂,对于其中所需的冰箱发泡料也有着很高的要求,本文主要分析催化剂在环戊烷聚氨酯硬泡中的功能和作用。
1.2可燃烧性能工业上对于可燃物性质定义为:物质是否具有闪点以及汽化火焰极限,其中有无闪点成为了区分可燃物和非可燃物的主要指标。
环戊烷的结构简式如图 1所示,因为其结构的特殊性,使得其具有了可燃物的性能。
在使用环戊烷聚氨酯发泡体系的时候需要配备相应的处理可燃物液体的设备,因为其结构较为简单,使用成本投入较少。
1.3发泡剂的环境特征环戊烷发泡剂的本质是一种绿色发泡剂,这表示其在使用过程中不会破坏环境,因为其存在于大气中的寿命较短。
而且分析环戊烷聚氨酯发泡剂的物理性质可知,其GWP值很低,大致在0.001之下,同时其ODP值也较低,因此可以说完全是一种绿色无氟的物质。
现阶段,随着环戊烷聚氨酯硬泡发泡剂的应用和推广,对其技术不断进行了改进,现阶段性能优良的发泡剂被广泛运用于冰箱制造过程中。
2、环戊烷聚氨酯硬泡中催化剂的功能下面主要分析冰箱用环戊烷聚氨酯硬泡中催化剂的功能。
冰箱用PM-2010在环/异戊烷体系中发泡行为研究我国臭氧层保护工作已经开展十多年,政府对此也非常重视,于1991年6月加入《关于消耗臭氧层物质的蒙特利尔议定书》伦敦修正案,同年11月国务院批准了《中国消耗臭氧层物质(ODS)逐步淘汰国家方案(修订稿)》。
我国是ODS生产大国,同时也是ODS消费大国,其中绝热性聚氨酯泡沫保温领域ODS的应用则是很主要的一方面;为履行国际公约,执行国家方案,国内冰箱(柜)生产厂家发泡剂替代工作成为非常紧迫的任务[1]。
环戊烷作为聚氨酯发泡剂以其零ODP以及低GWP而成为1995年国家环保局制定的《行业淘汰ODS战略》中的首推方案。
该体系经过最优化后所取得的泡沫反应性正常、泡沫密度分布和流动性好、脱模时间短,在世界上已经是很成熟的已工业化的技术。
但该体系的适用密度较高,成本偏高。
环戊烷/异戊烷混合发泡体系中引入异戊烷,利用异戊烷的高蒸汽压来提高泡孔内压,达到降低泡沫密度的目的;利用环戊烷的低导热系数,来保持泡沫优异的保温隔热性能。
与环戊烷体系相比,环/异戊烷体系可以降低泡沫密度,节省原料;同时提高了泡沫的流动性和脱模性,使密度分布更为均匀,脱模时间有所降低;而能耗与环戊烷体系相近[2]。
烟台万华聚氨酯股份有限公司是国内唯一一家大规模聚合MDI的生产厂,同时也是世界上第六个拥有MDI制造技术自主知识产权的企业。
近几年,公司在不断扩大生产能力的同时,产品质量也是一年一个新台阶,在此基础上,研制出了专门用于冰箱(柜)保温生产用的聚合MDI(牌号PM-2010),为了适应市场的要求,我们除了评价其在CFC-11体系和环戊烷体系中的发泡行为,对目前使用较多的环/异戊烷体系也进行了评价。
首先介绍了冰箱用聚合MDI的评价方法,并在环/异戊烷体系中对PM-2010与国外目前用于冰箱的著名品牌的聚合MDI(44V20L)进行流动性及泡沫物性等方面的比较。
1 实验部分1.1 原料和设备1.1.1 发泡试验原料组合聚醚;发泡剂:环/异戊烷(质量比70/30);多异氰酸酯(聚合MDI有两种:PM-2010,烟台万华聚氨酯股份有限公司;44V20L,Bayer公司1.1.2 设备高压发泡机,HC40,意大利Cannon公司;冰箱模具,见图1;方模尺寸为300mm×300mm×80mm。
冷藏集装箱用环保发泡剂开展趋势冷藏集装箱用环保发泡剂开展趋势1 冷藏集装箱用发泡剂开展现状硬质聚氨酯泡沫塑料具有优良的保温、力学、电学和声学性能以及优异的绝热性能,其密度、强度、硬度等均可以随着原料配方的不同而改变,且其成型施工十分方便,在冰箱冰柜、冷藏运输、建筑绝热、管道绝热、工业储罐和家具制造等领域获得越来越广泛的应用。
CFC-11是第一代聚氨酯泡沫发泡剂的典型代表,广泛应用于聚氨酯泡沫塑料行业;但是,CFC类物质对臭氧层的破坏作用较大,根据?蒙特利尔议定书?的规定,CFC类物质已经被全面禁止使用。
【1】HCFC-141b是在商业上可以替代CFC-11的最成熟的发泡剂,但HCFC类物质具有一定的臭氧破坏作用和温室效应,因此,其必将被新的环保发泡剂所取代。
过去我国冷藏集装箱生产企业主要采用HCFC-141b作为冷藏集装箱聚氨酯泡沫的发泡剂。
新修订的?蒙特利尔议定书?要求兴旺国家在2030年1月1日前停止使用和生产HCFC-141b 发泡剂,开展中国家在2040年1月1日前停止使用HCFC-141b发泡剂。
我国政府制定的淘汰含HCFC物质的方案为:除少数维修使用外,到2030年停止生产和使用HCFC;2021年冷藏集装箱行业生产和消费HCFC-141b的水平维持在2021年和2021年的平均水平,到2021年全面停止使用HCFC-141b发泡剂。
可见,冷藏集装箱行业采用环保发泡剂替代HCFC-141b 发泡剂已经到了刻不容缓的地步。
2 冷藏集装箱用环保发泡剂开展概况环保发泡剂主要指臭氧消耗潜能值为0、全球变暖潜能值较小、对环境友好的绿色发泡剂。
【2】目前可替代HCFC-141b的环保发泡剂主要有HFC-245fa,HFC-LBA,HFC-365mfc和环戊烷等。
常用发泡剂的物理、化学性质如表1所示。
2.1 HFC-245faHFC-245fa发泡剂为美国Honeywell公司的专利产品。
HFC-245fa具有ODP为0、GWP较小、不可燃、无毒、无闪点等优点,是一种新型环保发泡剂。
摘要环戊烷作为一种成熟的发泡剂在聚氨酯发泡领域得到了广泛的运用,常温下无色透明,易于挥发,与组合聚醚的相容性好,但环戊烷作为危险化学品,在其爆炸范围内易燃易爆。
应用于工业生产时,需要对储存和发泡场所增加必要的安全监控与报警系统。
环戊烷发泡在冷藏集装箱生产中的安全设施主要涉及到环戊烷储存及输送系统、环戊烷静态预混系统、环戊烷高压发泡生产等环节,每个环节根据环戊烷的不同应用状态采取不同的安全监控系统、安全报警系统和抽排风系统,及时排除释放在周围的环戊烷气体,保障静态预混和发泡区域的安全生产。
文章探讨的内容主要包括以下几点:(1)根据环戊烷的物理特性,研究其作为新型发泡剂替代HCFC-141b具有的优势,得出在冷藏集装箱工业生产中使用环戊烷的可行性。
(2)环戊烷作为易燃易爆的危险化学品,研究其在工业生产中的危险性,计算其产生的后果,并识别使用过程的危险因素。
(3)针对在环戊烷在使用过程中的危险因素,重点研究在环戊烷储存、环戊烷预混、环戊烷发泡过程中的解决措施,如何配备抽风系统、安全监控系统、氮气保护系统等安全措施。
(4)对环戊烷发泡所采用的安全措施通过标准气体检测法和试生产的方式进行检测,验证所采取的安全措施满足环戊烷发泡的安全要求。
关键词:环戊烷静态预混爆炸范围安全监控排风系统ABSTRACTCyclopentane as a kind of mature foaming agent has been widely used in the field of polyurethane foaming, it is colorless and transparent at room temperature, easy to V olatilize, has good compatibility with combination of polyether, but cyclopentane is flammable and explosive when in its explosion range, so safety monitoring and alarm system need to be increased necessary for storage and foaming places when applied to industrial production.Security applications of cyclopentane foaming in the refrigerated container mainly inV olves in links of cyclopentane storage and transportation system, static premixed system of cyclopentane, high pressure foaming production of cyclopentane, different security monitoring system, security alarm system and smoke exhaust system are took according to the different application state of cyclopentane, and promptly eliminate cyclopentane gas releasing in the surrounding, for safeguarding safety production in regions of static premixed and foaming.The article discussing the content mainly includes the following:(1) The conclusion of cyclopentance used as refrigerated container foaming agent is drew, according to the advantages of cyclopentane as a new foaming agent in the refrigerated container industrial production instead of HCFC-141b.(2) How inflammable and explosive dangerous cyclopentane to be safely discharging and conveying, safety measures must be considered in the process of its mass storage, and introducing the operation specification used in the actual production.(3) How security monitoring probes to be allocated, how convulsions system to be selected, the online working effect of all systems when cyclopentane is static premixed.(4) The application of cyclopentane foaming technology in the refrigerated container, how security measures to be designed and collocated according to the actual production elements, the necessity and application effect of safety related systems in practical industrial production.Keywords: cyclopentane; static premixed; explosion range; safety monitor; exhaust system目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1研究的背景及意义 (1)1.2HCFC-141B替代方案 (1)1.2.1HFC发泡替代方案 (1)1.2.2烷烃发泡发泡替代方案 (2)1.2.3全水发泡替代方案 (3)1.3环戊烷发泡工艺与现状 (4)1.4小结 (5)第二章环戊烷发泡的危险性分析 (7)2.1环戊烷发泡预先危险性分析 (7)2.2环戊烷储罐爆炸事故后果模拟评价 (7)2.3小结 (10)第三章环戊烷储存系统与安全解决方案 (11)3.1环戊烷储存系统的选型与安全组成部分 (11)3.1.1 环戊烷储罐的选型 (11)3.1.2 环戊烷储存系统安全的组成部分 (11)3.2环戊烷储罐区的安全解决方案 (14)3.3环戊烷储存系统安全操作要点 (17)3.3.1 储存技术指标 (17)3.3.2 环戊烷卸料 (18)3.3.3 环戊烷输送 (19)3.4本章小结 (20)第四章环戊烷静态预混与安全预防措施 (21)4.1环戊烷预混系统的设备选型 (21)4.2环戊烷预混系统的安全配置解决方案 (22)4.2.1 可燃气体探测与安全报警系统方案 (23)4.2.2 环戊烷抽排风系统方案设计 (27)4.2.2.1 排风风机的选型设计 (27)4.2.2.2 排风烟囱 (28)4.2.2.3 接地系统 (29)4.2.2.4 电器冗余控制系统 (29)4.2.2.5 风机及运行控制要求 (29)4.2.3 应急发电系统 (30)4.2.4 氮气发生装置 (31)4.2.5 火灾报警与灭火系统 (32)4.3环戊烷预混区的安全设计要求 (32)4.4本章小结 (33)第五章环戊烷发泡的安全解决方案 (34)5.1环戊烷发泡机工作原理及安全解决方案 (34)5.1.1环戊烷发泡机工作原理 (34)5.1.2 环戊烷发泡机混合头的选型 (36)5.1.3 戊烷发泡机在安全上的解决方案: (37)5.2环戊烷发泡生产线配置 (40)5.2.1 冷藏集装箱板材发泡原理 (40)5.2.2 环戊烷发泡的反应 (41)5.2.3 环戊烷发泡的工艺要求 (43)5.2.4 板发泡线的安全配置方案 (44)5.2.5 门板发泡线安全配置方案 (46)5.2.6 二次发泡线安全配置方案 (46)5.3本章小结 (48)第六章环戊烷发泡安全性验证 (49)6.1环戊烷储存和预混系统的安全性验证 (49)6.1.1 标准气体调试检验法 (49)6.1.2 试生产验证 (50)6.2环戊烷发泡生产线安全性验证 (50)6.3本章小结 (52)结论与展望 (54)结论 (54)展望 (54)参考文献 (56)攻读硕士学位期间取得的研究成果 (60)附录1 (61)1.1环戊烷的特性参数 (61)1.2环戊烷的理化特性 (61)附录2 环戊烷危险区域进出人员登记表 (62)附录3环戊烷储罐区巡检记录表 (63)致谢 (64)第一章绪论第一章绪论1.1 研究的背景及意义1992年11月,蒙特利尔协议书缔约方大会在哥本哈根召开,会议对《关于消耗臭氧层物质的蒙特利尔协议书》进行了修订,形成了哥本哈根修正案[1]。