复变函数复习提纲及例题
- 格式:pdf
- 大小:171.38 KB
- 文档页数:9
复变函数复习提纲一.填空题1) 复数1+i 的指数形式是ei42π,复数1-i 的指数形式是ei 42π-2)=-38⎪⎭⎫ ⎝⎛+++32sin 32cos 2ππππk k ()2,1,0=k3) cos (i π)=2e eππ+- sin (i π)=2e eππ--4) Lni=i k i k i πππ⎪⎭⎫⎝⎛+=+24122 ),1,0( ±=k 5)21i+ 的主值为()2ln sin 2ln cos 2ln i e +,21i - 的主值为()2ln sin 2ln cos 2ln i e - 6) 设a 为围线C 内部的一点,则=-⎰Caz dzi π2 7) 幂级数∑∞=12n n nz 的收敛半径为 18) 函数ez的泰勒展式为 +++++!!212n z zzn)(+∞<z9) 如果函数()z f w =在区域D 内 可微 则称()z f 为区域D 内的解析函数 10) 柯西积分定理:设()z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条围线,则()0=⎰Cdz z f11)函数cosz 的泰勒展式为()()∑-∞=02!21n nnn z ()+∞<z12)柯西积分公式:设区域D 的边界是围线(或复围线)C ,()z f 在D 内解析,在C D D +=上 连续,则有 ()()⎰-=ζζζπd zf i z f 21 ()D z ∈二. 证明函数()z z f =在z 平面上任何点都不解析. 证明: ()yx z z f 22+==∴()yx y x u 22,+=()0,=y x v 当()()0,0,≠y x 时yx yx yyu xxu2222,+=∂∂+=∂∂yvx v ∂∂==∂∂0 ∴xvy u y v x u ∂∂-=∂∂∂∂=∂∂,不能同时成立 ∴ 函数在平面上的任何点都不解析三. 求cosz-1的全部零点,并指出它们的级.解:cosz-1在z 平面上解析.由cosz-1=0得2=+-eeiziz即()1,012==-e e iziz故 πk z 2= () ,1,0±=k 这就是cosz-1在z 平面上的全部零点,全为二级.四. 将函数()()()211--=z z z f 分别在(1)圆z <1;(2)圆环1<z <2内展开成罗朗级数.解: 函数()()()211--=z z z f =1121---z z (1) 在圆z <1内.因,21<<z 即12<z ∴()z n n n z z z f ∑∞=+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛---=01211212111(2)在圆环1<z <2内.因12,11<<z z ∴()()()211--=z z z f=zz z 111121121----=∑∑∞=-∞=--11011212n n n n nzz z=∑∑∞=∞=+--1112n nn n nzz五.设()()1225--=z zz z f 分别计算(1) ()z f s z 0Re = (2) ()z f s z 1Re =解:不难知道z=0及 z=1分别为函数()()1225--=z zz z f 的一级和二级极点∴()z f s z 0Re ==()221250-=--=z z z∴ ()z f s z 1Re ==22'22511====⎪⎭⎫ ⎝⎛-zz z z z六. 利用残数定理求积分dz zz z⎰=13cos解: 函数()zzz f 3cos =只以z=0为三级极点()z f s z 0Re ==[]21"!21cos 0-==z z ∴dz zz z⎰=13cos =i i ππ-=⎪⎭⎫⎝⎛-212七.求出将单位圆1<z 保形变换成单位圆1<w 的线性变换,并使a z =()0,1≠<a a 变到0=w .解:根据线性变换保对称点的性质,点a 关于单位圆周1=z 的对称点aa1*=,应该变成0=w 关于单位圆周1=w 的对称点∞=w ,因此所求变换具有形式az az kw 1--= 即 az a z w k --=11 其中a k k=1是常数.选择k 1,使得z=1变成单位圆周1=w 上的点,于是1111=--a ak 即11=k因此可令e k i β=1(β是常数),最后得到所求的变换为()11<--=a azaz w ei β的留数。
《复变函数》 复习资料1一、判断题1. 把角形域映射为角形域用指数函数映射( )2.3.4.5.6.7. 分式线性映射在复平面上具有共形性、保圆性、保对称性。
( )8.9.10.二、解答题1.设)1()(2z z e z f z +=,求()f z 在1||0<<z 的洛朗展式(只写出含1z到2z 各项). 2.利用留数定理计算复积分I =21az z e dz =⎰+1()()n n z dzz a z b =--⎰ (01,01a b <<<<且,a b n ≠为自然数).3.利用留数定理计算实积分θθθπd ⎰-20cos 452cos 4.三、解答与证明题1.如果在1z <内,函数()f z 解析,且1()1f z z≤-,求()(0)n f 的最优估计值. 2.(1)函数211x+当x 为实数时,都有确定的值且在全实轴上有任意阶导数,但它的泰勒展开式: -+-=+422111x x x却只当1<x 时成立,试说明其原因; (2)利用惟一性定理证明:210(1)sin ,(21)!n n n z z n ++∞=-=+∑ 1z <.3.设)(z ϕ在:1C z =内解析且连续到C ,在C 上 ()1z ϕ<试证 在C 内部2()3z z z ϕ=+只有一个根0z .4. 设D 为单连通区域,()f z 在D 内解析,C 在D 内一条周线,0D 为C 的内部.若对于任意的0z D ∈都有1()Re 12C f d i z ξξπξ⎧⎫=⎨⎬-⎩⎭⎰,则在D 内恒有()f z 1ic =+,其中c 为实常数.答案一、1-5 FFTTF 6-10 TFFTF二、解答题1、设)1()(2z z e z f z +=,求()f z 在1||0<<z 的洛朗展式(只写出含1z 到2z 各项) 解:)1()(2z z e z f z+=211z e z z =+ =21(1)2!3!z z z ++++(2421(1)n n z z z -+-+-+)=215126z z z +--+(1||0<<z ).2、利用留数定理计算复积分I =21az z e dz =⎰+1()()n n z dzz a z b =--⎰ (01,01a b <<<<且,a b n ≠为自然数)解:因为 ||1a <,||1b <且a b ≠ 所以1||1()()n n z dzI z a z a ==--⎰=2i π[Re ()z a s f z =+Re ()z bs f z =] =12121(1)...(22)112(1)()0(1)!()()n n n n n n i n b a a b π---⎡⎤---+=⎢⎥---⎣⎦设2I =21az z e dz =⎰,因为在单位圆周1z =内2az e 只有一个本质奇点0z =,在该点的去心领域内有洛朗展式:2az e =22412!a a z z+++所以2Re 0az z s e ==,故20I =,因此原积分值为零。
复变函数复习提纲一、复数及复平面上的运算1.复数的定义和基本性质2.复数的表示形式:直角坐标形式和极坐标形式3.复数的加法和减法4.复数的乘法和除法5.复数的共轭、模和幅角二、复变函数的定义1.复变函数的定义和常见符号表示2.复变函数的实部和虚部3.复变函数的可导性和全纯性4.复变函数的解析函数和全纯函数5.复变函数与实变函数的区别三、复变函数的基本运算1.复变函数的和、差、积、商的性质2.复变函数的乘方和开方3.复变函数的复合函数和反函数4.复变函数的三角、指数和对数函数5.基本初等函数的推广四、复变函数的级数展开1.复变函数的幂级数展开2.零点的意义和展开中的唯一性3.幂级数的敛散性和收敛半径4.幂级数的和函数和导函数5.复变函数的泰勒级数展开和洛朗级数展开五、复变函数的积分1.复变函数的定积分和不定积分2.瑕积分和主值积分的定义3.复变函数的原函数和柯西-黎曼积分定理4.瑕积分和主值积分的计算方法5.狄利克雷定理和焦函数的应用六、解析函数的应用1.几何转化和连续映射2.物理应用:流体流动和电场问题3.工程应用:电阻网络和热传导问题4.统计应用:随机过程和随机变量5.数学应用:多复变数函数和复变函数的边界性质七、复变函数的解析延拓1.裂点和分岔点的概念和性质2.加点后的解析延拓和解析延拓的唯一性3.互补法和不动点法的应用4.点列内闭包性质和整函数性质的判别5.亚纯函数和亚纯函数的零点性质八、复变函数的几何应用1.复变函数的映射和对应关系2.线性变换和保持角度的特殊变换3.保形映射和自共轭函数的性质4.圆盘映射和单位圆盘函数5.黎曼映射和分式线性变换的应用九、复变函数的调和函数1.调和方程和调和函数的概念2.调和函数的基本性质和解析条件3.核函数和调和函数的唯一性4.调和函数的积分表示和傅里叶展开5.调和函数的应用:电势和温度分布以上是复变函数的复习提纲,包括了复数及复平面上的运算、复变函数的定义、复变函数的基本运算、复变函数的级数展开、复变函数的积分、解析函数的应用、复变函数的解析延拓、复变函数的几何应用和复变函数的调和函数等内容。
复变函数复习题一、填空题 1、设点z i =--1212,则其辐角主值arg z (-π<arg z ≤π)为_______.2、s in z 在z =0的幂级数展式为_______.3、多项式p(z )=z 8-5z 5-2z +1在单位圆内有_______个零点.4、设f(z)是区域D 内的单值函数,如果_______,则称f(z)在D 内是单叶的.5、方程αz +αz =c (α为非零复常数,c 是实常数)所表示的z 的轨迹为_______. 6设w =z 3,(z ∈G :-π<arg z <π)为一单值分支,若w(i)=-i,则w(-i)=_______. 1i 3=_______.2、0z =0是函数51cos )(zz z f -=的3、i y xy yi x x z f 322333)(--+=,则()f z '=4、=]0,sin 1[Re zz s .5、函数sin w z =在4z π=处的转动角为____6、幂级数∑∞=0)(cos n n z in 的收敛半径为R =____________1、复数-2是复数________的一个平方根。
2、设y 是实数,则sin(iy)的模为________。
3、设a>0,则Lna=________。
4、记号R es z =af(z)表示________。
5、设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件6、方程z=t+it (t 是实参数)给出的曲线为________。
二、计算题1、xxx dx 22214()()+++∞⎰2、.设z =132-i ,求|z |及Arg z .3、计算积分||z dz c⎰,其中C 是上半单位圆周,起点为-1,终点为1.4、求函数f (z )=14-e 2zz在z =0,∞的残数. 5、求())2)(1(--=z z zz f 在圆环域21<<z 和+∞<-<21z 内的洛朗展开式6、.设⎰-++=C d zz f ξξξξ173)(2,其中C 为圆周3||=z 的正向,求(1)f i '+7、计算积分dx x x x ⎰∞+∞-++54cos 22.8、y e v px sin =为调和函数,求p 的值,并求出解析函数iv u z f +=)( 9、求复数z=1-i 1+i的实部、虚部、模和辐角。
复变函数复习资料一、单项选择题1.解析函数),(),()(y x iv y x u z f +=的导函数为( B );(A )y x iu u z f +=')(; (B )y x iu u z f -=')(; (C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰C z z f .(A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在 ( C )(A )2-=z点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B )如果)(z f 在C 所围成的区域内解析,则0)(=⎰C dz z f (C )如果0)(=⎰C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ). (A) 的可去奇点;为z1sin ∞ (B) 的本性奇点;为z sin ∞ (C) ;1sin 1的孤立奇点为z ∞ (D) .sin 1的孤立奇点为z ∞二.填空题1.231i -的幅角是( ); 2.)1(i Ln +-的主值是( i 432ln 21π+ );3. 211)(z z f +=,=)0()5(f ( 0 );4.0=z 是 4sin z z z -的( 一级 )极点; 5. zz f 1)(=,=∞]),([Re z f s ( -1 );三.按要求完成下列各题(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a 解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c(2)计算⎰=++3342215d )2()1(z z z z z 解:(3).利用留数计算⎰--C z z z d )2)(1(12.其中C 是正向圆周3=z ;解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理 ]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π]1)1([Re 22zz f s i π= 234221521))1(2()11()1(1)1(z z zz z z f ++=0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z ⎰==++∴33422152d )2()1(z i z z z z π (4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.解 :∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z k k z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±==(3)的一级极点,为)(3z f z= (4)的三级极点;,为)(4,3,2z f z ±-=(5)的非孤立奇点。
复变函数论复习提纲复变函数论一、复数与复变函数一、要求(一)明确复数、区域、复平面、扩充复平面,逐段光滑曲线等概念。
(二)明确复变函数概念和几何意义,掌握一些简单函数的变换性质。
(三)掌握复变函数的极限和连续性的概念和基本性质。
(四)熟练掌握复数的有关计算,会作点集的图形。
二、考试内容(一)复数概念、复数的表示法及其代数运算、复数的模与幅角、共轭复数及其简单运算。
(二)平面点集基本概念,曲线(连续曲线、约当曲线、逐段光滑曲线)、区域(单连通区域、复连通区域)、复平面。
(三)复变函数的概念及其几何意义,复变函数的极限与连续性。
(四)无穷远点,扩充复平面。
二、解析函数一、要求(一)掌握导数、解析函数的概念。
(二)掌握C——R条件,并能熟练地判断复变函数的可导性和解析性。
(三)掌握复基本初等函数的定义和基本性质。
(四)掌握正整幂函数、根式函数、指数函数、对数函数的变换性质,了解根式函数单值解析分支的取法。
二、考试内容(一)导数、解析函数、C——R条件。
(二)初等函数:正整幂函数与根式函数,指数函数与对数函数,三解函数与反三角函数,双曲函数,一般幂函数和一般指数函数。
三、复变函数的积分一、要求(一)明确复积分的概念及其基本性质。
(二)会证柯西积分定理和柯西积分公式;理解解析函数的无限可微性和莫勒拉定理。
(三)熟练地掌握复积分的计算方法。
(四)理解刘维尔定理,会证代数基本定理。
(五)掌握解析函数与调和函数的关系。
二、考试内容(一)复积分的概念、基本性质及其计算方法。
(二)柯西积分定理(在f'(z)连续的条件下,用格林公式证明)。
不定积分,复连通区域上的柯西积分定理。
(三)柯西积分公式,解析函数的无限可微性。
(四)柯西不等式、刘维尔定理、代数基本定理。
(五)莫勒拉定理。
(六)解析函数与调和函数的关系。
四、解析函数的幂级数表示法一、要求(一)明确收敛、绝对收敛、一致收敛、内闭一致收敛、幂级数、收敛半径、收敛圆、泰勒级数等概念。