∴当m=3 时,该函数是二次函-1+(3-5)x+32, 即y=12x²-2x+9.
例3在情境2中,若某年级共有4个班参加篮球比赛,那么总共要比 多少场? 解:∵比赛的场次数
∴代入n=4, 得m=6 ∴总共要比6场
随堂练习
1.下列函数关系中,是二次函数的为( D
方法总结判断二次函数的方法
1. 自变量的最高次数是2次; 2.二次项系数a≠0;
iSyNVH1
i 凹量‘凿异业
一般地,形如 y=ax²+bx+c(a,b,c a≠0)的函数叫做二次函数。
是常数,
二次 函数
注意:a,b,c 分别是函数解析式的二次项系数、一次项系数和 常数项. (自变量的最高次数是2;二次项系数a≠0)
特殊形式
y=ax²(a≠0);y=ax²+bx(a≠0); y=ax²+c(a≠0,a,b,c 是常数).
解:比赛的场次数为
即
情境3悦悦通过调查发现,由于学生参加校运动会的积极性非常高,所以 今年学校增加了每个项目的参赛人数。已知今年有300名同学参赛,今年比 去年的参赛人数增加了t倍,若按照这样的增长速度,预计两年后的参赛人 数与t之间有怎样的关系?
解:两年后参赛人数f=300(1+t)², 即f=300t²+600t+300.
(1)求y与 x 之间的函数关系式,并写出自变量的取值范围;
解 :y=300+30(60-x)=-30x+2100(40≤x≤60). (2)设每星期的销售利润为W 元,求W 与 x 之间的函数关系式.
解 :W=(x-40)(-30x+2100)=-30x²+3300x-84000.