线段垂直平分线的性质定理及逆定理
- 格式:ppt
- 大小:223.50 KB
- 文档页数:11
线段垂直平分线的应用线段垂直平分线上的点到这条线段两个端点的距离相等,这是线段垂直平分线的一个重要性质,在解题过程中,若题目中出现或经过构造出现线段垂直平分线,利用上述性质可顺利解决问题.一、用于计算例1 如图1,点P 在∠AOB 内,点M 、N 分别是点P PEF 的周长为5,求MN 的长.分析:由图1知MN 的长是ME 、EF 、FN 而P 与M 关于OA 对称,P 与N 关于OB 对称,所以OA 、 OB 分别是PM 、PN 知EM=EP , FP=FN ,故MN 的长就是△PEF 的周长.解:因为P 与M 关于OA 对称,P 与N 关于OB 的垂直平分线,所以EM=EP , FP=FN .所以例2 如图2所示,DE 是△ABC 的边AB E 平分∠B AC ,若∠B=30º,求∠C 的度数.分析:由DE 是AB 边的垂直平分线可知BE=A E ∠B=∠1,又因为A E 是∠B AC 的角平分线,所以∠1=∠即可求出∠C 的度数. 解:因为DE 是AB 边的垂直平分线,所以BE=A E ∠B=∠1.因为∠B=30º,所以∠1=30º.又因为A E 平分∠B AC ,所以∠2=∠1=30º,即∠B AC=60º.因为∠C=180º-∠B AC -∠B ,所以∠C=90º.点评:通过以上两例可以看出,我们在求一些边长、周长或角的度数时,如果能恰当地二、用于证明例3 如图3,已知AB=AC , AD 平分∠BAC ,求证:∠分析:由已知AB=AC 及AD 平分∠BAC ,易想到连结BC ,得 等腰△ABC ,且AD 垂直平分BC ,从而有DB=CD 及BE=EC ,可得∠EBC=∠ECB ,∠DBC=∠DCB ,两式相减即有∠DBE=∠ECD .证明:连结BC ,因为AB=AC ,AD 平分∠BAC ,所以AD 垂 直平分BC ,所以BE=EC ,DB=CD ,所以∠EBC=∠ECB ,∠DBC= ∠DCB ,所以∠EBC -∠DBC=∠ECB -∠DCB ,即∠DBE=∠ECD 点评:本题也可以通过证明△ABE ≌△ACE 得∠AEB=∠AEC 及BE=EC ,再证明△BDE ≌△DCE .但这种证法显然没有利用线段垂直平分线性质来得简捷.例4 如图4,在△ABC 中,AB=2AC ,∠BAD=∠CAD ,分析:要证明CD ⊥CA ,只要使∠ACD=90º.由于AD=DB 可在AB 边上取中点E ,连结DE ,由AB=2AC 及∠BAD=∠得△ADE ≌△ADC ,从而得∠ACD=∠AED ,由AD=DB 知D 在AB 的垂直平分线上,可知∠AED=90º,问题解决.证明:在AB 边上取中点E ,连结DE ,因为AD=DB ,E 为中点,所以ED ⊥AB .因为AB=2AC ,所以AE=21AB= AC .在△ADE 和△ADC 中,AE= AC ,∠DAE=∠DAC ,AD 共用,所以△ADE ≌△ADC ,所以∠ACD=∠AED=90º,所以CD ⊥CA .点评:由于受习惯思维的影响,同学们在解题过程中,在可以用线段垂直平分线性质说明的问题,仍然用三角形全等的方法来解决,这就给解题增加的麻烦,我们应有意识地应用这个性质探求新的解题途径,切勿机械套用全等三角形知识.线段垂直平分线定理知识总结一、线段垂直平分线的性质定理说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。
线段垂直平分线的性质定理及其逆定理课前预习1.线段垂直平分线的性质定理:线段垂直平分线上的点到这条线段两个端点的2.线段垂直平分线定理的逆定理:到一条线段两个端点距离相等的点,在这条线段的 上。
【例1】如图所示,在△ABC 中,D 为BC 上的一点,连结AD ,点E 在AD 上,并且∠1=∠2,∠3=∠4。
求证:AD 垂直平分BC【例2】判断:若PA=PB ,则过点P 的直线是线段AB 的垂直平分线当堂训练知识点1:线段垂直平分线的性质1.如图所示,用两根钢索加固直立的电线杆,若要 使钢索AB 与AC 的长度相等,•需加_ _______条件,理由是___ _____.2.(09钦州)如图,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分D .CD 平分∠ACB3.如图所示,CD 是AB 的垂直平分线,若AC=1.6cm ,BD=2.3cm ,则四边形ABCD 的周长是( ).A .3.9cmB .7.8cmC .4cmD .4.6cm4.如图所示,∠C=90°,AB 的垂直平分线交BC 于D ,连接AD ,若∠CAD=20°,则∠B=( ).A .20°B .30°C .35°D .40°知识点2:线段垂直平分线定理的逆定理5.AB =AD ,BC =CD ,AC 、BD 相交于点E .则AB 是线段CD 的___ _____.课后作业6.给出以下两个定理:①线段垂直平分线上的点到这条线段两个端点的距离相等②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.应用上述定理进行如下推理,如图,直线l 是线段MN 的垂直平分线.∵点A 在直线l 上, ∴AM=AN ( ).∵BM=BN , ∴点B 在直线l 上( ).∵CM≠CN,∴点C 不在直线l 上.这是因为如果点C 在直线l 上,那么CM =CN ( ). 这与条件CM≠CN 矛盾.以上推理中各括号内应注明的理由依次是( ) A .②①① B .②①② C .①②②D .①②①7.如图,已知直线MN 是线段AB 的垂直平分线,垂足为D ,点P 是MN 上一点,若PA=10 cm ,则PB=______cm 。
2024北师大版数学八年级下册1.3.1《线段垂直平分线的性质定理及其逆定理》教案一. 教材分析《线段垂直平分线的性质定理及其逆定理》是北师大版数学八年级下册第1章第3节的内容。
本节课主要学习了线段垂直平分线的性质定理及其逆定理,这两个定理是几何中的重要知识,对于学生理解和掌握几何图形的性质具有重要意义。
教材通过生动的实例引入定理,并通过证明和应用让学生深入理解定理的含义。
二. 学情分析学生在学习本节课之前,已经学习了线段的中垂线、垂线的性质等知识,对于垂直平分线的概念有一定的了解。
但是,对于定理的证明和应用还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过观察、思考、证明和应用等方式,逐步理解和掌握定理。
三. 教学目标1.理解线段垂直平分线的性质定理及其逆定理。
2.学会运用性质定理及其逆定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.性质定理及其逆定理的理解和证明。
2.性质定理及其逆定理在实际问题中的应用。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过设置问题,引导学生观察、思考、证明和应用,激发学生的学习兴趣,培养学生的自主学习能力。
六. 教学准备1.教学PPT。
2.几何模型和教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:如何找到一个线段的中点,使得从这个中点向线段的两个端点引垂线,垂线的长度相等?引导学生思考和讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现线段垂直平分线的性质定理及其逆定理,让学生初步了解定理的内容。
然后,通过几何模型和教具,引导学生观察、思考和证明定理。
3.操练(10分钟)学生分组合作,运用性质定理及其逆定理解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师通过PPT展示一些练习题,让学生独立完成。
然后,学生进行讲解和讨论,巩固对性质定理及其逆定理的理解和应用。
线段垂直平分线定理知识总结一、线段垂直平分线的性质定理说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。
例题、如图所示,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长。
分析:题中给出了线段垂直平分线这个条件,所以可以考虑运用其性质定理,从而得出AE=BE ,把BE 与AE 进行等量代换,再根据△BCE 的周长及AC 的长,可求出BC 的长。
解:因为ED 是线段AB 的垂直平分线, 所以BE=AE 。
因为△BCE 的周长等于50, 即BE +EC +BC=50, 所以AE +EC +BC=50。
又因为AE +EC=AC=27, 所以BC=50-27=23。
二、线段垂直平分线定理的逆定理证明某一条直线是另一条线段的垂直平分线有两种方法:第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条EDCBA线段的直线,叫做这条线段的垂直平分线。
使用这种方法必须满足两个条件:一是垂直二是平分;第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。
例题1、如图所示,P 为线段AB 外的一点,并且PA=PB 。
求证:点P 在线段AB 的垂直平分线上。
分析:要想说明某一点在线段的垂直平分线上,可以根据线段的垂直平分线的定义来进行判断。
证明:过点P 作PC ⊥AB ,垂足为点C 。
因为PA=PB , 所以∠A=∠B 。
又因为PC ⊥AB , 所以∠PAB=∠PBA=90°. 在△PAC 和△PBC 中A B PAC PBC PC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩所以△PAC ≌△PBC , 所以AC=BC 。
又因为PC ⊥AB ,所以PC 垂直平分线段AB ,所以点P 在线段AB 的垂直平分线上。
线段垂直平分线的逆定理
线段垂直平分线的逆定理是一个有趣的几何定理,可以用来证明某些有关线段的性质。
它也被称为三角形垂直平分线定理,因为它可以用来证明三角形内角和对应的外角之间的关系。
定理:如果一条线段AB与CD垂直平分,则
∠ACD=∠BDC。
证明:
设线段AB的中点为M,线段CD的中点为N。
1. 由垂直平分线定理可知,AM⊥CD,BN⊥CD。
2. 因此,线段MN是CD的中垂线,所以MN⊥CD。
3. 又因为AM⊥CD,MN⊥CD,故M和N都在同一个CD 的平面上,于是,∠AMN=∠BNM。
4. 由边平行定理得,∠ACD=∠AMN=∠BNM=∠BDC,即证明了∠ACD=∠BDC。
结论:如果一条线段AB与CD垂直平分,则
∠ACD=∠BDC。
线段垂直平分线的逆定理是几何学中重要的定理,它可以用来证明三角形内角和外角的关系。
例如:如果一个三角形的内角A、B和C的大小分别为α、β和γ,如果AO与BC垂直平分,那么α+γ=2β。
它还可以用来证明其
他任意多边形的角之和等于(n-2)×180°,其中n为多边形的边数。
这也是一个有趣的定理,可以用来解决许多几何问题,是几何学中不可或缺的一部分。
2024北师大版数学八年级下册1.3.1《线段垂直平分线的性质定理及其逆定理》教学设计一. 教材分析《线段垂直平分线的性质定理及其逆定理》是北师大版数学八年级下册第1章第3节的内容。
本节课主要介绍线段垂直平分线的性质定理及其逆定理,通过证明线段垂直平分线上的点到线段两端点的距离相等,以及线段垂直平分线垂直平分线段这两个性质,让学生理解线段垂直平分线的重要性和应用。
同时,通过逆定理的证明,让学生掌握如何判断一条直线是线段的垂直平分线。
二. 学情分析学生在学习本节课之前,已经掌握了线段、射线、直线的基本概念,以及全等三角形的性质和判定。
但线段垂直平分线的性质定理及其逆定理较为抽象,需要学生具备一定的逻辑思维能力和空间想象能力。
因此,在教学过程中,需要关注学生的认知水平,通过生动形象的比喻和具体例子,帮助学生理解和掌握。
三. 教学目标1.理解线段垂直平分线的性质定理及其逆定理。
2.学会运用线段垂直平分线的性质定理及其逆定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.线段垂直平分线的性质定理及其逆定理的证明。
2.如何运用线段垂直平分线的性质定理及其逆定理解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体案例,让学生理解线段垂直平分线的性质定理及其逆定理;通过小组合作学习,培养学生之间的交流和合作能力。
六. 教学准备1.PPT课件。
2.尺子、圆规、直尺等作图工具。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入:在平面直角坐标系中,点A(2,3)和点B(6,7)之间有一条线段,求线段的垂直平分线方程。
让学生思考如何解决这个问题,从而引出本节课的主题。
2.呈现(15分钟)讲解线段垂直平分线的性质定理及其逆定理。
通过PPT课件和板书,呈现定理的证明过程,让学生理解定理的含义。
同时,给出一些例子,让学生学会运用定理解决实际问题。
垂直平分线的定理
1 垂直平分线的定义
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴。
2 垂直平分线定理
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线定理为:垂直平分线垂直且平分其所在线段。
垂直平分线上任意一点,到线段两端点的距离相等。
三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
3 垂直平分线的逆定理
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
4 垂直平分线的判定方法
1、利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线。
2、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
线段垂直平分线的性质
线段垂直平分线的性质是线段垂直平分线上的点与线段两个端点的距离相等。
扩展资料:
垂直平分线,简称“中垂线”,是初中几何学科中占有绝大部分的非常重要的一部分。
垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
垂直平分线的性质:
1、垂直平分线垂直且平分其所在线段。
2、垂直平分线上任意一点,到线段两端点的距离相等。
3、三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
线段垂直平分线的性质定理及其逆定理习题精选(一)1.线段的垂直平分线定理是,逆定理是。
2.如图,DE是AB的垂直平分线,D是垂足,DE交BC于E,BC=32cm,AC=18cm,则△AEC的周长为 cm。
3.在△ABC中,∠BAC=110°, AB、AC的垂直平分线交BC于D、E,则∠DAE=。
4.如图,已知Rt△ABC中,∠C=90°,AB的垂直平分线交AB于E,交BC于D,∠CAD =20°,则∠B=。
5.若三角形中两边的垂直平分线的交点正好在第三边上,则这个三角形是 ( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形6.一个三角形的三边中垂线交点在形外,那么这个三角形是 ( )A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰直角三角形7.已知如图,∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB于B,则∠MAB的度数为( )A.50° B.40° C.60° D.20°8.在Rt△ABC中,∠C=90°,∠A=15°,AB的垂直平分线与AC相交于点M,则BC与MB的比为 ( )A.1︰3 B.1︰2 C. 2︰3 D. 3︰49.已知如图,AB=AD,CB=CD,求证:AC垂直平分BD。
10.已知如图,△ABC中,∠C=90°,∠B=15°,AB的中垂线交BC于点D,若BD=20cm,求AC的长。
11.如图△ABC中,∠C=90°,DE垂直平分AB,∠CAD︰∠BAD=2︰3,求∠ADB的度数。
12.如图,在等边△ABC中,∠B、∠C的平分线相交于O,BO、OC的垂直平分线分别交BC于E和F。
求证BE=EF=FC。
13.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于F,求证:E在AF的垂直平分线上。
线段的垂直平分线的性质定理及其逆定理一,复习:线段的垂直平分线的定义?
二,探究新知
测量发现:测量PA,PB,QA,QB
的长度,你有什么发现?
动手操作:将线段AB沿直线PQ对折,你有什么发现?
逻辑推理:已知:如图,直线MN⊥AB,垂足为C,AC=CB,点P在MN上. 求证:PA=PB
三,总结归纳:线段的垂直平分线的性质定理:
五,勤学善思
反过来,如果PA=PB ,那么点P 是否在线段AB 的垂直平分线上呢?
总结归纳
线段的垂直平分线的性质定理的逆定理:。
学以致用
如图,点C,D 是线段AB 外的两点,且AC=BC,AD=BD,AB 与CD 相交于点O. 求证:AO=BO
六,自我检测
1.如图,在△ABC 中,BC=8cm ,AB 的垂
直平分线交AB 于点D ,交边AC 于点E ,
△BCE 的周长等于18cm ,求AC 的长?
2.已知:如图,点E 是∠ AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C ,D ,连接CD 。
求证:OE 是CD 的垂直平分线。
线段的垂直平分线与角平分线【知识框架】1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,∵ CD ⊥AB ,且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C ,DF ⊥OB于点D , ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,图1图2图4∵点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,且PC=PD,∴点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系.(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.【典型例题】例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm【跟踪练习】(1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果△EBC 的周长是24cm ,那么BC=_________;(2)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果BC=8cm ,那么△EBC 的周长是______;(3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果∠A=28度,那么∠EBC=___.例2、已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE.【跟踪练习】已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC.求证:点O 在BC 的垂直平分线.例3、在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角C∠B的大小为_______________。