当前位置:文档之家› 晶圆制造工艺流程

晶圆制造工艺流程

晶圆制造工艺流程
晶圆制造工艺流程

晶圆制造工艺流程

1、表面清洗

2、初次氧化

3、CVD(Chemical Vapor deposition) 法沉积一层Si3N4 (Hot CVD 或LPCVD) 。

(1)常压CVD (Normal Pressure CVD)

(2)低压CVD (Low Pressure CVD)

(3)热CVD (Hot CVD)/(thermal CVD)

(4)电浆增强CVD (Plasma Enhanced CVD)

(5)MOCVD (Metal Organic CVD) & 分子磊晶成长(Molecular Beam Epitaxy)

(6)外延生长法(LPE)

4、涂敷光刻胶

(1)光刻胶的涂敷

(2)预烘(pre bake)

(3)曝光

(4)显影

(5)后烘(post bake)

(6)腐蚀(etching)

(7)光刻胶的去除

5、此处用干法氧化法将氮化硅去除

6 、离子布植将硼离子(B+3) 透过SiO2 膜注入衬底,形成P 型阱

7、去除光刻胶,放高温炉中进行退火处理

8、用热磷酸去除氮化硅层,掺杂磷(P+5) 离子,形成N 型阱

9、退火处理,然后用HF 去除SiO2 层

10、干法氧化法生成一层SiO2 层,然后LPCVD 沉积一层氮化硅

11、利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层

12、湿法氧化,生长未有氮化硅保护的SiO2 层,形成PN 之间的隔离区

13、热磷酸去除氮化硅,然后用HF 溶液去除栅隔离层位置的SiO2 ,并重新生成品质更好的SiO2 薄膜, 作为栅极氧化层。

14、LPCVD 沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成SiO2 保护层。

15、表面涂敷光阻,去除P 阱区的光阻,注入砷(As) 离子,形成NMOS 的源漏极。用同样的方法,在N 阱区,注入B 离子形成PMOS 的源漏极。

16、利用PECVD 沉积一层无掺杂氧化层,保护元件,并进行退火处理。

17、沉积掺杂硼磷的氧化层

18、濺镀第一层金属

(1)薄膜的沉积方法根据其用途的不同而不同,厚度通常小于1um 。

(2)真空蒸发法(Evaporation Deposition )

(3)溅镀(Sputtering Deposition )

19、光刻技术定出VIA 孔洞,沉积第二层金属,并刻蚀出连线结构。然后,用PECVD 法氧化层和氮化硅保护层。20、光刻和离子刻蚀,定出PAD 位置

21、最后进行退火处理,以保证整个Chip 的完整和连线的连接性

晶圆制造总的工艺流程

芯片的制造过程可概分为晶圆处理工序(Wafer Fabrication)、晶圆针测工序(Wafer Probe)、构装工序(Packaging)、测试工序(Initial Test and Final Test)等几个步骤。其中晶圆处理工序和晶圆针测工序为前段(Front End)工序,而构装工序、测试工序为后段(Back End)工序。

1、晶圆处理工序:本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。

2、晶圆针测工序:经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。

3、构装工序:就是将单个的晶粒固定在塑胶或陶瓷制的芯片基座上,并把晶粒上蚀刻出的一些引接线端与基座底部伸出的插脚连接,以作为与外界电路板连接之用,最后盖上塑胶盖板,用胶水封死。其目的是用以保护晶粒避免受到机械刮伤或高温破坏。到此才算制成了一块集成电路芯片(即我们在电脑里可以看到的那些黑色或褐色,两边或四边带有许多插脚或引线的矩形小块)。

4、测试工序:芯片制造的最后一道工序为测试,其又可分为一般测试和特殊测试,前者是将封装后的芯片置于各种环境下测试其电气特性,如消耗功率、运行速度、耐压度等。经测试后的芯片,依其电气特性划分为不同等级。而特殊测试则是根据客户特殊需求的技术参数,从相近参数规格、品种中拿出部分芯片,做有针对性的专门测试,看是否能满足客户的特殊需求,以决定是否须为客户设计专用芯片。经一般测试合格的产品贴上规格、型号及出厂日期等标识的标签并加以包装后即可出厂。而未通过测试的芯片则视其达到的参数情况定作降级品或废品

ETCH

何谓蚀刻(Etch)?

答:将形成在晶圆表面上的薄膜全部,或特定处所去除至必要厚度的制程。

蚀刻种类:

答:(1) 干蚀刻(2) 湿蚀刻

蚀刻对象依薄膜种类可分为:

答:poly,oxide, metal

何谓dielectric 蚀刻(介电质蚀刻)?

答:Oxide etch and nitride etch

半导体中一般介电质材质为何?

答:氧化硅/氮化硅

何谓湿式蚀刻

答:利用液相的酸液或溶剂;将不要的薄膜去除

何谓电浆Plasma?

答:电浆是物质的第四状态.带有正,负电荷及中性粒子之总和;其中包含电子,正离子,负

离子,中性分子,活性基及发散光子等,产生电浆的方法可使用高温或高电压.

何谓干式蚀刻?

答:利用plasma将不要的薄膜去除

何谓Under-etching(蚀刻不足)?

答:系指被蚀刻材料,在被蚀刻途中停止造成应被去除的薄膜仍有残留

何谓Over-etching(过蚀刻)

答:蚀刻过多造成底层被破坏

何谓Etch rate(蚀刻速率)

答:单位时间内可去除的蚀刻材料厚度或深度

何谓Seasoning(陈化处理)

答:是在蚀刻室的清净或更换零件后,为要稳定制程条件,使用仿真(dummy)晶圆进行数次的蚀刻循环。

Asher的主要用途:

答:光阻去除

Wet bench dryer 功用为何?

答:将晶圆表面的水份去除

列举目前Wet bench dry方法:

答:(1) Spin Dryer (2) Marangoni dry (3) IPA Vapor Dry

何谓Spin Dryer

答:利用离心力将晶圆表面的水份去除

何谓Maragoni Dryer

答:利用表面张力将晶圆表面的水份去除

何谓IPA Vapor Dryer

答:利用IPA(异丙醇)和水共溶原理将晶圆表面的水份去除

测Particle时,使用何种测量仪器?

答:Tencor Surfscan

测蚀刻速率时,使用何者量测仪器?

答:膜厚计,测量膜厚差值

何谓AEI

答:After Etching Inspection 蚀刻后的检查

AEI目检Wafer须检查哪些项目:

答:(1) 正面颜色是否异常及刮伤(2) 有无缺角及Particle (3)刻号是否正确

金属蚀刻机台转非金属蚀刻机台时应如何处理?

答:清机防止金属污染问题

金属蚀刻机台asher的功用为何?

答:去光阻及防止腐蚀

金属蚀刻后为何不可使用一般硫酸槽进行清洗?

答:因为金属线会溶于硫酸中

"Hot Plate"机台是什幺用途?

答:烘烤

Hot Plate 烘烤温度为何?

答:90~120 度C

何种气体为Poly ETCH主要使用气体?

答:Cl2, HBr, HCl

用于Al 金属蚀刻的主要气体为

答:Cl2, BCl3

用于W金属蚀刻的主要气体为

答:SF6

何种气体为oxide vai/contact ETCH主要使用气体?

答:C4F8, C5F8, C4F6

硫酸槽的化学成份为:

答:H2SO4/H2O2

AMP槽的化学成份为:

答:NH4OH/H2O2/H2O

UV curing 是什幺用途?

答:利用UV光对光阻进行预处理以加强光阻的强度

"UV curing"用于何种层次?

答:金属层

何谓EMO?

答:机台紧急开关

EMO作用为何?

答:当机台有危险发生之顾虑或已不可控制,可紧急按下

湿式蚀刻门上贴有那些警示标示?

答:(1) 警告.内部有严重危险.严禁打开此门(2) 机械手臂危险. 严禁打开此门(3) 化学药剂危险. 严禁打开此门

遇化学溶液泄漏时应如何处置?

答:严禁以手去测试漏出之液体. 应以酸碱试纸测试. 并寻找泄漏管路.

遇IPA 槽着火时应如何处置??

答:立即关闭IPA 输送管路并以机台之灭火器灭火及通知紧急应变小组

BOE槽之主成份为何?

答:HF(氢氟酸)与NH4F(氟化铵).

BOE为那三个英文字缩写?

答:Buffered Oxide Etcher 。

有毒气体之阀柜(VMB)功用为何?

答:当有毒气体外泄时可利用抽气装置抽走,并防止有毒气体漏出

电浆的频率一般13.56 MHz,为何不用其它频率?

答:为避免影响通讯品质,目前只开放特定频率,作为产生电浆之用,如

380~420KHz ,13.56MHz,2.54GHz等

何谓ESC(electrical static chuck)

答:利用静电吸附的原理, 将Wafer 固定在极板(Substrate) 上

Asher主要气体为

答:O2

Asher机台进行蚀刻最关键之参数为何?

答:温度

简述TURBO PUMP 原理

答:利用涡轮原理,可将压力抽至10-6TORR

热交换器(HEAT EXCHANGER)之功用为何?

答:将热能经由介媒传输,以达到温度控制之目地

简述BACKSIDE HELIUM COOLING之原理?

答:藉由氦气之良好之热传导特性,能将芯片上之温度均匀化

ORIENTER 之用途为何?

答:搜寻notch边,使芯片进反应腔的位置都固定,可追踪问题

简述EPD之功用

答:侦测蚀刻终点;End point detector利用波长侦测蚀刻终点

何谓MFC?

答:mass flow controler气体流量控制器;用于控制反应气体的流量

GDP 为何?

答:气体分配盘(gas distribution plate)

GDP 有何作用?

答:均匀地将气体分布于芯片上方

何谓isotropic etch?

答:等向性蚀刻;侧壁侧向蚀刻的机率均等

何谓anisotropic etch?

答:非等向性蚀刻;侧壁侧向蚀刻的机率少

何谓etch 选择比?

答:不同材质之蚀刻率比值

何谓AEI CD?

答:蚀刻后特定图形尺寸之大小,特征尺寸(Critical Dimension)

何谓CD bias?

答:蚀刻CD减蚀刻前黄光CD

简述何谓田口式实验计划法?

答:利用混合变因安排辅以统计归纳分析

何谓反射功率?

答:蚀刻过程中,所施予之功率并不会完全地被反应腔内接收端所接受,会有部份值反射掉,此反射之量,称为反射功率

Load Lock 之功能为何?

答:Wafers经由loadlock后再进出反应腔,确保反应腔维持在真空下不受粉尘及湿度的影响.

厂务供气系统中何谓Bulk Gas ?

答:Bulk Gas 为大气中普遍存在之制程气体, 如N2, O2, Ar 等.

厂务供气系统中何谓Inert Gas?

答:Inert Gas 为一些特殊无强烈毒性的气体, 如NH3, CF4, CHF3, SF6 等.

厂务供气系统中何谓Toxic Gas ?

答:Toxic Gas 为具有强烈危害人体的毒性气体, 如SiH4, Cl2, BCl3 等.

机台维修时,异常告示排及机台控制权应如何处理?

答:将告示牌切至异常且将机台控制权移至维修区以防有人误动作

冷却器的冷却液为何功用?

答:传导热

Etch之废气有经何种方式处理?

答:利用水循环将废气溶解之后排放至废酸槽

何谓RPM?

答:即Remote Power Module,系统总电源箱.

火灾异常处理程序

答:(1) 立即警告周围人员. (2) 尝试3 秒钟灭火. (3) 按下EMO停止机台. (4) 关闭VMB Valve 并通知厂务. (5) 撤离.

一氧化碳(CO)侦测器警报异常处理程序

答:(1) 警告周围人员. (2) 按Pause 键,暂止Run 货. (3) 立即关闭VMB 阀,并通知厂务. (4) 进行测漏.

高压电击异常处理程序

答:(1) 确认安全无虑下,按EMO键(2) 确认受伤原因(误触电源,漏水等)(3) 处理受伤人员

T/C (传送Transfer Chamber) 之功能为何?

答:提供一个真空环境, 以利机器手臂在反应腔与晶舟间传送Wafer,节省时间.

机台PM时需佩带面具否

答:是,防毒面具

机台停滞时间过久run货前需做何动作

答:Seasoning(陈化处理)

何谓Seasoning(陈化处理)

答:是在蚀刻室的清净或更换零件后,为要稳定制程条件,使用仿真(dummy)晶圆进行数次的蚀刻循环。

何谓日常测机

答:机台日常检点项目, 以确认机台状况正常

何谓WAC (Waferless Auto Clean)

答:无wafer自动干蚀刻清机

何谓Dry Clean

答:干蚀刻清机

日常测机量测etch rate之目的何在?

答:因为要蚀刻到多少厚度的film,其中一个重要参数就是蚀刻率

操作酸碱溶液时,应如何做好安全措施?

答:(1) 穿戴防酸碱手套围裙安全眼镜或护目镜(2) 操作区备有清水与水管以备不时之需(3) 操作区备有吸酸棉及隔离带

如何让chamber达到设定的温度?

答:使用heater和chiller

Chiller之功能为何?

答:用以帮助稳定chamber温度

如何在chamber建立真空?

答:(1) 首先确立chamber parts组装完整(2) 以dry pump作第一阶段的真空建立(3) 当圧力到达100mTD寺再以turbo pump 抽真空至1mT以下

真空计的功能为何?

答:侦测chamber的压力,确保wafer在一定的压力下process

Transfer module 之robot 功用为何?

答:将wafer 传进chamber与传出chamber之用

何谓MTBC? (mean time between clean)

答:上一次wet clean 到这次wet clean 所经过的时间

RF Generator 是否需要定期检验?

答:是需要定期校验;若未校正功率有可能会变化;如此将影响电浆的组成

为何需要对etch chamber温度做监控?

答:因为温度会影响制程条件;如etching rate/均匀度

为何需要注意dry pump exhaust presure (pump 出口端的气压)?

答:因为气压若太大会造成pump 负荷过大;造成pump 跳掉,影响chamber的压力,直接影响到run货品质

为何要做漏率测试? (Leak rate )

答:(1) 在PM后PUMP Down 1~2小时后;为确保chamber Run 货时,无大气进入chambe 影响chamber GAS 成份(2) 在日常测试时,为确保chamber 内来自大气的泄漏源,故需测漏

机台发生Alarm时应如何处理?

答:(1) 若为火警,立即圧下EMO(紧急按钮),并灭火且通知相关人员与主管(2) 若是一般异常,请先检查alarm 讯息再判定异常原因,进而解决问题,若未能处理应立即通知主要负责人

蚀刻机台废气排放分为那几类?

答:一般无毒性废气/有毒酸性废气排放

蚀刻机台使用的电源为多少伏特(v)?

答:208V 三相

干式蚀刻机台分为那几个部份?

答:(1) Load/Unload 端(2) transfer module (3) Chamber process module (4) 真空系统(5) GAS system (6) RF system

在半导体程制中,湿制程(wet processing)分那二大頪?

答:(1) 晶圆洗净(wafer cleaning) (2) 湿蚀刻(wet etching).

晶圆洗净(wafer cleaning)的设备有那几种?

答:(1) Batch type(immersion type): a) carrier type b)Cassetteless type (2) Single wafer type(spray type)

晶圆洗净(wafer cleaning)的目的为何?

答:去除金属杂质,有机物污染及微尘.

半导体制程有那些污染源?

答:(1) 微粒子(2) 金属(3) 有机物(4) 微粗糙(5) 天生的氧化物

RCA清洗制程目的为何?

答:于微影照像后,去除光阻,清洗晶圆,并做到酸碱中和,使晶圆可进行下一个制程.

洗净溶液APM(SC-1)--> NH4OH:H2O2:H2O的目的为何?

答:去除微粒子及有机物

洗净溶液SPM--> H2SO4:H2O2:H2O的目的为何?

答:去除有机物

洗净溶液HPM(SC-2)--> HCL:H2O2:H2O的目的为何?

答:去除金属

洗净溶液DHF--> HF:H2O(1:100~1:500)的目的为何?

答:去除自然氧化膜及金属

洗净溶液FPM--> HF:H2O2:H2O的目的为何?

答:去除自然氧化膜及金属

洗净溶液BHF(BOE)--> HF:NH4F的目的为何?

答:氧化膜湿式蚀刻

洗净溶液热磷酸--> H3PO4的目的为何?

答:氮化膜湿式蚀刻

0.25微米逻辑组件有那五种标准清洗方法?

答:(1) 扩散前清洗(2) 蚀刻后清洗(3) 植入后清洗(4) 沉积前洗清(5) CMP后清洗超音波刷洗(ultrasonic scrubbing)目的为何?

答:去除不溶性的微粒子污染

何谓晶圆盒(POD)清洗?

答:利用去离子水和界面活性剂(surfactant),除去晶圆盒表面的污染.

高压喷洒(high pressure spray)或刷洗去微粒子在那些制程之后?

答:(1) 锯晶圆(wafer saw) (2) 晶圆磨薄(wafer lapping) (3) 晶圆拋光(wafer polishing) (4) 化学机械研磨

晶圆湿洗净设备有那几种?

答:(1) 多槽全自动洗净设备(2) 单槽清洗设备(3) 单晶圆清洗设备.

单槽清洗设备的优点?

答:(1) 较佳的环境制程与微粒控制能力. (2) 化学品与纯水用量少. (3) 设备调整弹性度高.

单槽清洗设备的缺点?

答:(1) 产能较低. (2) 晶圆间仍有互相污染

单晶圆清洗设备未来有那些须要突破的地方?

答:产能低与设备成熟度

晶圆制造工艺流程和处理工序

晶圆制造工艺流程和处理工序 晶圆制造工艺流程 1、表面清洗 2、初次氧化 3、CVD(Chemical Vapor deposiTIon) 法沉积一层Si3N4 (Hot CVD 或LPCVD) 。(1)常压CVD (Normal Pressure CVD) (2)低压CVD (Low Pressure CVD) (3)热CVD (Hot CVD)/(thermal CVD) (4)电浆增强CVD (Plasma Enhanced CVD) (5)MOCVD (Metal Organic CVD) 分子磊晶成长(Molecular Beam Epitaxy) (6)外延生长法(LPE) 4、涂敷光刻胶(1)光刻胶的涂敷(2)预烘(pre bake) (3)曝光(4)显影(5)后烘(post bake) (6)腐蚀(etching) (7)光刻胶的去除 5、此处用干法氧化法将氮化硅去除 6 、离子布植将硼离子(B+3) 透过SiO2 膜注入衬底,形成P 型阱 7、去除光刻胶,放高温炉中进行退火处理 8、用热磷酸去除氮化硅层,掺杂磷(P+5) 离子,形成N 型阱 9、退火处理,然后用HF 去除SiO2 层 10、干法氧化法生成一层SiO2 层,然后LPCVD 沉积一层氮化硅 11、利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层 12、湿法氧化,生长未有氮化硅保护的SiO2 层,形成PN 之间的隔离区 13、热磷酸去除氮化硅,然后用HF 溶液去除栅隔离层位置的SiO2 ,并重新生成品质更好的SiO2 薄膜, 作为栅极氧化层。 14、LPCVD 沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成SiO2 保护层。 15、表面涂敷光阻,去除P 阱区的光阻,注入砷(As) 离子,形成NMOS 的源漏极。用同样的方法,在N 阱区,注入B 离子形成PMOS 的源漏极。 16、利用PECVD 沉积一层无掺杂氧化层,保护元件,并进行退火处理。

晶圆封装测试工序和半导体制造工艺流程

A.晶圆封装测试工序 一、 IC检测 1. 缺陷检查Defect Inspection 2. DR-SEM(Defect Review Scanning Electron Microscopy) 用来检测出晶圆上是否有瑕疵,主要是微尘粒子、刮痕、残留物等问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。 3. CD-SEM(Critical Dimensioin Measurement) 对蚀刻后的图案作精确的尺寸检测。 二、 IC封装 1. 构装(Packaging) IC构装依使用材料可分为陶瓷(ceramic)及塑胶(plastic)两种,而目前商业应用上则以塑胶构装为主。以塑胶构装中打线接合为例,其步骤依序为晶片切割(die saw)、黏晶(die mount / die bond)、焊线(wire bond)、封胶(mold)、剪切/成形(trim / form)、印字(mark)、电镀(plating)及检验(inspection)等。 (1) 晶片切割(die saw) 晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die)切割分离。举例来说:以0.2微米制程技术生产,每片八寸晶圆上可制作近六百颗以上的64M微量。 欲进行晶片切割,首先必须进行晶圆黏片,而后再送至晶片切割机上进行切割。切割完后之晶粒井然有序排列于胶带上,而框架的支撐避免了胶带的皱褶与晶粒之相互碰撞。 (2) 黏晶(die mount / die bond) 黏晶之目的乃将一颗颗之晶粒置于导线架上并以银胶(epoxy)粘着固定。黏晶完成后之导线架则经由传输设备送至弹匣(magazine)内,以送至下一制程进行焊线。 (3) 焊线(wire bond) IC构装制程(Packaging)则是利用塑胶或陶瓷包装晶粒与配线以成集成电路(Integrated Circuit;简称IC),此制程的目的是为了制造出所生产的电路的保护层,避免电路受到机械性刮伤或是高温破坏。最后整个集成电路的周围会向外拉出脚架(Pin),称之为打线,作为与外界电路板连接之用。

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

晶圆生产工艺与流程介绍

晶圆的生产工艺流程介绍 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序) :晶棒成长--> 晶棒裁切与检测--> 外径研磨--> 切片--> 圆边--> 表层研磨--> 蚀刻--> 去疵--> 抛光--> 清洗--> 检验--> 包装 1.晶棒成长工序:它又可细分为: 1).融化( Melt Down ) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C 以上,使其完全融化。 2).颈部成长( Neck Growth ) 待硅融浆的温度稳定之后,将〈1.0.0 〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm 左右),维持此直径并拉长100-200mm ,以消除晶种内的晶粒排列取向差异。3).晶冠成长( Crown Growth ) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12 吋等)。4).晶体成长( Body Growth ) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5).尾部成长( Tail Growth ) 当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的

晶棒。 2.晶棒裁切与检测( Cutting & Inspection ) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3.外径研磨( Surface Grinding & Shaping ) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4.切片( Wire Saw Slicing ) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5.圆边( Edge Profiling ) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6.研磨( Lapping ) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7.蚀刻( Etching ) 以化学蚀刻的方法,去掉经上几道工序加工后在晶片表面因加工应力而产生的一层损伤层。 8.去疵( Gettering ) 用喷砂法将晶片上的瑕疵与缺陷感到下半层,以利于后序加工。

【半导体研磨 精】半导体晶圆的生产工艺流程介绍

?从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长--> 晶棒裁切与检测--> 外径研磨--> 切片--> 圆边--> 表层研磨--> 蚀刻--> 去疵--> 抛光--> 清洗--> 检验--> 包装 1 晶棒成长工序:它又可细分为: 1)融化(Melt Down) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2)颈部成长(Neck Growth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长 100-200mm,以消除晶种内的晶粒排列取向差异。 3)晶冠成长(Crown Growth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如 5、6、8、12吋等)。 4)晶体成长(Body Growth) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5)尾部成长(Tail Growth) 1

当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2 晶棒裁切与检测(Cutting & Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3 外径研磨(Su rf ace Grinding & Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4 切片(Wire Saw Sl ic ing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5 圆边(Edge Profiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 ? 6 研磨(Lapping) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7 蚀刻(Etching) 1

生产工艺流程简述

生产工艺流程简述 清棉工序 1.主要任务:(1)将紧压的原纤维松解成较小的纤维块或纤维束,以利混合、除杂作用的顺利进行;(2)清除原纤维中的大部分杂质、疵点及不宜纺纱的短纤维。(3)将不同批次的纤维进行充分而均匀地混和,以利棉纱质量的稳定。(4)成卷:制成一定重量、长度、厚薄均匀、外形良好的棉纤维卷。 梳棉工序 1.主要任务 (1)分梳:将纤维分解成单纤维状态,改善纤维伸直平行状态。(2)混合:使纤维进一步充分均匀混合。(4)成条:制成符合要求的棉条。 精梳工序 主要任务: 1.除杂:清除纤维中细小的纤维疵点。 2.梳理:进一步分离纤维,排除一定长度以下的短纤维,提高纤维的长度整齐度和伸直度。 3.牵伸:将棉条拉细到一定粗细,并提高纤维平行伸直度。 4.成条:制成符合要求的棉条。

并条工序 主要任务 1.并合:一般用6-8根纤维条进行并合,改善棉条长片段不匀。2.牵伸:把纤维条拉长抽细到规定重量,并进一步提高纤维的伸直平行程度。3.混合:利用并合与牵扯伸,使纤维进一步均匀混合,不同唛头、不同工艺处理的纤维条,在并条机上进行混和。4.成条:做成圈条成型良好的熟条,有规则地盘放在棉条桶内,供后工序使用。 粗纱工序 主要任务: 1.牵伸:将熟条均匀地拉长抽细,并使纤维进一步伸直平行。2.加捻:将牵伸后的须条加以适当的捻回,使纱条具有一定的强力,以利粗纱卷绕和细纱机上的退绕。 细纱工序 主要任务: 1.牵伸:将粗纱拉细到所需细度,使纤维伸直平行。 2.加捻:将须条加以捻回,成为具有一定捻度、一定强力的细纱。3.卷绕:将加捻后的细纱卷绕在筒管上。4.成型:制成一定大小和形状的管纱,便于搬运及后工序加工。

晶圆封装测试工序和半导体制造工艺流程0001

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 A.晶圆封装测试工序 一、IC检测 1. 缺陷检查Defect Inspection 2. DR-SEM(Defect Review Scanning Electro n Microscopy) 用来检测出晶圆上是否有瑕疵,主要是微尘粒子、刮痕、残留物等问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。 3. CD-SEM(Critical Dime nsioi n Measureme nt) 对蚀刻后的图案作精确的尺寸检测。 二、IC封装 1. 构装(Packaging) IC构装依使用材料可分为陶瓷(ceramic )及塑胶(plastic )两种,而目前商业应用上则以塑胶构装为主。以塑胶构装中打线接合为例,其步骤依序为晶片切割( die saw)、黏晶(die mount / die bond)、焊线(wire bon d)、圭寸胶(mold )、剪切/ 成形(trim / form )、印字(mark )、电镀(plating )及检验(inspection )等。 (1) 晶片切割(die saw ) 晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die )切割分离。举例来说:以 0.2微米制程技术生产,每片八寸晶圆上可制作近六百颗以上的64M微量。 欲进行晶片切割,首先必须进行晶圆黏片,而后再送至晶片切割机上进行切割。切割完后之 晶粒井然有序排列于胶带上,而框架的支撐避免了胶带的皱褶与晶粒之相互碰撞。 (2) 黏晶(die mou nt / die bo nd ) 黏晶之目的乃将一颗颗之晶粒置于导线架上并以银胶(epoxy)粘着固定。黏晶完成后之导线 架则经由传输设备送至弹匣( magazi ne )内,以送至下一制程进行焊线。 ⑶焊线(wire bond ) IC构装制程(Packaging )则是利用塑胶或陶瓷包装晶粒与配线以成集成电路( Integrated Circuit ;简称IC),此制程的目的是为了制造出所生产的电路的保护层,避免电路受到机械

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

晶圆封装测试工序和半导体制造工艺流程

A.晶圆封装测试工序 一、IC检测 1. 缺陷检查Defect Inspection 2. DR-SEM(Defect Review Scanning Electron Microscopy) 用来检测出晶圆上是否有瑕疵,主要是微尘粒子、刮痕、残留物等问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。 3. CD-SEM(Critical Dimensioin Measurement) 对蚀刻后的图案作精确的尺寸检测。 二、IC封装 1. 构装(Packaging) IC构装依使用材料可分为陶瓷(ceramic)及塑胶(plastic)两种,而目前商业应用上则以塑胶构装为主。以塑胶构装中打线接合为例,其步骤依序为晶片切割(die saw)、黏晶(die mount / die bond)、焊线(wire bond)、封胶(mold)、剪切/成形(trim / form)、印字(mark)、电镀(plating)及检验(inspection)等。 (1) 晶片切割(die saw) 晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die)切割分离。举例来说:以

0.2微米制程技术生产,每片八寸晶圆上可制作近六百颗以上的64M微量。 欲进行晶片切割,首先必须进行晶圆黏片,而后再送至晶片切割机上进行切割。切割完后之晶粒井然有序排列于胶带上,而框架的支撐避免了胶带的皱褶与晶粒之相互碰撞。 (2) 黏晶(die mount / die bond) 黏晶之目的乃将一颗颗之晶粒置于导线架上并以银胶(epoxy)粘着固定。黏晶完成后之导线架则经由传输设备送至弹匣(magazine)内,以送至下一制程进行焊线。 (3) 焊线(wire bond) IC构装制程(Packaging)则是利用塑胶或陶瓷包装晶粒与配线以成集成电路(Integrated Circuit;简称IC),此制程的目的是为了制造出所生产的电路的保护层,避免电路受到机械性刮伤或是高温破坏。最后整个集成电路的周围会向外拉出脚架(Pin),称之为打线,作为与外界电路板连接之用。 (4) 封胶(mold) 封胶之主要目的为防止湿气由外部侵入、以机械方式支持导线、內部产生热量之去除及提供能够手持之形体。其过程为将导线架置于框架上并预热,再将框架置于压模机上的构装模上,再以树脂充填并待硬化。 (5) 剪切/成形(trim / form) 剪切之目的为将导线架上构装完成之晶粒独立分开,并把不需要的连接用材料及部份凸出之树脂切除(dejunk)。成形之目的则是将外引脚压成各种预先设计好之形状,以便于装置于

实用文档之晶圆封装测试工序和半导体制造工艺流程

实用文档之"A.晶圆封装测试工序" 一、 IC检测 1. 缺陷检查Defect Inspection 2. DR-SEM(Defect Review Scanning Electron Microscopy) 用来检测出晶圆上是否有瑕疵,主要是微尘粒子、刮痕、残留物等问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。 3. CD-SEM(Critical Dimensioin Measurement) 对蚀刻后的图案作精确的尺寸检测。 二、 IC封装 1. 构装(Packaging) IC构装依使用材料可分为陶瓷(ceramic)及塑胶(plastic)两种,而目前商业应用上则以塑胶构装为主。以塑胶构装中打线接合为例,其步骤依序为晶片切割(die saw)、黏晶(die mount / die bond)、焊线(wire bond)、封胶(mold)、剪切/成形(trim / form)、印字(mark)、电镀(plating)及检验(inspection)等。 (1) 晶片切割(die saw) 晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die)切割分离。举例来说:以0.2微米制程技术生产,每片八寸晶圆上可制作近六百颗以上的64M微量。 欲进行晶片切割,首先必须进行晶圆黏片,而后再送至晶片切割机上进行切割。切割完后之晶粒井然有序排列于胶带上,而框架的支撐避免了胶带的皱褶与晶粒之相互碰撞。 (2) 黏晶(die mount / die bond) 黏晶之目的乃将一颗颗之晶粒置于导线架上并以银胶(epoxy)粘着固定。黏晶完成后之导线架则经由传输设备送至弹匣(magazine)内,以送至下一制程进

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

晶圆封装测试工序和半导体制造工艺流程

晶圆封装测试工序和半导体制造工艺流程 A.晶圆封装测试工序 一、 IC检测 1. 缺陷检查Defect Inspection 2. DR-SEM(Defect Review Scanning Electron Microscopy) 用来检测出晶圆上是否有瑕疵,主要是微尘粒子、刮痕、残留物等问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。 3. CD-SEM(Critical Dimensioin Measurement) 对蚀刻后的图案作精确的尺寸检测。 二、 IC封装 1. 构装(Packaging) IC构装依使用材料可分为陶瓷(ceramic)及塑胶(plastic)两种,而目前商业应用上则以塑胶构装为主。以塑胶构装中打线接合为例,其步骤依序为晶片切割(die saw)、黏晶(die mount / die bond)、焊线(wire bond)、封胶(mold)、剪切/成形(trim / form)、印字(mark)、电镀(plating)及检验(inspection)等。 (1) 晶片切割(die saw) 晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die)切割分离。 举例来说:以0.2微米制程技术生产,每片八寸晶圆上可制作近六百颗以上的64M 微量。

欲进行晶片切割,首先必须进行晶圆黏片,而后再送至晶片切割机上进行切割。切割完后之晶粒井然有序排列于胶带上,而框架的支撐避免了胶带的皱褶与晶粒之相互碰撞。 (2) 黏晶(die mount / die bond) 黏晶之目的乃将一颗颗之晶粒置于导线架上并以银胶(epoxy)粘着固定。黏晶完成后之导线架则经由传输设备送至弹匣(magazine)内,以送至下一制程进行焊线。 (3) 焊线(wire bond) IC构装制程(Packaging)则是利用塑胶或陶瓷包装晶粒与配线以成集成电路(Integrated Circuit;简称IC),此制程的目的是为了制造出所生产的电路的保护层,避免电路受到机械性刮伤或是高温破坏。最后整个集成电路的周围会向外拉出脚架(Pin),称之为打线,作为与外界电路板连接之用。 (4) 封胶(mold) 封胶之主要目的为防止湿气由外部侵入、以机械方式支持导线、內部产生热量之去除及提供能够手持之形体。其过程为将导线架置于框架上并预热,再将框架置于压模机上的构装模上,再以树脂充填并待硬化。 (5) 剪切/成形(trim / form) 剪切之目的为将导线架上构装完成之晶粒独立分开,并把不需要的连接用材料及部份凸出之树脂切除(dejunk)。成形之目的则是将外引脚压成各种预先设计好之形状,以便于装置于电路板上使用。剪切与成形主要由一部冲压机配上多套不同制程之模具,加上进料及出料机构所組成。 (6) 印字(mark)及电镀(plating) 印字乃将字体印于构装完的胶体之上,其目的在于注明商品之规格及制造者等资讯。

晶圆的生产工艺流程汇总

晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长--晶棒裁切与检测--外径研磨--切片--圆边--表层研磨--蚀刻--去疵--抛光--清洗--检验--包装1、晶棒成长工序:它又可细分为: 1)、融化(MeltDown ):将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2)、颈部成长(Neck Growth):待硅融浆的温度安定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺 寸(大凡约6mm左右),维持此直径并拉长100-200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(CrownGrowth):颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12 吋等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持不变的晶棒直径,只到晶棒长度达到预定值。 5)、尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根统统的晶棒。2、晶棒裁切与检测(Cutting&Inspection ) :将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping :由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(WireSawSlicing :由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。

晶圆生产工艺流程介绍

晶圆生产工艺流程介绍 1、表面清洗 2、初次氧化 3、CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 (1)常压CVD(Normal Pressure CVD) (2)低压CVD(Low Pressure CVD) (3)热CVD(Hot CVD)/(thermal CVD) (4)电浆增强CVD(Plasma Enhanced CVD) (5)MOCVD(Metal Organic CVD)&分子磊晶成长(Molecular Beam Epitaxy) (6)外延生长法(LPE) 4、涂敷光刻胶 (1)光刻胶的涂敷 (2)预烘(pre bake) (3)曝光 (4)显影 (5)后烘(post bake) (6)腐蚀(etching) (7)光刻胶的去除 5、此处用干法氧化法将氮化硅去除 6、离子布植将硼离子(B+3)透过SiO2膜注入衬底,形成P型阱 7、去除光刻胶,放高温炉中进行退火处理 8、用热磷酸去除氮化硅层,掺杂磷(P+5)离子,形成N型阱 9、退火处理,然后用HF去除SiO2层 10、干法氧化法生成一层SiO2层,然后LPCVD沉积一层氮化硅 11、利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层 12、湿法氧化,生长未有氮化硅保护的SiO2层,形成PN之间的隔离区 13、热磷酸去除氮化硅,然后用HF溶液去除栅隔离层位置的SiO2,并重新生成品质更好的SiO2薄膜,作为栅极氧化层。 14、LPCVD沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成SiO2保护层。 15、表面涂敷光阻,去除P阱区的光阻,注入砷(As)离子,形成NMOS的源漏极。用同样的方法,在N阱区,注入B离子形成PMOS的源漏极。 16、利用PECVD沉积一层无掺杂氧化层,保护元件,并进行退火处理。 17、沉积掺杂硼磷的氧化层 18、?镀第一层金属 (1)薄膜的沉积方法根据其用途的不同而不同,厚度通常小于1um。 (2)真空蒸发法(Evaporation Deposition) (3)溅镀(Sputtering Deposition) 19、光刻技术定出VIA孔洞,沉积第二层金属,并刻蚀出连线结构。然后,用PECVD法氧化层和氮化硅保护层。20、光刻和离子刻蚀,定出PAD位置 21、最后进行退火处理,以保证整个Chip的完整和连线的连接性

半导体封装方式

半导体封装简介: 半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋和成型 (Trim&Form)、电镀(Plating)以及打印等工艺。典型的封装工艺流程为: 划片装片键合塑封去飞边电镀打印切筋和成型外观检查成品测试包装出货。 一、DIP双列直插式封装 1. 适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2. 芯片面积与封装面积之间的比值较大,故体积也较大。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集 成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式 封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。 采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好 的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊 接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的 区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。 QFP/PFP封装具有以下特点: 1.适用于SMD表面安装技术在PCB电路板上安装布线。 2.适合高频使用。 3.操作方便,可靠性高。 4.芯片面积与封装面积之间的比值较小。 三、PGA插针网格阵列封装 一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和 拆卸上的要求。ZIF(Zero Insertion Force Socket)是指零插拔力的插座。 1. 插拔操作更方便,可靠性高。 2. 可适应更高的频率。

晶圆生产工艺与流程介绍

晶圆生产工艺与流程介 绍 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

晶圆的生产工艺流程介绍从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长-->晶棒裁切与检测-->外径研磨-->切片-->圆边-->表层研磨-->蚀刻-->去疵-->抛光-->清洗-->检验-->包装 1.晶棒成长工序:它又可细分为: 1).融化(MeltDown) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2).颈部成长(NeckGrowth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长100-200mm,以消除晶种内的晶粒排列取向差异。 3).晶冠成长(CrownGrowth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12寸等)。 4).晶体成长(BodyGrowth) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5).尾部成长(TailGrowth)

当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2.晶棒裁切与检测(Cutting&Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3.外径研磨(SurfaceGrinding&Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。4.切片(WireSawSlicing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5.圆边(EdgeProfiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6.研磨(Lapping) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7.蚀刻(Etching)

晶圆制造工艺流程

晶圆制造工艺流程 1、表面清洗 2、初次氧化 3、CVD(Chemical Vapor deposition) 法沉积一层Si3N4 (Hot CVD 或LPCVD) 。 (1)常压CVD (Normal Pressure CVD) (2)低压CVD (Low Pressure CVD) (3)热CVD (Hot CVD)/(thermal CVD) (4)电浆增强CVD (Plasma Enhanced CVD) (5)MOCVD (Metal Organic CVD) & 分子磊晶成长(Molecular Beam Epitaxy) (6)外延生长法(LPE) 4、涂敷光刻胶 (1)光刻胶的涂敷 (2)预烘(pre bake) (3)曝光 (4)显影 (5)后烘(post bake) (6)腐蚀(etching) (7)光刻胶的去除 5、此处用干法氧化法将氮化硅去除 6 、离子布植将硼离子(B+3) 透过SiO2 膜注入衬底,形成P 型阱 7、去除光刻胶,放高温炉中进行退火处理 8、用热磷酸去除氮化硅层,掺杂磷(P+5) 离子,形成N 型阱 9、退火处理,然后用HF 去除SiO2 层 10、干法氧化法生成一层SiO2 层,然后LPCVD 沉积一层氮化硅 11、利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层 12、湿法氧化,生长未有氮化硅保护的SiO2 层,形成PN 之间的隔离区 13、热磷酸去除氮化硅,然后用HF 溶液去除栅隔离层位置的SiO2 ,并重新生成品质更好的SiO2 薄膜, 作为栅极氧化层。 14、LPCVD 沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成SiO2 保护层。 15、表面涂敷光阻,去除P 阱区的光阻,注入砷(As) 离子,形成NMOS 的源漏极。用同样的方法,在N 阱区,注入B 离子形成PMOS 的源漏极。 16、利用PECVD 沉积一层无掺杂氧化层,保护元件,并进行退火处理。 17、沉积掺杂硼磷的氧化层 18、濺镀第一层金属 (1)薄膜的沉积方法根据其用途的不同而不同,厚度通常小于1um 。 (2)真空蒸发法(Evaporation Deposition ) (3)溅镀(Sputtering Deposition ) 19、光刻技术定出VIA 孔洞,沉积第二层金属,并刻蚀出连线结构。然后,用PECVD 法氧化层和氮化硅保护层。20、光刻和离子刻蚀,定出PAD 位置 21、最后进行退火处理,以保证整个Chip 的完整和连线的连接性

生 产 工 艺 流 程

适用产品:大班台、会议台、书柜类 一、主要用材要求: 1.贴面用材:胡桃木、柚木、花梨木、榉 木等高级进口木皮,厚度0.6mm。 2.封边用材:与贴面种类相同或由客户指 定的,与之相搭配的实木木材。 3.基材:优等品级中密度纤维板MDF。 4.油漆:易涂宝“IDOPA”牌雅光聚脂油漆。 5.五金配件:德国产海蒂斯“HETTICH” 海福乐“HEFELE”。 二、主要生产工艺流程: 1.木皮贴面加工 ○1、木皮拼缝(见图○1) 使用机械:拼缝机。 质量要求:拼缝齐整,无断线,脱线、漏拼等现象 ○2、木皮贴面(见图○2) 使用机械:热压机。 质量要求:基材平整,涂胶均匀,成品无起泡

适用产品:办公沙发类 一、主要用材要求: 1.软包饰面用材 ○1、意大利进口牛皮 ○2、进口麻绒或布艺布 2.海绵:高密度海绵 3.弹簧:¢5mm高强度蛇形弹簧 4.木架用材:含水率低于9%的硬木木方及5mm以上多层夹板 二、主要生产工艺流程: 1.选料(皮制品)见图○1) 使用设备:手工操作 质量要求:标明烙印、穿孔、 折痕等天然瑕疵以便将其别 除出裁剪范围 2.车缝(见图○2) 使用设备:工业用重型缝纫机 质量要求:线路均匀,顺畅, 针距均匀 3.扪面料(见图○3) 使用设备:气动钉枪 质量要求:整体感观流畅、外型 符合要求,左右对齐 4.组装后全面测试(见图○4)

生产工艺流程适用产品:各类高低间隔用屏风 一、主要用材要求: 1.框架用材: ○1、热拉伸铝材,厚度1.5mm以 上(厚度视品种设计而定) ○2、冷轨钢板1.5mm以上 2.基材:优等品级中密度纤维板 MDF 3.饰边用材:进口绒布或布艺布 料等,视客户要求而定。 二、主要生产工艺流程(以铝制屏风 为例) 1.开料(见图○1) 使用设备:开料锯 质量要求:切口直角成90° 斜口成45°,规格符合图 纸要求。 2.冲孔(见图○2) 使用设备:冲床 质量要求:冲口齐整,位置 符 合图纸要求。 3.制框架(见图○3) 使用设备:手提气动工具 质量要求:锣丝紧固,框架 牢固 4.贴面料—绒布或布艺(见图○4) 使用设备:喷枪及手工操作 质量要求:胶水分布均匀,无 漏胶、渗胶、印绒布松驰等现象。 5.组装 使用设备:手工操作 质量要求:成品规格符合图纸 要求,产品无碰伤起泡等瑕疵

IC半导体封装测试流程

IC半导体封装测试流程 更多免费资料下载请进:https://www.doczj.com/doc/554979617.html,好好学习社区

IC半导体封装测试流程 第1章前言 1.1 半导体芯片封装的目的 半导体芯片封装主要基于以下四个目的[10, 13]: ●防护 ●支撑 ●连接 ●可靠性 图1-1 TSOP封装的剖面结构图 Figure 1-1 TSOP Package Cross-section 第一,保护:半导体芯片的生产车间都有非常严格的生产条件控制,恒定的温度(230±3℃)、恒定的湿度(50±10%)、严格的空气尘埃颗粒度控制(一般介于1K到10K)及严格的静电保护措施,裸露的装芯片只有在这种严格的环境控制下才不会失效。但是,我们所生活的周围环境完全不可能具备这种条件,低温可能会有-40℃、高温可能会有60℃、湿度可能达到100%,如果是汽车产品,其工作温度可能高达120℃以上,为了要保护芯片,所以我们需要封装。 第二,支撑:支撑有两个作用,一是支撑芯片,将芯片固定好便于电路的连接,二是封装完成以后,形成一定的外形以支撑整个器件、使得整个器件不易损坏。 第三,连接:连接的作用是将芯片的电极和外界的电路连通。

引脚用于和外界电路连通,金线则将引脚和芯片的电路连接起来。载片台用于承载芯片,环氧树脂粘合剂用于将芯片粘贴在载片台上,引脚用于支撑整个器件,而塑封体则起到固定及保护作用。 第四,可靠性:任何封装都需要形成一定的可靠性,这是整个封装工艺中最重要的衡量指标。原始的芯片离开特定的生存环境后就会损毁,需要封装。芯片的工作寿命,主要决于对封装材料和封装工艺的选择。 1.2 半导体芯片封装技术的发展趋势 ● 封装尺寸变得越来越小、越来越薄 ● 引脚数变得越来越多 ● 芯片制造与封装工艺逐渐溶合 ● 焊盘大小、节距变得越来越小 ● 成本越来越低 ● 绿色、环保 以下半导体封装技术的发展趋势图[2,3,4,11,12,13]: 图1-2 半导体封装技术发展趋势 Figure 1-2 Assembly Technology Development Trend 小型化

相关主题
文本预览
相关文档 最新文档