2019年高考数学导数及其应用专题AB卷及解析
- 格式:doc
- 大小:966.44 KB
- 文档页数:21
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()()2,,f x ax bx c a b c R =++∈.若1x =-为函数()xf x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )(2011浙江文10)2.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-(2008全国1理)D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==---- 二、填空题3.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2a 2+c 2的最大值为 ▲ .4.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是 ▲ . 5.已知曲线y=x 2 (x >0)在点P 处切线恰好与圆C :x 2+(y+1)2=1相切,则点P 的坐标为 (,6) .(3分)6. 如图,函数()y f x =的图像在点P 处的切线是l ,则(2)(2)f f '+= 。
xyO(2,0)P()y f x =()y f x '=1 (第10题7.函数y =x 3-3x 2+1的单调递减区间为 ▲ . 8. 函数21ln 2y x x =-的单调递减区间为 __________________. 9.关于x 的不等式(21)ln 0ax x -≥对任意(0,)x ∈+∞恒成立,则实数a 的值为_____. 10.若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.22(1cos )x dx ππ-+⎰等于( )A .πB . 2C . π-2D . π+2(2009福建理)2.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f二、填空题3.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .4.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β; ④若l ⊥m ,则α∥β. 其中正确命题的序号是________.5.已知2(),()(1),xf x xeg x x a ==-++若12,,x x R ∃∈使得21()()f x g x ≤成立,则实数a 的取值范围是 ▲6.已知曲线()ln 1f x a x bx =++在点(1,(1))f 处的切线斜率为-2,且23x =是函数()y f x =的极值点,则a b -= .7.函数y =x 3-6x +a 的极大值为____________,极小值为____________. [答案] a +42 a -4 2[解析] y ′=3x 2-6=3(x +2)(x -2), 令y ′>0,得x >2或x <-2, 令y ′<0,得-2<x <2, ∴当x =-2时取极大值a +42, 当x =2时取极小值a -4 2.8.已知函数32()f x x ax bx c =+++(其中,,a b c 为常数),若()y f x =在1x =-和13x =-时分别取得极大值和极小值,则a = ▲ .9.y=x 3+ax +1的一条切线方程为y =2x +1,则a = .10.已知曲线 xe y =在点P 处的切线经过原点,则此切线的方程为11.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.12. 若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x -2的最小距离为 .2三、解答题13.现有一张长为80cm ,宽为60cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <. 其中正确结论的序号是 ( )A .①③B .①④C .②③D .②④(2012福建文)2.已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或13.f(x)是定义在(0,+∞)上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数a 、b ,若a <b ,则必有 A .af(b) ≤bf(a) B .bf(a) ≤af(b) C .af(a) ≤f(b)D .bf(b) ≤f(a)二、填空题4.设直线y=a分别与曲线2y x =和xy e =交于点M 、N ,则当线段MN 取得最小值时a的值为___________. 5. 函数)42sin(π+-=x y 的单调增区间是 ▲6.函数2|32|y x x =-+的极大值为 . 7.设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为(A) 1n (B) 11n + (C) 1n n + (D) 1(2009陕西卷文)8.由曲线x y x y 232=-=和围成图形的面积为 。
答案232 9.与直线2-=x y 平行且与曲线x x y ln 2-=相切的直线方程为 ▲ .10.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.三、解答题11.设常数0a ≥,函数2()ln 2ln 1f x x x a x =-+-((0,))x ∈+∞.(Ⅰ)令()()g x xf x '=(0)x >,求()g x 的最小值,并比较()g x 的最小值与零的大小; (Ⅱ)求证:()f x 在(0,)+∞上是增函数;(Ⅲ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.12.已知抛物线42-=x y 与直线2+=x y (Ⅰ)求两曲线的交点;(Ⅱ)求抛物线在交点处的切线方程.13. 已知函数()ln(1)(1),xf x a e a x =+-+(其中0a >) ,点1,12233(()),(,()),(,())A x f x B x f x C x f x 从左到右依次是函数()y f x =图象上三点,且2132x x x =+.(Ⅰ) 证明: 函数()f x 在R 上是减函数; (Ⅱ)求证:⊿ABC 是钝角三角形;(Ⅲ) 试问,⊿ABC 能否是等腰三角形?若能,求⊿ABC 面积的最大值;若不能,请说明理由.14.已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析 (Ⅰ)由题意得)2()1(23)(2+--+='a a x a x x f又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a(Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有 51a -<<且12a ≠-15.设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 【命题意图】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力. 【参考答案】【点评】导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( )(2007江苏9) A .3B .52 C .2 D .322.f(x)是定义在(0,+∞)上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数a 、b ,若a <b ,则必有 A .af(b) ≤bf(a) B .bf(a) ≤af(b) C .af(a) ≤f(b)D .bf(b) ≤f(a)二、填空题3.若曲线1C :43236y x ax x =--与曲线2C :e x y =在1x =处的切线互相垂直,则实数a 的值为 ▲ .4.已知函数ln (),()xf x kxg x x==,若不等式()()f x g x ≥在区间(0,)+∞上恒成立,则实数k 的取值范围是 .5.设直线l 是曲线3()2f x x =+上的一条切线,则切线l 斜率最小时对应的倾斜角为 ▲ .6.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 。
7.设P 是函数)1y x =+图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是 ▲ .8.已知函数23)(23+-=x x x f ,若]3,2[-∈x ,则函数的值域为 ▲ .)2(3)(-='x x x f ,]0,2[-,]3,2[上增,)2,0(上减,18)2(-=-f ,2)0(=f ,2)2(-=f ,2)3(=f ,故值域为]2,18[-9.曲线y=4x-x3在点(-1,-3)处的切线方程为_____10.已知定义在R 上的函数2()(3)f x x ax =-,函数()()()([0,2])g x f x f x x '=+∈,若()g x 在0x =处取得最大值,则正数a 的取值范围是 ▲ .11.给出下列命题:①函数)(x f y =的图象与函数3)2(+-=x f y 的图象一定不会重合;②函数)32(log 221++-=x x y 的单调区间为),1(∞+;③ππ---=+⎰edx e x x 1)(cos 0;④双曲线的渐近线方程是x y 43±=,则该双曲线的离心率是45.其中正确命题的序号是 (把你认为正确命题的序号都填上). 答案 ③12.设直线3y x b =-+是曲线323y x x =-的一条切线,则实数b 的值是13.已知函数qx px x x f --=23)(的图象与x 轴切于点)0,1(,则)(x f 的极大值和极小值分别为 和 。
专题四.导数2019年全国卷理数高考试题1.2019年全国卷1,理数20(12分)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 1.2019年全国卷1,理数20(12分) 解:(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减. 又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+>⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点. 2.2019年全国卷2,理数20(12分) 已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线. 2.2019年全国卷2,理数20(12分)解:(1)f (x )的定义域为(0,1)U (1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x . 综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上. 由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x的切线. 3.2019年全国卷3,理数20(12分)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.3. 2019年全国卷3,理数20(12分) 解:(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1. 4.2019年北京卷,理数19(本小题13分)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.4.2019年北京卷,理数19(本小题13分)解:(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+. 令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =.综上,当()M a 最小时,3a =-. 5.2019年天津,理数20(本小题满分14分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 5.2019年天津,理数20(本小题满分14分)本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.(Ⅰ)解:由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈⎪⎝⎭,且()()()22e cos e cos 2e n n y x n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故 ()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.6.2019年江苏卷,理数19(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 6.2019年江苏卷,理数19(本小题满分16分)本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得1211,33b b x x +-++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 7.2019年浙江卷,理数22(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有(),2f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.7.2019年浙江卷,理数22(本小题满分15分)本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1. 已知,a b 为正实数,函数3()2x f x ax bx =++在[0,1]上的最大值为4,则()f x 在[1,0]-上的最小值为 .2.已知函数2()()(0)xf x ax bx c e a =++>的导函数'()y f x =的两个零点为-3和0. 若()f x 的极小值为-1,则()f x 的极大值为35e 3.若函数xe y x=在0x x =处的导数值与函数值互为相反数,则0x 的值________4.已知函数⎩⎨⎧≤>-=,0,1,0,43)(2x x x x f ,则=))0((f f ▲ .5. 点P 在曲线73+-=x x y 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是 . 6.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ .7.函数()2sin f x x x k =-+在区间0,2π⎡⎤⎢⎥⎣⎦上有两个零点,则实数k 的取值范围是 ▲ .8.曲线y=4x-x3在点(-1,-3)处的切线方程为_____9.在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 . 解析 考查导数的几何意义和计算能力。
231022y x x '=-=⇒=±,又点P 在第二象限内,2x ∴=-点P 的坐标为(-2,15)答案 : 1>a【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答. 10.已知函数)(x f 在1=x 处的导数为1,则xf x f x 2)1()1(lim-+→=___________11. 若函数1()ax f x e b=-的图象在x=0处的切线l 与圆C: 221x y +=相离,则P(a ,b)与圆C 的位置关系是 ▲ .12.给出下列图象其中可能为函数f (x )=x 4+ax 3+bx 2+cx +d (a ,b ,c ,d ∈R)的图象的是_____.13.已知函数3214()333f x x x x =--+,直线l :9x +2y +c =0.若当x ∈[-2,2]时,函数y =f (x )的图像恒在直线l 的下方,则c 的取值范围是________________________14.函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是___________________0<b <1 二、解答题15.已知函数2()ln f x x mx n x =++(0x >,实数m ,n 为常数).(1)若230n m +=(0m >),且函数()f x 在[1,)x ∈+∞上的最小值为0,求m 的值; (2)若对于任意的实数[1,2]a ∈,1b a -=,函数()f x 在区间(,)a b 上总是减函数,对每个给定的n ,求m 的最大值h (n ).16.已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z =a +2b ,求z 的取值范围。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f ,则f (x )>2x+4的解集为( )(A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞)(2011辽宁理11)2.将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是____ ____。
3.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是 ( )A .0是()f x 的极大值,也是()g x 的极大值B .0是()f x 的极小值,也是()g x 的极小值C .0是()f x 的极大值,但不是()g x 的极值D .0是()f x 的极小值,但不是()g x 的极值 答案 C 二、填空题4.已知32()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为____________5.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是 ▲ .6.已知函数y =f (x )在定义域⎝⎛⎭⎫-32,3上可导,其图象如图,记y =f (x )的导函数y =f ′(x ),则不等式xf ′(x )≤0的解集是______ __.xyO(2,0)P()y f x =()y f x '=1 (第10题7.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则实数a 的取值范围是 .8.设函数f (x )在其定义域D 上的导函数为f ′(x ).如果存在实数a 和函数h (x ),其中h (x )对任意的x ∈D 都有h (x )>0,使得f ′(x )=h (x )(x 2-ax +1),则称函数f (x )具有性质P (a ).给出下列四个函数:①f (x )=13x 3-x 2+x +1;②f (x )=ln x +4x +1;③f (x )=(x 2-4x +5)e x ;④f (x )=x 2+x2x +1,其中具有性质P (2)的函数是 .(写出所有满足条件的函数的序号) 9.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .10.函数y =2xx 2+1的极大值为______,极小值为______.[答案] 1 -1[解析] y ′=2(1+x )(1-x )(x 2+1)2,令y ′>0得-1<x <1,令y ′<0得x >1或x <-1, ∴当x =-1时,取极小值-1,当x =1时,取极大值1.11.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲ .12.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,)()(2>-'x x f x f x )(0>x ,则不等式0)(2>x f x 的解集是 .13.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式'()0x f x ⋅<的解集为______ ______.答案 (,-∞⋃14.已知函数f (x )的定义域为[-2,+∞),部分对应值如下表,)(x f '为f (x )的导函数,函数)(x f y '=的图象如右图所示,若两正数a ,b 满足1)2(<+b a f ,则33++a b 的取值范围是 . 答案 ⎪⎭⎫⎝⎛37,53 15.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.16. 函数5()sin 2sin cos2cos66f x x x ππ=⋅-⋅在[,]22ππ-上的单调递增区间为 .三、解答题17.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.18.已知函数2()21()f x x ax a R =++∈,'()f x 是()f x 的导函数 (1)若[2,1]x ∈--,不等式()'()f x f x ≤恒成立,求a 的取值范围; (2)解关于x 的方程()'()f x f x =;(3)设函数'(),()'()()(),()'()f x f x f xg x f x f x f x ≥⎧=⎨<⎩,求()g x 在[]2,4x ∈时的最小值.19.设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. (2013年高考北京卷(理))20.设a ∈R ,函数233)(x ax x f -=,2=x 是函数)(x f y =的极值点. (Ⅰ)求a 的值;(Ⅱ)求函数233)(x ax x f -=在区间[]1,5-上的最值.21.已知函数()ln 3f x a x ax =--(a R ∈). (1)求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为4π,对于任意[]1,2t ∈,函数32()()2m g x x x f x ⎡⎤'=++⎢⎥⎣⎦在区间(t ,3)总不是单调函数,求m 的取值范围.22.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.(本小题满分16分)23.已知函数()||x f x e bx =-,其中e 为自然对数的底. (1)当1b =时,求曲线()y f x =在x=1处的切线方程; (2)若函数()y f x =有且只有一个零点,求实数b 的取值范围;(3)当0b >时,判断函数()y f x =在区间(0,2)上是否存在极大值,若存在,求出极大值及相应实数b 的取值范围.24.已知a ,b 是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I上单调性一致(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以a ,b 为端点的开区间上单调性一致,求|a -b |的最大值。
【 当 x < 1时, f ( x ) = x 2 - 2ax + 2a ≥ 0 ⇔ 2a ≥ 恒成立,1 ⎛ 1 ⎫ = - 1 - x +- 2 ⎪ ≤ - 2 (1- x) ⋅ - 2 ⎪⎪ = 0 , ⎝ ⎭ 1 - x D .专题 03 导数及其应用1.【2019 年高考全国Ⅲ卷理数】已知曲线 y = a e x + x ln x 在点(1,a e )处的切线方程为 y =2x +b ,则A . a = e ,b = -1C . a = e -1,b = 1B .a=e ,b =1D . a = e -1 , b = -1【答案】D【解析】∵ y ' = ae x + ln x + 1,∴切线的斜率 k = y ' |x =1 = ae + 1 = 2 ,∴ a = e -1 ,将 (1,1)代入 y = 2 x + b ,得 2 + b = 1,b = -1 .故选 D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.⎧ x 2 - 2ax + 2a, x ≤ 1, 2. 2019 年高考天津理数】已知 a ∈ R ,设函数 f ( x ) = ⎨若关于 x 的不等式 f ( x ) ≥ 0⎩ x - a ln x,x > 1.在 R 上恒成立,则 a 的取值范围为A . [0,1]B . [0,2]C . [0,e][1,e]【答案】C【解析】当 x = 1 时, f (1) = 1 - 2a + 2a = 1 > 0 恒成立;x2 x - 1x 2令 g ( x ) = ,x - 1x 2 (1- x - 1)2 (1- x)2 - 2(1- x) + 1则 g ( x ) = - =- =-1 - x 1 - x 1 - x⎛ ⎫ ⎝ ⎭3. 2019 浙江)已知a, b ∈ R ,函数 f ( x ) = ⎨ 1 1 .若函数 y = f ( x ) - ax - b 恰有 ⎪⎩ 3当1 - x =1,即 x = 0 时取等号,1 - x∴ 2a ≥ g ( x)max = 0 ,则 a > 0 .当 x > 1 时, f ( x ) = x - a ln x ≥ 0 ,即 a ≤ xln x恒成立,令 h ( x ) = x ln x,则 h '( x ) = ln x - 1 (ln x)2 ,当 x > e 时, h '( x ) > 0 ,函数 h( x ) 单调递增,当 0 < x < e 时, h '( x ) < 0 ,函数 h( x ) 单调递减,则 x = e 时, h( x ) 取得最小值 h(e) = e ,∴ a ≤ h( x)min = e ,综上可知, a 的取值范围是[0,e] .故选 C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.⎧ x , x < 0 ⎪(x 3 - (a + 1)x 2 + ax, x ≥ 0 23 个零点,则A .a <–1,b <0C .a >–1,b <0B .a <–1,b >0D .a >–1,b >0【答案】C【解析】当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得 x,则 y =f (x )﹣ax ﹣b 最多有一个零点;当 x ≥0 时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,y ' = x 2 - (a + 1)x ,当 a +1≤0,即 a ≤﹣1 时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则 y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当 a +1>0,即 a >﹣1 时,令 y ′>0 得 x ∈(a +1,+∞),此时函数单调递增,0)令 y ′<0 得 x ∈[0,a +1),此时函数单调递减,则函数最多有 2 个零点.根据题意,函数 y =f (x )﹣ax ﹣b 恰有 3 个零点⇔函数 y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有 2 个零点,如图:>∴ < 0 且,<解得 b <0,1﹣a >0,b >(a +1)3,则 a >–1,b <0.故选 C .【名师点睛】本题考查函数与方程,导数的应用.当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x﹣b 最多有一个零点;当 x ≥0 时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019 年高考全国Ⅰ卷理数】曲线 y = 3(x 2 + x)e x 在点 (0, 处的切线方程为____________.【答案】 3x - y = 0【解析】 y ' = 3(2 x + 1)e x + 3( x 2 + x)e x = 3( x 2 + 3x + 1)e x ,所以切线的斜率 k = y ' |x =0 = 3 ,则曲线 y = 3( x 2 + x)e x 在点 (0,0) 处的切线方程为 y = 3x ,即 3x - y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.y = x + ( x > 0) 切于 ( x 0 , x 0 +由1 - 4= -1 得 x = 2 ( x = - 2 舍去),.. ( x - x ) ,即 y - ln x =x- 1 , x 将点 (-e, -1)代入,得 -1 - ln x5.【2019 年高考江苏】在平面直角坐标系 x Oy 中,P 是曲线 y = x +线 x + y = 0 的距离的最小值是 ▲.【答案】44 x( x > 0) 上的一个动点,则点 P 到直【解析】由 y = x + 4 4 ( x > 0) ,得 y ' = 1 - x x 2,设斜率为 -1的直线与曲线 4 x4 x 0) ,x 2 0 0 0∴曲线 y = x + 4 x( x > 0) 上,点 P( 2,3 2) 到直线 x + y = 0 的距离最小,最小值为2 +3 212 + 12 = 4 .故答案为 4 .【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养采取导 数法,利用数形结合和转化与化归思想解题.6.【2019 年高考江苏】在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点 A 的坐标是▲ .【答案】 (e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标设点 A (x , y 0 0又 y ' =1,x) ,则 y= ln x .当 x = x 0时, y ' = 1 x 0,则曲线 y = ln x 在点 A 处的切线为 y - y 0 =1 x0 = -e x- 1 ,若函数 f (x ) = e + a e 为奇函数,则 f (- x ) = - f (x ), 即 e x- x - x+ a e x =- e x + a e - x ,( )即 x 0 ln x 0 = e ,考察函数 H (x ) = x ln x ,当 x ∈ (0,1)时, H (x ) < 0 ,当 x ∈ (1, +∞)时, H (x ) > 0 ,且 H ' (x ) = ln x + 1 ,当 x > 1 时, H ' (x ) > 0, H (x )单调递增,注意到 H (e ) = e ,故 x 0 ln x 0 = e 存在唯一的实数根 x 0 = e ,此时 y 0 = 1 ,故点 A 的坐标为 (e,1).【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019 年高考北京理数】设函数 f (x ) = e x + a e - x (a 为常数).若 f (x )为奇函数,则 a=________;若 f (x )是 R 上的增函数,则 a 的取值范围是___________.【答案】 -1(-∞,0 ]【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得 a 的值,然后利用 f '( x ) ≥ 0 可得 a 的取值范围.( )即 (a + 1) e x + e - x = 0 对任意的 x 恒成立,则 a +1 = 0 ,得 a = -1 .若函数 f (x ) = e x + a e - x 是 R 上的增函数,则 f '( x ) = e x - ae - x ≥ 0 在 R 上恒成立,即 a ≤ e 2x 在 R 上恒成立,又 e 2 x > 0 ,则 a ≤ 0 ,(1) f '( x ) 在区间 (-1, ) 存在唯一极大值点;当 x ∈ -1, ⎪ 时, g' ( x) 单调递减,而 g' (0) > 0, g' ( ) < 0 ,可得 g' ( x) 在 -1, ⎪ 有唯一零点,则当 x ∈ (-1,α ) 时, g' ( x) > 0 ;当 x ∈ α , ⎪ 时, g' ( x) < 0 .2 ⎭ 单调递减,故 g ( x) 在 -1, ⎪ 存在唯一极大值点,即 f ' ( x) ⎛ 在 -1, ⎪ 存在唯一极大值点.(ii )当 x ∈ 0, ⎥ 时,由(1)知,f ' ( x) 在 (0, α ) 单调递增,在 α , ⎪ 单调递减,而 f ' (0)=0 ,f ' ⎪ < 0 ,,使得 f ' (β ) = 0 ,且当 x ∈ (0, β ) 时, f ' ( x) > 0 ;当 x ∈ β , ⎪ 时, f ' ( x) < 0 . 2 ⎭ ⎝ 2 ⎭⎛ 故 f ( x) 在 (0, β ) 单调递增,在 β , ⎪ 单调递减.即实数 a 的取值范围是 ( -∞,0 ] .【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019 年高考全国Ⅰ卷理数】已知函数 f ( x ) = sin x - ln(1+ x) , f '( x ) 为 f ( x ) 的导数.证明:π2(2) f ( x ) 有且仅有 2 个零点.【答案】(1)见解析;(2)见解析.【解析】(1)设 g ( x ) = f ' ( x ) ,则 g ( x ) = cos x -11 + x 1 , g' ( x ) = - sin x + .(1+ x)2⎛ π⎫ π ⎛ π⎫⎝2 ⎭2⎝2 ⎭设为 α .⎛ π⎫ ⎝2 ⎭所以 g ( x) 在 (-1,α ) 单调递增,在 α , ⎝π⎫ ⎪⎛ π⎫ ⎝ 2 ⎭⎛ π⎫ ⎝2 ⎭(2) f ( x ) 的定义域为 (-1, +∞) .(i )当 x ∈ (-1,0] 时,由(1)知, f ' ( x ) 在 ( - 1,0) 单调递增,而 f ' (0) = 0 ,所以当 x ∈ (-1,0) 时,f ' ( x) < 0 ,故 f ( x ) 在 ( - 1,0) 单调递减,又 f (0)=0 ,从而 x = 0 是 f ( x ) 在 (-1,0] 的唯一零点.⎛ π⎤ ⎛ π⎫ ⎛π⎫ ⎝2 ⎦⎝2 ⎭ ⎝ 2 ⎭所以存在 β ∈ α , ⎝π⎫ ⎛ π⎫ ⎪⎛ π⎫ ⎝2 ⎭又 f (0)=0 , f ⎪ = 1 - ln 1 + > 0 ,所以当 x ∈ 0, ⎥ 时, f ( x) > 0 .从而, f ( x) 在 0, ⎥ 没有⎝ 2 ⎭⎝2 ⎭ ⎝2 ⎦ ⎝ 2 ⎦, π⎥ 时,f ' ( x) < 0 ,所以 f ( x) 在 , π ⎪ 单调递减.而 (iii )当 x ∈ f ⎪ > 0,f (π) < 0 ,所以 f ( x) 在 ⎛π , π⎥有唯一零点. 9.【2019 年高考全国Ⅱ卷理数】已知函数 f (x ) = ln x - x + 1.+ > 0 ,所以 f ( x ) 在(0,1),(1,+∞)单调递增. e + 1 e2 + 1 e 2 -3 < 0 , f (e 2 ) = 2 - < 1 , f ( ) = - ln x + 1 = - f ( x ) = 0 ,故 f (x )在(0,1)有唯一零点 .x x x - 1 xx + 1 (2)因为1 = e - ln x,故点 B (–lnx , )在曲线 y =e x 上. x⎛π⎫ ⎛ π⎫ ⎛ π⎤ ⎛ π⎤ ⎪零点.⎛π ⎤ ⎛π ⎫ ⎝ 2⎦⎝ 2⎭⎛π⎫ ⎝ 2 ⎭⎝ 2 ⎤⎦(iv )当 x ∈ (π, +∞) 时, ln( x + 1) > 1 ,所以 f ( x ) <0,从而 f ( x ) 在 (π, +∞ ) 没有零点.综上, f ( x ) 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题解决零点问题的 关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间 内零点的唯一性,二者缺一不可.x - 1 .(1)讨论 f(x)的单调性,并证明 f(x)有且仅有两个零点;(2)设 x 0 是 f(x)的一个零点,证明曲线 y=lnx 在点 A(x 0,lnx 0)处的切线也是曲线 y = e x 的切线.【答案】(1)函数 f ( x ) 在 (0,1) 和 (1, +∞) 上是单调增函数,证明见解析;(2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为 f ' ( x ) =1 2 x ( x - 1)2因为 f (e )=1 - =e -1 e 2 - 1 e 2 - 1> 0 ,所以 f (x )在(1,+∞)有唯一零点 x 1,即f (x 1)=0.又 0 <1 1 1 1综上,f (x )有且仅有两个零点.x 00 1x + 1 x x x - 1 1由题设知 f ( x ) = 0 ,即 ln x = 0 ,故直线 AB 的斜率 k = 0= 0 = . - x xx - 1曲线 y =e x 在点 B(- ln x ,1x )处切线的斜率是 ,曲线 y = ln x在点 A( x ,ln x )处切线的斜率也是 . ⎩b = -1 ⎩b = 1, +∞ ⎪ 时 , f '( x ) > 0; 当 x ∈ 0, ⎪ 时 , f '( x ) < 0. 故 f ( x) 在 ⎝ 3 ⎭ ⎝ 3 ⎭(-∞,0), , +∞ ⎪ 单调递增,在 0, ⎪ 单调递减;(0, +∞) 时 , f '( x ) > 0; 当 x ∈ ,0 ⎪ 时 , f '( x ) < 0. 故 f ( x) 在 3 ⎭ ⎝3⎭⎛ -∞, ⎪ ,(0, +∞) 单调递增,在 ,0 ⎪ 单调递减.3 ⎭ ⎝⎝ 3 ⎭ a ⎫1 1 x + 1- ln x - 00 0 0 x - 1 - ln x - x x + 1 0 0 0 - 0 00 00 0 11x0 0 x0 0,所以曲线 y = ln x 在点 A( x 0 ,ln x 0 ) 处的切线也是曲线 y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力10.【2019 年高考全国Ⅲ卷理数】已知函数 f ( x ) = 2 x 3 - ax 2 + b .(1)讨论 f ( x ) 的单调性;(2)是否存在 a, b ,使得 f ( x ) 在区间 [0,1] 的最小值为 -1且最大值为 1?若存在,求出 a, b 的所有值; 若不存在,说明理由.⎧a = 0 ⎧a = 4【答案】(1)见解析;(2) ⎨ 或 ⎨.【解析】(1) f '( x ) = 6 x 2 - 2ax = 2 x (3x - a) .令 f '( x ) = 0 ,得 x =0 或 x = a 3.若 a >0 , 则 当 x ∈ (-∞,0)⎛ a ⎫ ⎛ a ⎫⎛ a ⎫ ⎛ a ⎫ ⎝ 3 ⎭ ⎝ 3 ⎭若 a =0, f ( x ) 在 (-∞, +∞) 单调递增;若 a <0 , 则 当 x ∈ -∞, ⎝a ⎫ ⎛ a ⎫ ⎪⎛ ⎛ a ⎫(2)满足题设条件的 a ,b 存在.(i )当 a ≤0时,由(1)知, f ( x ) 在[0,1]单调递增,所以 f ( x ) 在区间[0,l]的最小值为 f (0)=b ,最大值为 f (1) = 2 - a + b .此时 a ,b 满足题设条件当且仅当 b = -1 , 2 - a + b = 1,即 a =0, b = -1 .(iii)当0<a<3时,由(1)知,f(x)在[0,1]的最小值为f ⎪=-令f'(x)=1,即x2-2x+1=1,得x=0或x=.由g(x)=1(ii)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.⎛a⎫⎝3⎭a327+b,最大值为b或2-a+b.若-若-a327a327+b=-1,b=1,则a=332,与0<a<3矛盾.+b=-1,2-a+b=1,则a=33或a=-33或a=0,与0<a<3矛盾.综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算.11.【2019年高考北京理数】已知函数f(x)=14x3-x2+x.(Ⅰ)求曲线y=f(x)的斜率为1的切线方程;(Ⅱ)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)最小时,求a的值.【答案】(Ⅰ)y=x与y=x-64;(Ⅱ)见解析;(Ⅲ)a=-3.2713【解析】(Ⅰ)由f(x)=x3-x2+x得f'(x)=x2-2x+1.44384388又f(0)=0,f()=,32788所以曲线y=f(x)的斜率为1的切线方程是y=x与y-=x-,27364即y=x与y=x-.27(Ⅱ)令g(x)=f(x)-x,x∈[-2,4].3x3-x2得g'(x)=x2-2x.4434(0, 27(Ⅱ)当 x ∈ ⎢ , ⎥ 时,证明 f ( x) + g ( x) - x ⎪ ≥ 0 ;4 2 ( Ⅲ ) 设 x 为 函 数 u ( x) = f ( x)- 1在 区 间 2n π + ⎝,2n π + ⎪ 内 的 零 点 , 其 中 n ∈ N , 证 明 2 sin x - cos x【答案】(Ⅰ) f ( x) 的单调递增区间为 ⎢2k π - , 2k π + ⎥ (k ∈ Z), f ( x) 的单调递减区间为令 g' ( x ) = 0 得 x = 0 或 x = 83g' ( x ), g ( x ) 的情况如下:.x-2 (-2,0) 0 8)38 3 8( , 4)g' ( x )g ( x )+ - +-6 0 - 64所以 g ( x ) 的最小值为 -6 ,最大值为 0 .故 -6 ≤ g ( x ) ≤ 0 ,即 x - 6 ≤ f ( x ) ≤ x .(Ⅲ)由(Ⅱ)知,当 a < -3 时, M (a) ≥ F (0) =| g (0) - a |= -a > 3 ;当 a > -3 时, M (a) ≥ F (-2) =| g (-2) - a |= 6 + a > 3 ;当 a = -3 时, M (a) = 3 .综上,当 M (a) 最小时, a = -3 .【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.12.【2019 年高考天津理数】设函数 f ( x ) = e x cos x,g ( x ) 为 f (x )的导函数.(Ⅰ)求 f (x )的单调区间;⎡π π⎤ ⎛π ⎫ ⎣ ⎦⎝ 2⎭n⎛ π π⎫ 4 2 ⎭π e -2n π2n π + - x <n 0.⎡ ⎣3π π ⎤ 4 4 ⎦π 5π ⎤ ⎥⎦ (k ∈ Z) .(Ⅱ)见解析;(Ⅲ)见解析. ⎣【解析】(Ⅰ)由已知,有 f ' ( x) = e x (cos x - sin x) .因此,当 x ∈ 2k π +, 2k π + ⎪ (k ∈ Z) 时, 有 sin x > cos x , 得 f '( x) < 0 , 则 f (x ) 单 调 递 减 ;当 x ∈ 2k π -, 2k π + ⎪ (k ∈ Z) 时 ,有 所以, f (x )的单调递增区间为 ⎢2k π - , 2k π + ⎥ (k ∈ Z), f ( x) 的单调递减区间为 π 5π ⎤ 4 4 ⎥⎦⎣(Ⅱ)证明:记 h( x) = f ( x) + g ( x)⎛π- x ⎪.依题意及(Ⅰ),有 g ( x) = e x (cos x - sin x) ,从而 g' ( x) = -2e x sin x .当 x ∈ , ⎪ 时, g'( x) < 0 ,故 h'( x) = f ' ( x) + g' ( x) - x ⎪ + g ( x)(-1) = g' ( x) - x ⎪ < 0 . 因此, h (x ) 在区间 ⎢ , ⎥ 上单调递减,进而 h( x) ≥ h⎪= f ⎪ = 0 .所以,当 x ∈ ⎢ , ⎥ 时, f ( x) + g ( x) - x ⎪ ≥ 0 .4 2 = 1 .记 y = x - 2n π ,则 y ∈ , ⎪ ,⎝ 4 2 ⎭≥ y .由(Ⅱ)知,当 x ∈ , ⎪ 时, g'( x) < 0 ,所⎝ 4 2 ⎭g (x ) 在 ⎡⎢ , ⎤⎥ 上 为 减 函 数 , 因 此 g ( y ) ≤ g ( )y < ⎛ g ⎫⎪ = 0 . 又 由 ( Ⅱ ) 知 ,⎣ 4 2 ⎦⎝ 4 ⎭⎡ ⎢2k π + , 2k π + 4 4⎛⎝π 5π ⎫ 4 4 ⎭sin x < cos x ,得 f ' ( x ) > 0 ,则 f (x )单调递增.⎛ ⎝3π π ⎫ 4 4 ⎭⎡⎣3π π⎤ 4 4 ⎦⎡ ⎢ 2k π +, 2k π + (k ∈ Z) .⎫ ⎝ 2 ⎭⎛π π⎫ ⎝ 4 2 ⎭⎛π ⎫ ⎛π ⎫ ⎝ 2 ⎭ ⎝ 2 ⎭⎡ π π ⎤ ⎛ π ⎫ ⎛π⎫ ⎣ 4 2 ⎦⎝ 2 ⎭ ⎝ 2 ⎭⎡π π⎤ ⎛π ⎫ ⎣ ⎦⎝ 2⎭(Ⅲ)证明:依题意,u (x n ) = f (x )-1 = 0 ,即 e x n cos x nn n n n⎛π π⎫且 f (y n) = e y n cos y = e x n -2n π cos (x - 2n π) = e -2n π (n ∈ N ) .n n由 f (y n) = e-2n π≤ 1 = f (y )及(Ⅰ),得 y 0 n 0 ⎛π π⎫以π π π11n 0f(y)+g(y) -y⎪≥0,故⎝2n⎭-y≤-=-≤=<2g(y)g(y)g(y)e y0(sin y-cos y)sin x-cos x f(y)2sin x-cos xf(x)的单调递增区间是(3,+∞),单调递减区间是(0,3);(2) 0,4⎦【解析】(1)当a=-3f'(x)=-3n nπe-2nπ所以,2nπ+-x<.n00【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.13.【2019年高考浙江】已知实数a≠0,设函数f(x)=a ln x+x+1,x>0.(1)当a=-34时,求函数f(x)的单调区间;(2)对任意x∈[1e2,+∞)均有f(x)≤x2a,求a的取值范围.注:e=2.71828…为自然对数的底数.【答案】(1)⎛2⎤⎥.⎝3时,f(x)=-ln x+1+x,x>0.441(1+x-2)(21+x+1)+=4x21+x4x1+x,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(1)≤12a2,得0<a≤.4当0<a≤2x x21+x时,f(x)≤等价于-42a a2a-2ln x≥0.令t=1a,则t≥22.设g(t)=t2x-2t1+x-2ln x,t≥22,则g(t)=11+xx(t-1+)2--2ln x.x x12(i )当 x ∈ ⎢ , +∞ ⎪ 时, 1 +⎡ 1p'( x ) = 271(1, +∞)7单调递减极小值p (1)(ii )当 x ∈⎢ , ⎪ 时, g (t )…g 1 + ⎪⎣ e 7 ⎭x ⎭ 2 x⎝, ⎥ ,则 q' (x) = 令 q ( x) = 2 x ln x + ( x + 1), x ∈ ⎢ 故 q ( x) 在 ⎢⎡ 1 1 ⎤, ⎥ 上单调递增,所以 q ( x)…⎣ e 7 ⎦ q ⎪ .由(i )得, q ⎪ = -p ⎪ < - p (1)= 0 . 因此 g (t)…g1 + x ⎪⎭2 x⎣ 7 ⎭ ⎫ 1 x ≤ 2 2 ,则g (t ) ≥ g (2 2) = 8 x - 4 2 1 + x - 2ln x .记 p ( x ) = 4 x - 2 2 1 + x - ln x, x ≥17,则21 2 x x + 1 - 2 x - x + 1- - =x x + 1 x x x + 1= ( x - 1)[1+ x ( 2 x + 2 - 1)]x x + 1( x + 1)( x + 1 + 2 x )故.x1 71( ,1)p'( x )-+p ( x )1 p ( )单调递增所以, p ( x ) ≥ p (1) = 0 .因此, g (t ) ≥ g (2 2) = 2 p ( x ) ≥ 0 .⎡ 1 1 ⎫ ⎛ 1 ⎫ -2 x ln x - ( x + 1)=2.2 ⎡ 1 1 ⎤ ⎣ e 2 7 ⎦⎛ 1 ⎫ ⎝ 7 ⎭ln x + 2 x + 1 > 0 ,⎛ 1 ⎫ ⎝ 7 ⎭2 7 ⎛ 1 ⎫ 2 7 7 ⎝ 7 ⎭ 7所以, q (x)<0 .⎛ 1 ⎫ q ( x ) =- > 0 .⎝13由(i )(ii )知对任意 x ∈⎢⎡ 1, +∞ ⎪ , t ∈ [2 2, +∞ ), g (t )…0 ,, +∞ ⎪ ,均有 f ( x)…即对任意 x ∈ ⎢ ⎣ e ⎭(从而 f ' ( x) = 3( x - b ) x - f ' ( x ) = 0 ,得 x = b 或 x =⎪ .令⎣ e 2 ⎫ ⎭⎡ 1 ⎫ 2 x 2a .⎛ 综上所述,所求 a 的取值范围是 ⎝0, 2 ⎤⎥ .4 ⎦【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. 3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019 年高考江苏】设函数 f ( x ) = ( x - a)( x - b )( x - c), a, b , c ∈ R 、 f ' (x) 为 f (x )的导函数.(1)若 a =b =c ,f (4)=8,求 a 的值;(2)若 a ≠b ,b =c ,且 f (x )和 f ' (x) 的零点均在集合{ - 3,1,3} 中,求 f (x )的极小值;(3)若 a = 0,0 < b … 1, c = 1 ,且 f (x )的极大值为 M ,求证:M ≤ 4 27.【答案】(1) a = 2 ;(2)见解析;(3)见解析.【解析】(1)因为 a = b = c ,所以 f ( x ) = ( x - a)( x - b )( x - c) = ( x - a)3 .因为 f (4) = 8 ,所以 (4 - a)3 = 8 ,解得 a = 2 .(2)因为 b = c ,所以 f ( x ) = ( x - a)( x - b )2 = x 3 - (a + 2b ) x 2 + b (2a + b ) x - ab 2 ,⎛ ⎝2a + b ⎫ 2a + b3 ⎭ 3 .因为 a, b ,2a + b 3都在集合{-3,1,3}中,且 a ≠ b ,2a + b所以 = 1,a = 3, b = -3 .3此时 f ( x ) = ( x - 3)(x + 3)2 , f ' ( x ) = 3( x + 3)( x - 1) .令 f ' ( x ) = 0 ,得 x = -3 或 x = 1 .列表如下:1433,x==[3x2-2(b+1)x+b] 1-⎝3()b+1⎫2b2-b+1b(b+1) -x+9⎭99⎪(b-b+1)≤b(b+1)xf'(x)(-∞,-3)+-3(-3,1)–1(1,+∞)+ f(x)极大值极小值所以f(x)的极小值为f(1)=(1-3)(1+3)2=-32.(3)因为a=0,c=1,所以f(x)=x(x-b)(x-1)=x3-(b+1)x2+bx,f'(x)=3x2-2(b+1)x+b.因为0<b≤1,所以∆=4(b+1)2-12b=(2b-1)2+3>0,则f'(x)有2个不同的零点,设为x,x12(x1<x).2b+1-b2-b+1b+1+b2-b+1由f'(x)=0,得x=.12列表如下:x f'(x)(-∞,x)1+x1(x,x)12–x2(x,+∞)2+f(x)所以f(x)的极大值M=f (x).1解法一:M=f(x)=x3-(b+1)x2+bx1111极大值极小值11⎛x1=-2(b2-b+1)(b+1)b(b+1)2++2792723 b(b+1)2(b-1)2(b+1)2=-+(b(b-1)+1)3 272727244+≤.因此M≤.27272727解法二:15令 g ( x) = x( x - 1)2 , x ∈ (0,1) ,则 g' ( x) = 3 x - ⎪ ( x - 1) .1 ⎛ 1 ⎫ 4max = g ⎪=.因为 0 < b ≤ 1 ,所以 x ∈ (0,1) .1当 x ∈ (0,1) 时, f ( x ) = x( x - b )( x - 1) ≤ x( x - 1)2 .⎛ 1 ⎫ ⎝3 ⎭1令 g' ( x ) = 0 ,得 x = 3xg' ( x )g ( x ).列表如下:1 (0, )3+1 3极大值1( ,1) 3–所以当 x = 时, g ( x ) 取得极大值,且是最大值,故 g ( x ) 3 ⎝ 3 ⎭ 27 .所以当 x ∈ (0,1) 时, f ( x ) ≤ g ( x ) ≤ 4 4,因此 M ≤ .27 27【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学 2019 届高三第二次调研考试数学】函数的单调减区间是A .C .,【答案】AB .D .【解析】,令,解得:.故选 A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题16.【江西省南昌市 2019 届高三模拟考试数学】已知在 上连续可导,为其导函数,且,则A .C .0【答案】CB .D .16联立①②,解得 f (x ) = - x 3 - x + ,则 f ' (x ) = - x 2- 1 ,∴ f (1) = - - 1 + = - , f ' (1) = - -1 = - ,= - (x -1),即10 x + 4 y - 5 = 0 . 【解析】∵ f (- x ) = e - x + e x - f '(1)(- x )(e - x - e x )= f ( x ) ,∴ f ( x ) 是偶函数,两边对 x 求导,得 - f '(- x ) = f '( x ) ,即 f '(- x ) = - f '( x ) ,则 f '( x ) 是 R 上的奇函数,则 f '(0) = 0 ,f '(-2) = - f '(2) ,即 f '(2) + f '(-2) = 0 ,则 f '(2) + f '(-2) - f '(0) f '(1) = 0 .故选 C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校 2019 届高三第二次联考数学】若 f ( x ) + 3 f (- x ) = x 3 + 2 x + 1 对 x ∈ R 恒成立,则曲线y = f (x )在点 (1, f (1))处的切线方程为A . 5x + 2 y - 5 = 0C . 5x + 4 y = 0 【答案】BB .10 x + 4 y - 5 = 0D . 20 x - 4 y - 15 = 0【解析】f (x )+ 3 f (- x ) = x 3 + 2x + 1……①,∴ f (- x )+ 3 f (x ) = - x 3 - 2x + 1……②,1 1 32 4 21 1 5 3 524 4 2 2∴ 切线方程为: y + 5 5 4 2故选 B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学 2019 届高三第二次调研考试数学】函数 f ( x ) = x 2 ln x 的最小值为17令 2ln x +1 = 0 ,解得 x = e2 , 则当 x ∈ (0,e 2 ) 时, f ( x ) 为减函数,当 x ∈ (e 2, +∞) 时, f ( x ) 为增函数, 2 处的函数值为最小值,且f (e ) = - A . - ,1⎪⎛1⎫⎝ e ⎭B . - , +∞ ⎪ D . -∞, ⎪1 ⎫+ + +A . -1 e B . 1eC . -12eD .12e【答案】C【解析】由题得 x ∈ (0, +∞) , f '( x ) = 2 x ln x + x = x(2ln x + 1) ,- 1- 1 - 1所以 x = e- 1 - 121 2e.故选 C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市 2019 届高三第三次模拟考试数学】若函数存在单调递增区间,则 的取值范围是⎛ 1 ⎫ ⎝ e ⎭C . (-1,+∞)【答案】B【解析】 f '( x ) = ax + lnx ,∴ f '( x ) > 0 在 x ∈ (0, ∞) 上成立,即 ax+ lnx >0 在 x ∈ (0, ∞) 上成立,⎝ e ⎭即 a > - lnxx在 x ∈ (0, ∞) 上成立.lnx 1 - ln x令 g (x ) = - ,则 g ′(x ) = - ,x x 2 lnx∴g (x ) =- 在(0,e )上单调递减,在(e ,+∞)上单调递增,x lnx 1∴g (x ) = - 的最小值为 g (e )= - ,x e18【.1∴a > - .e故选 B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.山西省太原市 2019 届高三模拟试题(一)数学】已知定义在 上的函数 满足,且,则 的解集是A . C .【答案】A【解析】令=在上单调递减,且故等价为B .D .,即 ,故,即 x < ,则所求的解集为 .故选 A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题21.【河南省焦作市 2019 届高三第四次模拟考试数学】已知, ,关系为 ,则 的大小A .C .【答案】D【解析】依题意,得 a = ln 3 3 =令,所以.B .D .ln3 lne 3ln2 ln8, b = e -1 = , c = = 3 e 8 8.所以函数在上单调递增,在上单调递减,所以,且,即,所以.故选 D.19A . -∞, ⎪⎛e ⎭ B . (-∞,0 )C . ⎢ , +∞ ⎪⎭D . , +∞ ⎪设 h (x ) = ,则 h ' (x ) = x 设 g (x ) = - lnx - 1 ,则 g ' (x ) = - 【【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数 f (x ) = lnx x是解题的关键,属于中档题.22.【安徽省毛坦厂中学 2019 届高三校区 4 月联考数学】已知,若关于 的不等式恒成立,则实数 的取值范围是1 ⎫ ⎝⎡ 1 ⎫ ⎛ 1 ⎫⎣ e⎝ e ⎭【答案】D【解析】由 f (x ) < 0 恒成立得 a > lnx + 1 e x恒成立,lnx + 1e x 1- lnx - 1 e x.1 1 1- < 0 恒成立,x x 2 x在上单调递减,又, 当时, ,即;当时, ,即,在上单调递增,在上单调递减,,.故选 D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23. 辽宁省丹东市 2019 届高三总复习质量测试】若 x = 1 是函数 f ( x ) =极值点,则 a 的值为A .-2B .3C .-2 或 3D .-3 或 2【答案】B1 3x 3+ (a + 1)x 2 - ( a 2 + a - 3 )x 的【解析】 f (x ) =1 3 x 3 + (a + 1) x2 - (a 2 + a - 3)x ⇒ f '( x ) = x 2 + 2(a + 1) x - (a 2 + a - 3),2 0( )( )( ).由题意可知 f '(1) = 0 ,即1 + 2(a + 1) - a 2 + a - 3 = 0 ⇒ a = 3 或 a = -2 ,当 a = 3 时, f '( x ) = x 2 + 2(a + 1)x - a 2 + a - 3 = x 2 + 8x - 9 = ( x + 9)( x - 1) ,当 x > 1 或 x < -9 时, f '( x ) > 0 ,函数单调递增;当 -9 < x < 1 时, f '( x ) < 0 ,函数单调递减,显然 x = 1 是函数 f (x )的极值点;当 a = -2 时, f '( x ) = x 2 + 2(a + 1) x - a 2 + a - 3 = x 2 - 2 x + 1 = ( x - 1)2 ≥ 0 ,所以函数 f ( x ) 是 R 上的单调递增函数,没有极值,不符合题意,舍去.故 a = 3 .故选 B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出 a 的值,没有通过单调性来验证 x = 1 是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点24.【黑龙江省大庆市第一中学 2019 届高三下学期第四次模拟(最后一卷)考试】已知奇函数 f (x )是定义在 R 上的可导函数,其导函数为 f ' (x ),当 x > 0 时,有 2 f (x )+ xf ' (x ) > x 2 ,则不等式(x + 2018 )2 f (x+2018 )+4 f (-2 ) < 0 的解集为A . (-∞, -2016)C . (-∞, -2018) 【答案】A【解析】设 g (x ) = x 2 f (x ),因为 f (x )为 R 上的奇函数,所以 g (- x ) = (- x )2 f (- x ) = - x 2 f (x ) ,即 g (x )为 R 上的奇函数对 g (x )求导,得 g ' (x ) = x ⎡⎣2 f (x )+ xf ' (x )⎤⎦ ,而当 x > 0 时,有 2 f (x )+ xf ' (x ) > x 2 ≥ 0 ,故 x > 0 时, g ' (x ) > 0 ,即 g (x )单调递增,B . (-2016,-2012)D . (-2016,0)【所以 g (x )在 R 上单调递增,则不等式 (x + 2018 )2 f (x+2018 )+4 f (-2 ) < 0 即 (x + 2018)2 f (x+2018 ) < -4 f (-2 ) ,即 (x + 2018)2 f (x+2018 ) < 4 f (2 ),即 g (x + 2018) < g (2),所以 x + 2018 < 2 ,解得 x < -2016.故选 A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25. 重庆西南大学附属中学校 2019 届高三第十次月考数学】曲线 f ( x ) =线与直线 ax - y - 1 = 0 垂直,则 a = ________.1 【答案】 -21 2 x 2+ x ln x 在点 (1,f (1))处的切【解析】因为 f ( x ) = 1 2x 2+ x ln x ,所以 f '( x ) = x + ln x + 1 ,因此,曲线 f ( x ) =12x 2 + x ln x 在点 (1,f (1))处的切线斜率为 k = f '(1) = 1 + 1 = 2 ,又该切线与直线 ax - y - 1 = 0 垂直,所以 a = - 1 2.1故答案为 - .2【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.⎧2x 2 , x ≤ 0, 26.【广东省深圳市高级中学 2019 届高三适应性考试(6 月)数学】已知函数 f ( x ) = ⎨ ⎩ e x , x > 0,[ f ( x )]2 = a 恰有两个不同的实数根 x , x ,则 x + x 的最大值是______.12 1 2【答案】 3ln 2 - 2【解析】作出函数 f (x )的图象如图所示,若方程不妨设 x < x ,则 2x 2 = e x 2 = a ,22f ' (x ) ;(3)解方程 f ' (x ) = 0, 求出函数定义域内的所有根;(4)判断 f ' (x ) 在 f ' (x ) = 0 的根 x 左(x 4 - ax 2 , a ∈ R .由 ⎡⎣ f (x )⎤⎦ 2 = a ,可得 f ( x) =a ,∴ a > 1, 即 a > 1 ,121令 a = t (t > 1) ,则 x = -t, x = ln t ,1 2∴ x + x = ln t -t12,令 g (t ) = ln t - t 4 - 2t,则 g '(t ) = ,2 4t∴ 当1 < t < 8 时, g ' (t ) > 0 , g (t )在 (1,8 )上单调递增;当 t >8 时, g ' (t ) < 0 , g (t )在 (8, +∞)上单调递减,∴ 当 t = 8 时, g (t )取得最大值,为 g (8) = ln8 - 2 = 3ln2 - 2 .故答案为 3ln 2 - 2 .【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数 f (x )的极值与最值的步骤:(1)确定函数的定义域;(2)求导数右两侧值的符号,如果左正右负(左增右减),那么 f (x )在 x 处取极大值,如果左负右正(左减右增),那么 f (x )在 x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值; 6)如果求闭 0区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市 2019 届高三 3 月诊断性测试(一模)数学】已知函数 f ( x ) =(1)当 a = 1 时,求曲线 f ( x ) 在点 (2, f (2)) 处的切线方程;1 14 2(2)设函数g(x)=(x2-2x+2-a)e x-e f(x),其中e=2.71828...是自然对数的底数,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【答案】(1)6x-y-10=0;(2)当a≤0时,g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,g(x)在(-∞,-a)和(a,+∞)单调递增,在(-a,a)单调递减,极大值为g(-a)=(2a+2)e-ae+a2,极小值为4g(a)=(-2a+2)e ae+a2. 4【解析】(1)由题意f'(x)=x3-ax,所以当a=1时,f(2)=2,f'(2)=6,因此曲线y=f(x)在点(2,f(2))处的切线方程是y-2=6(x-2),即6x-y-10=0.(2)因为g(x)=(x2-2x+2-a)e x-e f(x),所以g'(x)=(2x-2)e x+(x2-2x+2-a)e x-e f'(x)=(x2-a)e x-e(x3-ax)=(x2-a)(e x-e x),令h(x)=e x-e x,则h'(x)=e x-e,令h'(x)=0得x=1,当x∈(-∞,1)时,h'(x)<0,h(x)单调递减,当x∈(1,+∞)时,h'(x)>0,h(x)单调递增,所以当x=1时,h(x)min=h(1)=0,也就说,对于∀x∈R恒有h(x)≥0.当a≤0时,g'(x)=(x2-a)h(x)≥0,g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,令g'(x)=0,可得x=±a.当x<-a或x>a时,g'(x)=(x2-a)h(x)≥0,g(x)单调递增,当-a<x<a时,g'(x)<0,g(x)单调递减,因此,当x=-a时,g(x)取得极大值g(-a)=(2a+2)e-ae+a2;4当x=a时,g(x)取得极小值g(a)=(-2a+2)e ae+a2. 4综上所述:当a≤0时,g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,g(x)在(-∞,-a)和(a,+∞)上单调递增,在(-a,a)上单调递减,函数既有极大值,又有极小值,极大值为g(-a)=(2a+2)e-ae+a2,4极小值为g(a)=(-2a+2)e ae+a2. 4【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数,,.(1)求函数的极值点;(2)若恒成立,求的取值范围.【答案】(1)极大值点为,无极小值点.(2).【解析】(1)f(x)=lnx-ax的定义域为,,当时,,所以在上单调递增,无极值点;当时,解得,解得,所以在上单调递增,在上单调递减,所以函数有极大值点,为,无极小值点.(2)由条件可得恒成立,则当时,令恒成立,,则,令,则当时,,所以在上为减函数.又,所以在上,;在上,.所以在上为增函数,在上为减函数,所以,所以.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.【答案】(1);(2).【解析】(1)由题意知,在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,,所以存在满足,即.当时,,;当时,,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以..【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力30.【福建省龙岩市 2019 届高三 5 月月考数学】今年 3 月 5 日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部 2019 年部门预算》中透露,2019 年教育部拟抽检博士学位论文约 6000 篇,预算为 800 万元.国务院学位委员会、教育部2014 年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送 3 位同行专家进行评议,3 位专家中有 2 位以上(含 2 位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有 1 位专家评议意见为“不合格”的学位论文,将再送 2 位同行专家进行复评,2 位复评专家中有 1 位以上(含 1 位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为 p (0 < p < 1) ,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为 f ( p ) ,求 f ( p ) ;(2)若拟定每篇抽检论文不需要复评的评审费用为 900 元,需要复评的评审费用为 1500 元;除评审费外,其它费用总计为 100 万元.现以此方案实施,且抽检论文为 6000 篇,问是否会超过预算?并说明理由.【答案】(1);(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为 ,一篇学位论文复评被认定为“存在问题学位论文”的概率为,所以一篇学位论文被认定为“存在问题学位论文”的概率为.(2)设每篇学位论文的评审费为 元,则 的可能取值为 900,1500.,,所以.令,.当时, , 在 上单调递增;.当时, ,在 上单调递减,所以的最大值为.所以实施此方案,最高费用为(万元).综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力31.【北京市西城区 2019 届高三 4 月统一测试(一模)数学】设函数 e,其中 .(1)当为偶函数时,求函数的极值;(2)若函数在区间上有两个零点,求 的取值范围.【答案】(1)极小值,极大值;(2) e或 .ee【解析】(1)由函数是偶函数,得 ,即 ee对于任意实数 都成立,所以.此时,则.由,解得.当 x 变化时,与的变化情况如下表所示:↘极小值 ↗ 极大值 ↘所以在, 上单调递减,在 上单调递增.所以有极小值,极大值.(2)由 e,得. e所以“在区间上有两个零点”等价于“直线 与曲线, 有且只有两e个公共点”..对函数 求导,得. e由,解得,.当 x 变化时, 与的变化情况如下表所示:↘极小值↗ 极大值 ↘所以在 , 上单调递减,在上单调递增.又因为e ,e ,,,所以当ee或 时,直线 与曲线e, 有且只有两个公共点.eee即当 e 或时,函数 在区间 上有两个零点.ee【名师点睛】利用函数零点的情况求参数值或取值范围的方法:(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象问题,从而构建不等式求解。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()xf x xe =,则( )A. 1x =为()f x 的极大值点B.1x =为()f x 的极小值点C. 1x =-为()f x 的极大值点D. 1x =-为()f x 的极小值点[学2.函数2sin 2xy x =-的图象大致是二、填空题3. 函数21ln 2y x x =-的单调递减区间为 __________________. 4. 若函数1()ax f x e b=-的图象在x=0处的切线l 与圆C: 221x y +=相离,则P(a ,b)与圆C 的位置关系是 ▲ .5.如图,质点P 在半径为10cm 的圆上逆时针作匀速圆周运动,角速度为1/rad s ,设(10,0)A 为起始点,则时刻2t =时,点P 在x 轴上的射影点M6.已知函数x x x f sin )(=,∈x R ,则)5(πf ,)1(f ,)(3π-f 的大小关系为 ▲(第11题图)7.若函数f (x )=x - p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是___________________.8.函数22()log (2)f x x x =+的单调递减区间为 ▲9.设曲线()1x y ax e =-在点()01,A x y 处的切线为1l ,曲线()1xx y e -=在点()02,Bx y 处的切线为2l ,若存在0302x ≤≤,使得12l l ⊥,则实数a 的取值范围是 .关键字:切线垂直;求导;有解问题;参变分离;求值域;换元10.已知函数32()6f x x ax x =--+在(0,1)内单调递减,则a 的取值范围为 .11.函数()ln (1),(0)f x x a x a =-->的单调增区间是 .12.已知函数c x x y +-=33的图像与x 13.如图,函数)(x f y =的图象在点P 处的切线是l , 则(2)(2)f f '+= ★ .14.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则=max )(ab ________15.从边长为10 cm×16 cm 的矩形纸板的四个角上截去四个相同的小正方形,做成一个无 盖的盒子,盒子容积的最大值是 .16.已知函数223)(a bx ax x x f +++=在1=x 处有极值10,则a b ⋅= ▲ . 17. 若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--=()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值范围为 .18.曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为19. 若直线y x b =-+为函数1y x =的一条切线,则实数b = ▲ .三、解答题20.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式2)6(103-+-=x x ay ,其中63<<x , a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. ⑴求a 的值;⑵若该商品的成本为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.21. 已知二次函数)(x g y =的导函数的图像与直线2y x =平行,且)(x g y =在x =-1处取得最小值m -1(m 0≠).设函数xx g x f )()(=(1)若曲线)(x f y =上的点P 到点Q (0,2)的距离的最小值为,求m 的值(2) )(R k k ∈如何取值时,函数kx x f y -=)(存在零点,并求出零点.22.设32121()()3(,,0)32x a b f x x x x x a b R a λλ-=+++⋅∈>(1)当121,0λλ==时,设12,x x 是()f x 的两个极值点, ①如果1212x x <<<,求证:(1)3f '->;②如果21122,2,(,)a x x x x x ≥-=∈时,函数2()()2()g x f x x x '=+-的最小值为()h a ,求()h a 的最大值.(2)当120,1λλ==时,①求函数()3(ln31)y f x x =-+的最小值;②对于任意的实数,,a b c ,当3a b c ++=时,求证3339.a b c a b c ++≥ 23.已知函数()ln af x x x=-()()10a f x >当时,判断在定义域上的单调性;()()[]212f x e a 若在,上的最小值为,求值。
第 1 页 共 21 页单元训练金卷▪高三▪数学卷(A )导数及其应用注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列求导数运算错误的是( ) A .()33ln 3x x '=B .()31log ln3x x '=C .2cos sin cos x x x x x x '-⎛⎫= ⎪⎝⎭ D .()2ln 2ln x x x x x '=+【答案】C【解析】()33ln 3x x '=,A 对;()()()222ln ln ln 2ln x x x x x x x x x ''=+=+,D 对;2cos sin cos x x x xx x '--⎛⎫= ⎪⎝⎭,C 错;()3311log log ln3e x x x '==,B 对,故选C . 2.函数22ln y x x =-的单调增区间为( ) A .()()101-∞-,,B .()1+∞,C .()()101-+∞,,D .()01,【答案】B【解析】函数22ln y x x =-的定义域为()0,+∞, 求函数22ln y x x =-的导数得2'2y x x=-,令0y '>,解得1x <-(舍)或1x >, ∴函数22ln y x x =-的单调增区间为()1+∞,,本题选择B 选项.3.函数()31443f x x x =-+-在[]03,上的最大值为( )A .4-B .4C .43D .2【答案】C【解析】函数()31443f x x x =-+-的导数为()24f x x '=-+,由()0f x '=,可得2x =(2-舍去),由()842433f =-=,()04f =-,()31f =-,可得()f x 在[0]3,上的最大值为43.本题选择C 选项. 4.若曲线()3f x x ax =+在点()()00f ,处的切线与210x y --=平行,则a 的值为( ) A .2- B .0C .1D .2【答案】D【解析】由函数()3f x x ax =+,得()23f x x a ='+,因为函数()3f x x ax =+在点()()00f ,的切线为210x y --=, 所以()02f '=,解得2a =,故选D .5.已知函数()y xf x =-'的图象如图所示,其中()f x '是函数()f x 的导函数,则函数()y f x =的大致图象可以是( )A .B .C .D .【答案】A第 3 页 共 21 页【解析】由函数()y xf x =-'的图象得到: 当1x <-时,()0f x '<,()f x 是减函数; 当10x -<<时,()0f x '>,()f x 是增函数; 当01x <<时,()0f x '>,()f x 是增函数; 当1x >时,()0f x '<,()f x 是减函数.由此得到函数()y f x =的大致图象可以是A .故选A .6.函数()ln f x a x x =+在区间[]23,上单调递增,则实数a 的取值范围为( ) A .3a >- B .2a >-C .3a ≥-D .2a ≥-【答案】D【解析】根据函数的导数与单调性的关系,()ln f x a x x =+在区间[]23,上单调递增,只需()0f x '≥在区间[]23,上恒成立.由导数的运算法则,()=10a f x x '+≥,移向得,1ax ≥-,a x ≥-,a 只需大于等于x -的最大值即可,由2x -≤-,∴2a ≥-,故选D .7.若函数()()3261f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( ) A .()12-, B .()()36-∞-+∞,, C .()36-, D .()()12-∞-+∞,,【答案】B【解析】∵()()3261f x x ax a x =++++,∴()()2326f x x ax a '=+++; 又∵函数()()3261f x x ax a x =++++有极大值和极小值, ∴()()224360a a ∆=⨯⨯+﹣>;故6a >或3a <-;故选B . 8.设点P是曲线335y x =+上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A .2π03⎡⎤⎢⎥⎣⎦,B .2π0ππ23⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭,, C .23π2π⎛⎤⎥⎝⎦, D .33π2π⎡⎤⎢⎥⎣⎦,【答案】B【解析】∵曲线335y x =+,∴23y x =', ∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α,∴tan α≥[)0,πα∈,∴π2π0π23α⎡⎫⎡⎫∈⎪⎪⎢⎢⎣⎭⎣⎭,,,故选B . 9.函数()33f x x x =-在()2a ,上有最小值,则实数a 的范围是( ) A .()1-∞, B .()11-, C .[)21-, D .[)11-,【答案】C【解析】由函数()33f x x x =-,得()()()233311f x x x x ==+'--, 当()()11x ∈-∞-+∞,,时,()0f x '>,所以()f x 在区间()1-∞-,,()1+∞,单调递增, 当()11x ∈-,时,()0f x '<,所以()f x 在区间()11-,单调递减, 又由()12f =-,令()2f x =-,即332x x -=-,解得2x =-或1x =, 要使得函数()33f x x x =-在()2a ,上有最小值, 结合函数的图象可得,实数a 的取值范围是[)21-,,故选C .10.已知函数()37sin f x x x x =--+,若()()220f a f a +->,则实数a 的取值范围是( ) A .()21-, B .()3-∞, C .()12-, D .()1-∞,【答案】A【解析】∵()37sin f x x x x =--+,∴()()()337sin 7sin f x x x x x x x f x =--+=-+=---,则()f x 是奇函数, 函数的导数()237cos 0f x x x -'=-+<,则函数()f x 是减函数, 则由()()220f a f a +->,得()()()222f a f a f a -=->-, 得22a a <-,即220a a +-<,得21a -<<, 即实数a 的取值范围是()21-,.故答案为A .11.),若()0f x >在()0,+∞上恒成立,则实数m 的取值范围是( )第 5 页 共 21 页A .(),2-∞B .(),e -∞CD【答案】D【解析】()0,+∞上恒成立,故在()0,+∞当()0,2x ∈时,()'0g x <,故()g x 在()0,2上为减函数; 当()2,x ∈+∞时,()'0g x >,故()g x 在()2,+∞上为增函数;D .12.设函数()f x 的导函数为()'f x ,若对任意x ∈R 都有()()'f x f x >成立,则( ) A .()()ln 201520150f f < B .()()ln 201520150f f = C .()()ln 201520150f f >D .()ln 2015f 与()20150f 的大小关系不能确定 【答案】C 【解析】令()()ln f x g x x=,0x >,则()()()2ln ln f x f x g x x -='',因为对任意x ∈R 都有()()'f x f x >成立,所以()()()2ln ln 0f x f x g x x -''=>恒成立,即()()ln f x g x x=在()0+∞,上单调递增,则()()()ln 2015ln1020151f f f >=,即()()ln201520150f f >.二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上) 13.函数()sin f x x x =在πx =处的切线方程为______________. 【答案】2ππy x =-+【解析】当πx =时,()πsi 0πn πf ==,求解函数的导数可得()'sin cos f x x x x =+,则()'sin ππcos πππf =+⨯=-,据此可知,切线过点()π0,,切线的斜率为πk =-, 切线方程为:()0ππy x -=--,即:2ππy x =-+.14.设函数()f x 满足()()()2311f x x f x f '=+-,则()'1f =___________. 【答案】1-【解析】∵()()()2311f x x f x f '=+-,∴()()231f x x f '=+', 令1x =,则()()1231f f ''=+,即()11f '=-,故答案为1-.15.已知函数()()2f x x x m =-在2x =处取得极小值,则m =__________. 【答案】2【解析】∵函数()()2f x x x m =-,∴()2234f x x mx m =-+', ∵函数()f x 在2x =处取得极小值,∴()221280f m m =-+=', ∴2m =或6m =,当2m =时,()()()2384322f x x x x x =-+=--',函数在2x =处取得极小值,符合题意; 当6m =时,()()()232436326f x x x x x =-+=--',函数在2x =处取得极大值,不符合题意. ∴2m =,故答案为2. 16.已知函数()232ln xf x x x a=-+(0a >),若函数()f x 在[]12,上为单调函数,则a 的取值范围是__________. 【答案】[)2015⎛⎤+∞ ⎥⎝⎦,,【解析】由函数()232ln x f x x x a =-+,得()314f x x a x=-+', 因为函数()f x 在[]12,上为单调函数,所以[]12x ∈,时,()0f x '≥或()0f x '≤恒成立, 即314x a x ≥-或314x a x≤-在[]12x ∈,上恒成立,且0a >, 设()14h x x x=-,因为函数()h x 在[]12,上单调递增,所以()311524222h a ≥=⨯-=或()313h a≤=, 解得205a <≤或1a ≥,即实数a 的取值范围是[)2015⎛⎤+∞ ⎥⎝⎦,,. 三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤)第 7 页 共 21 页17.(10分)已知曲线31433y x =+.求:(1)曲线在点()24P ,处的切线方程; (2)曲线过点()24P ,的切线方程. (参考数据:()()2323412x x x x -+=+-)【答案】(1)440x y --=;(2)440x y --=或20x y -+=.【解析】(1)因为()24P ,在曲线31433y x =+上,且2y x '=,∴在点()24P ,处的切线的斜率2|4x k y ='==.∴曲线在点()24P ,处的切线方程为()442y x -=-,即440x y --=.(2)设曲线31433y x =+与过点()24P ,的切线相切于点()00,A x y ,则切线的斜率220|x k y x ='==,∴切线方程为()320001433y x x x x --=-,∵点()24P ,在切线上,∴2300144233x x =+-,即3200340x x -+=, ∴322000440x x x +-+=,即()()200120x x +-=解得01x =-或02x =, ∴所求的切线方程为440x y --=或20x y -+=.18.(12分)已知函数()()321,3f x x ax bx a b =++∈R 在3x =-处取得极大值为9,(1)求a ,b 的值;(2)求函数()f x 在区间[]33-,上的最值【答案】(1)13a b ==-⎧⎨⎩;(2)最大值为9,最小值为53-.【解析】(1)()22f x x ax b =++',依题意得()()3039f f -=-='⎧⎪⎨⎪⎩,即9609939a b a b -+=-+-=⎧⎨⎩,解得13a b ==-⎧⎨⎩.经检验,上述结果满足题意.(2)由(1)得()32133f x x x x =+-,()()()223=31f x x x x x ∴=+-+-',令()0f x '>,得3x <-或1x >;令()0f x '<,得31x -<<,()f x ∴的单调递增区间为()1+∞,和(),3-∞-,()f x 的单调递增区间是()31-,,()()=39f x f ∴-=极大值,()()5=13f x f =-极小值,又()39f =,所以函数()f x 在区间[]33-,上的最大值为9,最小值为53-.19.(12分)已知函数()2ln f x x x =-,(1)求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求()y f x =的最小值.【答案】(1)20x y +-=;(2)22ln2-. 【解析】(1)()2ln f x x x =-,()21f x x∴=-',()11f '=-,()11f =,()f x ∴的切线方程为20x y +-=.(2)()22'1x f x x x-=-=,令()'0f x =,2x =, ()f x ∴在()02x ∈,递减,在()2x ∈+∞,递增,()()min 222ln 2f x f ∴==-.20.(12分)已知函数()2ln f x x a x =+的极值点为2.(1)求实数a 的值; (2)求函数()f x 的极值;(3)求函数()f x【答案】(1)8a =-;(2)极小值为()248ln2f =-;(3 【解析】(1)∵()2ln f x x a x =+,0x >,∴()2a f x x x='+, 又函数()f x 的极值点为2,∴()22202af =⨯+=', 解得8a =-.经验证得8a =-符合题意,∴8a =-. (2)由(1)得()28ln f x x x =+.∴()()()22282x x f x x x x+-=-=',第 9 页 共 21 页当02x <<时,()0f x '<,()f x 单调递减,当2x >时,()0f x '>,()f x 单调递增.∴当2x =时,()f x 有极小值,且极小值为()248ln2f =-. (3)由(2)得()f x 当单调递减,在(]2,e 上单调递增, ∴()()min 248ln 2f x f ==-,21.(12(1)当1a =时,求()y f x =在0x =处的切线方程; (2)若函数()f x 在[]1,1-上单调递减,求实数a 的取值范围. 【答案】(1)10x y +-=;(2【解析】(1)1a = ()2e 22x f x x x ∴=---',()01k f ∴'==-,()01f =,∴()y f x =在0x =处的切线方程为()10y x -=--,即10x y +-=.(2)()222xf x ae x x =---',()f x 在[]1,1-上单调递减,∴()2e 220xf x a x x -'=--≤在[]1,1-上恒成立,[]1,1-()g x 不是常数函数.∴()g x 在[]1,1-∴实数a22.(12分)已知函数()3232f x x ax =-.(1)若直线()0y ax a =≠与曲线()y f x =相切,求a 的值;(2)若函数()f x 在()13,上不单调,且函数()()g x f x a =+有三个零点,求a 的取值范围. 【答案】(1)169a =-;(23a <. 【解析】(1)设切点为()00x ax ,,则()200033f x x ax a '=-=,所以3232000003332ax x ax x ax =-=-,解得00x =或034x a =, 当00x =时,0a =,不合题意.当034x a =时,22279164a a a =-,因为0a ≠,所以169a =-. (2)()()2333f x x ax x x a '=-=-,因为()f x 在()13,上不是单调函数,所以13a <<.因为()f x 在()0-∞,,()a +∞,上单调递增,在()0a ,上单调递减,所以()f x 的极大值为()00f =,()f x 的极小值为()312f a a =-,函数()()g x f x a =+有三个零点,即()f x 的图象与直线y a =-有三个交点,所以301213a a a a ⎧-<⎪⎪⎨->-<<⎪⎪⎩3a <.第 11 页 共 21 页单元训练金卷▪高三▪数学卷(B )第四单元 导数及其应用注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。