2011届高考数学单元考点复习1
- 格式:doc
- 大小:417.50 KB
- 文档页数:6
第一部分 集合与函数1、空集是任何集合的子集,空集是任何非空集合的真子集.[举例]若}2|{},|{2>=<=x x B a x x A 且∅=B A ,求a 的取值范围.分析:集合A 有可能是空集.当0≤a 时,∅=A ,此时∅=B A 成立;当0>a 时,),(a a A -=,若∅=B A ,则2≤a ,有40≤<a .综上知,4≤a .注意:在集合运算时要注意学会转化B A A B A ⊆⇔= 等. 2、在集合运算中一定要分清代表元的含义.[举例1]已知集},2|{},,|{2R x y y Q R x x y y P x ∈==∈==,求Q P .分析:集合P 、Q 分别表示函数2x y =与x y 2=在定义域R 上的值域,所以),0[+∞=P ,),0(+∞=Q ,),0(+∞=Q P .[举例2]函数⎩⎨⎧∈-∈=)()()(M x x P x xx f ,其中P 、M 是实数集R 的两个非空子集,又规定:(){|(),},(){|(),}F P y y f x x P F M y y f x x M ==∈==∈.给出下列四个判断:(1)若∅=M P ,则()()F P F M =∅ ;(2)若∅≠M P ,则()()F P F M ≠∅ ; (3)若,R M P = 则()()F P F M R = ;(4)若,R M P ≠ 则()()F P F M R ≠ . 其中正确的判断有----------------------------------------------------------------------------------( ) A 、1个; B 、2个; C 、3个; D 、4个.分析:这是一道比较难的题,涉及到函数的概念,集合的意义.()F P 是函数)(P x x y ∈=的值域,()F M 是函数)(M x x y ∈-=的值域.取),0[+∞=P ,)0,(-∞=M 可知(1)、(3)不正确.由函数的定义可知,函数定义域内的任意一个值只能与一个函数值对应,所以若∅≠M P ,只能是}0{=M P ,此时()(){0}F P F M ⊇ ,(2)正确.对于命题(4):设,a P M ∉ 则a P ∉且a M ∉,若0a =,显然有0()F P ∉且0()F M ∉,所以有()()F P F M R ≠ ;若0a ≠,由a P∉则()a F P ∉,由a M ∉,则()a F M -∉.若有()a F M ∉,则a M -∉,所以a P -∉,则()a F P -∉,所以()()a F P F M -∉ ,则()()F P F M R ≠ .同理可证,若()a F P -∈,则有()()a F P F M ∉ .(4)也正确,选B.3、充要条件的判定可利用集合包含思想判定:若B A ⊆,则∈x A 是∈x B 的充分条件;若B A ⊇,则∈x A 是∈x B 的必要条件;若B A ⊆且B A ⊇即B A =,则∈x A 是∈x B 的充要条件.有时利用“原命题”与“逆否命题”等价,“逆命题”与“否命题”等价转换去判定也很方便.充要条件的问题要十分细心地去辨析:“哪个命题”是“哪个命题”的充分(必要)条件;注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”,是两种不同形式的问题.[举例]设有集合}2|),{(},2|),{(22>-=>+=x y y x N y x y x M ,则点M P ∈的_______条件是点N P ∈;点M P ∈是点N P ∈的_______条件.分析:集合M 是圆222=+y x 外的所有点的集合,N 是直线2+=x y 上方的点的集合.显然有M N ⊆.(充分不必要、必要不充分)4、掌握命题的四种不同表达形式,会进行命题之间的转化,会正确找出命题的条件与结论.能根据条件与结论判断出命题的真假.[举例]命题:“若两个实数的积是有理数,则此两实数都是有理数”的否命题是________________________,它是____(填真或假)命题.5、若函数)(x f y =的图像关于直线a x =对称,则有)()(x a f x a f +=-或)()2(x f x a f =-等,反之亦然.注意:两个不同函数图像之间的对称问题不同于函数自身的对称问题.函数)(x f y =的图像关于直线a x =的对称曲线是函数)2(x a f y -=的图像,函数)(x f y =的图像关于点),(b a 的对称曲线是函数)2(2x a f b y --=的图像.[举例1]若函数)1(-=x f y 是偶函数,则)(x f y =的图像关于______对称.分析:由)1(-=x f y 是偶函数,则有)1()1(-=--x f x f ,即)1()1(x f x f +-=--,所以函数)(x f y =的图像关于直线1-=x 对称.或函数)1(-=x f y 的图像是由函数)(x f y =的图像向右平移一个单位而得到的,)1(-=x f y 的图像关于y 轴对称,故函数)(x f y =的图像关于直线1-=x 对称.[举例2]若函数)(x f y =满足对于任意的R x ∈有)2()2(x f x f -=+,且当2≥x 时x xx f +=2)(,则当2<x 时=)(x f ________.分析:由)2()2(x f x f -=+知,函数)(x f y =的图像关于直线2=x 对称,因而有)4()(x f x f -=成立.2<x ,则24>-x ,所以)4()4()4()(2x x x f x f -+-=-=.即2<x时209)(2+-=x x x f .6、若函数)(x f y =满足:)0)(()(≠-=+a a x f a x f 则)(x f 是以a 2为周期的函数.注意:不要和对称性相混淆.若函数)(x f y =满足:)0)(()(≠-=+a x f a x f 则)(x f 是以a 2为周期的函数.(注意:若函数)(x f 满足)(1)(x f a x f ±=+,则)(x f 也是周期函数)[举例]已知函数)(x f y =满足:对于任意的R x ∈有)()1(x f x f -=+成立,且当)2,0[∈x 时,12)(-=x x f ,则=++++)2006()3()2()1(f f f f ______.分析:由)()1(x f x f -=+知:)()1(]1)1[()2(x f x f x f x f =+-=++=+,所以函数)(x f y =是以2为周期的周期函数.1)0()2()2004()2006(-=====f f f f ,1)1()3()2003()2005(=====f f f f ,故意原式值为0.7、奇函数对定义域内的任意x 满足0)()(=+-x f x f ;偶函数对定义域内的任意x 满足0)()(=--x f x f .注意:使用函数奇偶性的定义解题时,得到的是关于变量x 的恒等式而不是方程.奇函数的图像关于原点对称,偶函数图像关于y 轴对称;若函数)(x f y =是奇函数或偶函数,则此函数的定义域必关于原点对称;反之,若一函数的定义域不关于原点对称,则该函数既非奇函数也非偶函数.若)(x f y =是奇函数且)0(f 存在,则0)0(=f ;反之不然.[举例1]若函数a x f x-+=121)(是奇函数,则实数=a _______;分析:注意到)0(f 有意义,必有0)0(=f ,代入得21=a .这种特值法在解填空、选择题时若能灵活运用,则事半功倍.[举例2]若函数3)2()(2+-+=x b ax x f 是定义在区间]2,12[a a --上的偶函数,则此函数的值域是__________.分析:函数是偶函数,必有0)2()12(=-+-a a ,得1-=a ;又由()y f x =是偶函数,因而2=b .即]3,3[(3)(2-∈+-=x x x f ,所以此函数的值域为]3,6[-.8、奇函数在关于原点对称的区间内增减性一致,偶函数在关于原点对称的区间内增减性相反.若函数)(x f y =的图像关于直线a x =对称,则它在对称轴的两侧的增减性相反;此时函数值的大小取决于变量离对称轴的远近.解“抽象不等式(即函数不等式)”多用函数的单调性,但必须注意定义域.[举例]若函数)(x f y =是定义在区间]3,3[-上的偶函数,且在]0,3[-上单调递增,若实数a 满足:)()12(2a f a f <-,求a 的取值范围.分析:因为)(x f y =是偶函数,)()12(2a f a f <-等价于不等式)(|)12(|2a f a f <-,又此函数在]0,3[-上递增,则在]3,0[递减.所以2|12|3a a >-≥,解得211+-<≤-a .9、要掌握函数图像几种变换:对称变换、翻折变换、平移变换.会根据函数)(x f y =的图像,作出函数a x f y a x f y x f y x f y x f y +=+===-=)(),(|,)(||),(|),(的图像.(注意:图像变换的本质在于变量对应关系的变换);要特别关注|)(||),(|x f y x f y ==的图像. [举例]函数|1|12|log |)(2--=x x f 的单调递增区间为_____________.分析:函数|1|12|log |)(2--=x x f 的图像是由函数x y 2log=的图像经过下列变换得到的:先将函数x y 2log=的图像上各点的横坐标缩短到原来的21(或将函数x y 2log=的图像向上平移1个单位)得到函数x y 2log 2=的图像,再将函数x y 2log2=的图像作关于y 轴对称得到函数|2|log2x y =的图像,再将函数|2|lo g 2x y =的图像向右平移21个单位,得到函数|12|lo g 2-=x y 的图像,再将函数|12|log 2-=x y 的图像向下平移1个单位得到函数1|12|log2--=x y ,最后将函数1|12|log2--=x y 的图像在x 轴下方部分翻折到x 轴上方得到函数|1|12|log|)(2--=x x f 的图像.注意在变化过程中函数图像与坐标轴的交点的变化(尤其是与x 轴的交点不要搞错),从图像上可以看出此函数的单调递增区间是)1,21[-与),23[+∞.需要注意的是:函数图像变化过程:|)(||)(|)(a x f y x f y x f y -=⇒=⇒=与变化过程:|)(|)()(a x f y a x f y x f y -=⇒-=⇒=不同.前者是先作关于y 轴对称后平移,而后者是先平移后再作关于直线a x =对称.10、研究方程根的个数、超越方程(不等式)的解(特别是含有参量的)、二次方程根的分布、二次函数的值域、三角函数的性质(包括值域)、含有绝对值的函数及分段函数的性质(包括值域)等问题常利用函数图像来解决.但必须注意的是作出的图形要尽可能准确:即找准特殊的点(函数图像与坐标轴的交点、拐点、极值点等)、递增递减的区间、最值等. [举例1]已知函数1)(,12)(+=-=ax x g x x f ,若不等式)()(x g x f >的解集不为空集,则实数a 的取值范围是____________.分析:不等式)()(x g x f >的解集不为空集,亦即函数)(x f y =的图像上有点在函数)(x g y =的图像的上方. 函数12)(-=x x f 的图像是x 轴上方的半支抛物线,函数1)(+=ax x g 的图像是过点)1,0(斜率为a 的直线.当1a =虚线也满足题义)[举例2]若曲线1||2+=x y 与直线b kx y +=没有公共点,则b k ,应当满足的条件是 . 分析:曲线1||2+=x y 是由)0(12≥+=x x y 与)0(12<+-=x x y 组成,它们与y 轴的交点为)1,0(和)1,0(-,图像如图(实线部分).可以看出若直线b kx y +=曲线1||2+=x y 的图像没有公共点,此 直线必与x 轴平行,所以0=k ,11<<-b .11、一条曲线可以作为函数图像的充要条件是:曲线与任何平行于y 轴的直线至多只有一个交点.一个函数存在反函数的充要条件是:定义域与值域中元素须一一对应,反应在图像上平行于x 轴的直线与图像至多有一个交点.单调函数必存在反函数吗?(是的,并且任何函数在它的每一个单调区间内总有反函数).还应注意的是:有反函数的函数不一定是单调函数,你能举例吗?[举例]函数12)(2+-=ax x x f ,(]4,3[]1,0[ ∈x ),若此函数存在反函数,则实数a 的取值范围是__________.分析:由函数存在反函数的充要条件是定义域与值域中的元素一一对应,平行于x 轴的直线与函数的图像至多只有一个交点.又由二次函数12)(2+-=ax x x f 图像的对称轴为直线a x =知:0≤a 或4≥a 必存在反函数,10<<a 或43<<a 必不存在反函数.当]3,1[∈a 时如何讨论?注意到函数在区间]1,0[上递减,在]4,3[上递增,所以只要)1()4(f f <或)0()3(f f >即可.亦即325≤<a 或231<≤a .综上知,实数a 的取值范围是 ]0,(-∞),4[]3,25()23,1[+∞ .12、求一个函数的反函数必须标明反函数的定义域,反函数的定义域不能单从反函数的表达式上求解,而是求原函数的值域.求反函数的表达式的过程就是解(关于x 的)方程的过程.注意:函数的反函数是唯一的,尤其在开平方过程中一定要注意正负号的确定.[举例]函数])2,((),22(log )(22--∞∈++=x x x x f 的反函数为__________. 分析:令)22(log 22++=x x y ,则12)1(22222-=+⇒=++y y x x x .因为2-≤x ,所以11-≤+x ,则121--=+yx ,121---=yx .又原函数的值域为),1[+∞,所以原函数的反函数为)1(121)(1≥---=-x x fx.(若是从反函数表达式得012≥-x 求得0≥x 就不是反函数的定义域).13、原函数的定义域是反函数的值域,原函数的值域是反函数的定义域;原函数与反函数的图像关于直线x y =对称;若函数)(x f y =的定义域为A ,值域为C ,C b A a ∈∈,,则有a a f fb b ff ==--))((,))((11.)()(1b fa a fb -=⇔=.需要特别注意一些复合函数的反函数问题.如)2(x f y =反函数不是)2(1x f y -=.[举例1]已知函数)(x f y =的反函数是)(1x f y -=,则函数)43(21+=-x fy 的反函数的表达式是_________.分析:求函数的反函数是解方程的过程,即用y 表示,x 然后将y x ,互换即得反函数的表达式.由)43(21+=-x f y 可得]4)2([31)2(432)43(1-=⇒=+⇒=+-y f x y f x y x f.所以函数)43(21+=-x fy 的反函数为]4)2([31-=xf y .[举例2]已知⎩⎨⎧<<--≥=02,)(log 0,2)(2x x x x f x ,若3)(1=-a f,则=a ____.分析:由3)(1=-a f得)3(f a =,所以8=a .14、判断函数的单调性可用有关单调性的性质(如复合函数的单调性),但证明函数单调性只能用定义,不能用关于单调性的任何性质,用定义证明函数单调性的关键步骤往往是因式分解.记住并会证明:函数)0,(,>+=b a xb ax y 的单调性. [举例]已知函数)0(1)(>+=a xax x f 在),1[+∞∈x 上是单调增函数,求实数a 的取值范围.分析:函数)0,(,>+=b a xb ax y 称为“耐克”函数,由基本不等式知:当0>x 时,函数的最小值是ab 2,当ab x =时等号成立.],0(ab x ∈时,函数递减;),[+∞∈ab x 时,函数递增.记住此结论在解选择、填空等小题时用起来比较方便.函数)0(1)(>+=a xax x f 在),1[+∞上递增,则11≤a,得1≥a .但若是大题推理就不能这样描述性的说明,必需要按函数单调性的定义有严格的论证.任设),,1[,21+∞∈x x 且21x x <.)1)(()()(212121x x a x x x f x f --=-,由函数)(x f 是单调增函数,则0)()(21<-x f x f ,而021<-x x ,则0121>-x x a .所以211x x a >对于),,1[,21+∞∈x x 且21x x <恒成立,因1121<x x ,故1≥a .需要说明的是:在考试中若“小题大做”则浪费时间,因为“小题”只要结果;而“大题小做”则失分,因为“大题”需要严格的论证过程.15、一元二次函数是最基本的初等函数,要熟练掌握一元二次函数的有关性质.一元二次函数在闭区间上一定存在最大值与最小值,应会结合二次函数的图像求最值. [举例]求函数12)(2+-=ax x x f 在区间]3,1[-的最值.分析:求开口向上的二次函数在闭区间上的最小值要根据二次函数的对称轴与区间的位置关系分三种情况进行讨论,但求开口向上的二次函数在闭区间上的最大值只要根据区间端点与对称轴之间的距离分两种情况进行讨论即可.⎩⎨⎧>+≤-=)1(22)1(610)(max a a a a x f ,⎪⎩⎪⎨⎧>-≤≤---<+=)1(610)31(1)1(22)(2mina a a a a ax f . 16、一元二次函数、一元二次不等式、一元二次方程是不可分割的三个知识点.解一元二次不等式是“利用一元二次方程的根、结合一元二次函数的图像、写出一元二次不等式的解集”,可以将一元二次不等式的问题化归为一元二次方程来求解.特别对于含参一元二次不等式的讨论比较方便.还应当注意的是;一般地,不等式解集区间的端点值是对应方程的根(或增根).[举例1]已知关于x 的不等式5|3|≤+ax 的解集是]4,1[-,则实数a 的值为 .分析:若是从解不等式入手,还应考虑常数a 的正负进行讨论.如合理利用方程与不等式之间的关系则可迅速得到答案:解集端点值4,1-是方程5|3|=+ax 的根.则⎩⎨⎧=+=+-5|34|5|3|a a 得⎪⎩⎪⎨⎧-=-=21282或或a a ,知2-=a . [举例2]解关于x 的不等式:)(0122R a ax ax ∈>++.分析:首先要注意的是此不等式是否是一元二次不等式.当0=a 时,此不等式是恒成立的,则其解集为R .当0≠a 时,才是二次不等式.与其对应的方程为0122=++ax ax ,根判别式a a 442-=∆.当0>∆,即1>a 或0<a 时,方程两根为a aa a x -±-=22,1;当0=∆,即1=a 时,方程有等根1-=x ;当0<∆,即10<<a 时,方程无实根.结合二次函数的图像知:1>a 时不等式的解集为),(),(22+∞-+-----∞aaa a aa a a ;当1=a 时,不等式的解集为),1()1,(+∞---∞ ;当10<≤a 时,不等式的解集为R ;当0<a 时,不等式的解集为),(22aa a a aa a a ----+-.第二部分 不等式17、基本不等式2)2(,2b a ab ab b a +≤≥+要记住等号成立的条件与b a ,的取值范围.“一正、二定、三相等”,“积定和有最小值、和定积有最大值”,利用基本不等式求最值时要考虑到等号是否成立.与函数相关的应用题多有基本不等式的应用. [举例]已知正数b a ,满足32=+b a ,则ba 11+的最小值为______.分析:此类问题是典型的“双变量问题”,即是已知两变量的一个关系式,求此两变量的另一代数式的最值(或取值范围)问题.其解决方法一是“减元”,即由关系中利用一个变量表示另一变量代入到所求关系式中,转化为一元函数的最值问题;另一方法是构造基本不等式.由)223(31)23(31)22(3111+≥++=+++=+b a a b b b a a b a b a ,当且仅当baa b =2等号成立,此时223,123+=+=b a .18、学会运用基本不等式:||||||||||||b a b a b a +≤±≤-.[举例1]若关于x 的不等式a x x <---|2||1|的解集是R ,则实数a 的取值范围是__; 分析:由不等式的解集为R ,则a 大于|2||1|---x x 的最大值.由绝对值不等式的性质知:1|)2()1(||2||1|=---≤---x x x x ,所以1>a .[举例2]若关于x 的不等式a x x <-+-|2||1|的解集不是空集,则实数a 的取值范围是_. 分析:1|)2()1(||2||1|=---≥-+-x x x x ,知1>a .19、解分式不等式不能轻易去分母,通常采用:移项(化一边为零)→通分→转化为整式不等式→化所有因式中的变量系数为正,(即不等式两边同除以变量系数,若它的符号不能确定即需要讨论)→“序轴标根”(注意比较各个根的大小,不能比较时即需要讨论);解绝对值不等式的关键是“去绝对值”,通常有①利用绝对值不等式的性质②平方③讨论.特别注意:求一个变量的范围时,若分段讨论的也是这个变量,结果要“归并”. [举例]解关于x 的不等式:)0(12)1(>>--a x x a .分析:原不等式化为:0)]2()1)[(2(02)2()1(>----⇒>----a x a x x a x a .注意到此不等式二次项系数含有变量,故要讨论.(1)当1=a 时,不等式的解集为}2|{>x x ;(2)当10<<a 时,注意到此时对应的二次函数开口向下,对应方程两根12,221--==a a x x ,而211112>-+=--aa a ,此时不等式的解集为)12,2(--a a ;(3)当1>a 时,同样可得不等式的解集为),2()12,(+∞---∞ a a .20、求最值的常用方法:①用基本不等式(注意条件:一正、二定、三相等);②二次函数;③单调性;④逆求法(包括判别式法);⑤换元法;⑥数形结合.一般而言:在用基本不等式求最值因“不相等”而受阻时,常用函数)0(,>+=a xa x y 的单调性;求二次函数(自变量受限制)的值域,先配方、再利用图像、单调性等;求分式函数的值域(自变量没有限制)常用“逆求”(即判别式法);求分式函数的值域(自变量受限制)通常分子、分母同除一个式子,变分子(分母)为常数.[举例1]已知函数223)(x ax x f -=的最大值不大于61,又当]21,41[∈x 时,81)(≥x f ,求实数a 的值. 分析:6)3(23)(22aa x x f +--=,则161622≤⇒≤aa,又此二次函数开口向下,则有181)21(81)41(≥⇒⎪⎪⎩⎪⎪⎨⎧≥≥a f f .知1=a .注意到:开口向下的二次函数在闭区间上的最小值是区间一端点对应的函数值;同样开口向上的二次函数在闭区间上的最大值也是区间一端点对应的函数值. [举例2]求函数1363)(2+++=x x x x f 在区间]2,2[-上的最大值与最小值.分析:因为函数的定义域不是一切实数,用判别式法所求的结果不一定是正确.可利用换元转化成基本不等式型的应用.设t x =+3,则tt t t x f 414)(2+=+=,]5,1[∈t .当2=t 时,tt 4+取最小值4;当5=t 时,tt 4+取最大值529.所以函数)(x f 在区间]2,2[-上的最大值为41,最小值为295.注意:此类函数的值域(最值)问题在解几的最值中经常涉及,要能熟练地掌握其解法.21、遇到含参不等式(或含参方程)求其中某个参数的取值范围通常采用分离参数法,转化为求某函数的最大值(或最小值);但是若该参数分离不出来(或很难分离),那么也可以整体研究函数),(x a f y =的最值.特别注意:双变量问题在求解过程中应把已知范围的变量作为主变量,另一个作为参数.[举例](1)已知不等式0224>+⋅-xx a 对于+∞-∈,1[x )恒成立,求实数a 的取值范围. (2)若不等式0224>+⋅-xx a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围. 分析:(1)由0224>+⋅-xx a 得:xxa 222+<对于+∞-∈,1[x )恒成立,因212≥x,所以22222≥+xx,当22=x时等号成立.所以有22<a .(2)注意到0224>+⋅-xxa 对于]3,(-∞∈a 恒成立是关于a 的一次不等式.不妨设)24(2)(++⋅-=xxa a f ,则)(a f 在]3,(-∞∈a 上单调递减,则问题等价于0)3(>f ,所以2202234>⇒>+⋅-x x x 或12<x,则x 取值范围为),1()0,(+∞-∞ .第三部分 三角函数22、若)2,0(πα∈,则αααtan sin <<;角的终边越“靠近”y 轴时,角的正弦、正切的绝对值就较大,角的终边“靠近”x 轴时,角的余弦、余切的绝对值就较大.[举例1]已知],0[πα∈,若0|cos |sin >-αα,则α的取值范围是_______. 分析:由0|cos |sin >-αα且],0[πα∈,即|cos ||si n |αα>知其角的终边应“靠近”y 轴,所以)43,4(ππα∈.[举例2]方程sin x x =的解的个数为____个.分析:在平面直角坐标系中作出函数sin y x =与y x =的图像,由函数sin ,y x y x ==都是奇函数,而当1x >时sin x x >恒成立.在(0,)2x π∈时,sin x x <,所以两函数图像只有一个交点(坐标原点),即方程sin x x =只有一个解.同样:当(,)22x ππ∈-时,方程tgx x =只有唯一解0x =.23、求某个角或比较两角的大小:通常是求该角的某个三角函数值(或比较两个角的三角函数值的大小),然后再定区间、求角(或根据三角函数的单调性比较出两个角的大小).比如:由βαtg tg >未必有βα>;由βα>同样未必有βαtg tg >;两个角的三角函数值相等,这两个角未必相等,如βαsin sin =;则βπα+=k 2;或Z k k ∈-+=,2βππα;若βαcos cos =,则Z k k ∈±=,2βπα;若βαtg tg =,则Z k k ∈+=,βπα.[举例1]已知βα,都是第一象限的角,则“βα<”是“βαsin sin <”的――( ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件.分析:βα,都是第一象限的角,不能说明此两角在同一单调区间内.如613,3ππ都是第一象限的角,6133ππ<但613sin3sinππ>.选D.[举例2]已知0,0,αβαβπ>>+<,则“βα<”是“βαsin sin <”的―――( ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件. 分析:注意到由),0(,,πβαβα∈+,则βα,可以看作是一三角形的两内角.选C.24、已知一个角的某一三角函数值求其它三角函数值或角的大小,一定要根据角的范围来确定;能熟练掌握由αtg 的值求ααcos ,sin 的值的操作程序;给(一个角的三角函数)值求(另一个三角函数)值的问题,一般要用“给值”的角表示“求值”的角,再用两角和(差)的三角公式求得.[举例1]已知α是第二象限的角,且a =αcos ,利用a 表示=αtg _____; 分析:由α是第二象限的角,a =αcos 知21sin a -=α,aa tg 21cos sin -==ααα.[举例2]已知),2(,0cos 2cos sin sin 622ππααααα∈=-+,求)32sin(πα+的值.分析:由0cos 2cos sin sin 622=-+αααα得:0262=-+ααtg tg ,则21=αtg 或32-=αtg .又),2(ππα∈,所以32-=αtg .由万能公式得1312122sin 2-=+=αααtg tg ,135112cos 22=+-=αααtg tg .知261235)32sin(-=+πα.25、欲求三角函数的周期、最值、单调区间等,应注意运用二倍角正(余)弦公式,半角公式降次即:)2cos 1(21cos ),2cos 1(21sin 22x x x x +=-=;引入辅助角(特别注意3π,6π经常弄错)使用两角和、差的正弦、余弦公式(合二为一),将所给的三角函数式化为B x A y ++=)sin(ϕω的形式.函数|)sin(|ϕω+=x A y 的周期是函数)sin(ϕω+=x A y 周期的一半.[举例]函数1cos sin 32cos 2)(2--=x x x x f 的最小正周期为_____;最大值为__;单调递增区间为______________;在区间]2,0[π上,方程1)(=x f 的解集为___________.分析:由1cos sin 32cos 2)(2--=x x x x f )652sin(22sin 32cos π+=-=x x x .所以函数)(x f 的最小正周期为π;最大值为2;单调递增区间满足22[652πππ-∈+k x ,)](22Z k k ∈+ππ,即)](6,32[Z k k k ∈--ππππ;由1)(=x f ,则21)652s i n (=+πx ,62652πππ+=+k x 或652652πππ+=+k x 得3ππ-=k x 或)(Z k k x ∈=π,又由]2,0[π∈x 得解集为}2,,0,35,32{ππππ.注意:辅助角ϕ的应用:)sin(cos sin 22ϕ++=+x b a x b x a .其中ab tg =ϕ,且角ϕ所在的象限与点),(b a 所在象限一致.26、当自变量x 的取值受限制时,求函数)sin(ϕω+=x A y 的值域,应先确定ϕω+x 的取值范围,再利用三角函数的图像或单调性来确定)sin(ϕω+x 的取值范围,并注意A 的正负;千万不能把x 取值范围的两端点代入表达式求得.[举例]已知函数],0[),cos (sin sin 2)(π∈+=x x x x x f ,求)(x f 的最大值与最小值. 分析:函数1)4s i n (22s i n 2c o s 1c o s s i n 2s i n 2)(2+-=+-=+=πx x x x x x x f .由],0[π∈x ,则]43,4[4πππ-∈-x ,]1,22[)4sin(-∈-πx ,所以函数)(x f 的最大 、最小值分别为12+与0.27、三角形中边角运算时通常利用正弦定理、余弦定理转化为角(或边)处理.有关c b a ,,的齐次式(等式或不等式),可以直接用正弦定理转化为三角式;当知道△ABC 三边c b a ,,平方的和差关系,常联想到余弦定理解题;正弦定理应记为2sin sin sin a b c R ABC===(其中R 是△ABC外接圆半径.[举例]在△ABC 中,c b a ,,分别是C B A ∠∠∠,,对边的长.已知c b a ,,成等比数列,且bc ac ca -=-22,求A ∠的大小及cB b sin 的值.分析:由c b a ,,成等比数列得ac b =2,则bc ac ca -=-22化成bc a c b =-+222,由余弦定理得212c o s 222=-+=bcac b A ,3π=∠A .由acb =2得ba cb =,所以cB b s i n =233sinsin sin ===πA bBa .28、在△ABC 中:B A B A b a sin sin >⇔>⇔>;A C B sin )sin(=+,=+)cos(C BA cos -,2sin2cosA CB =+,2cos2sin A C B =+等常用的结论须记住.三角形三内角A 、B 、C成等差数列,当且仅当3π=B .[举例1](1)已知△ABC 三边c b a ,,成等差数列,求B 的范围;(2)已知△ABC 三边c b a ,,成等比数列,求角B 的取值范围.分析:(1)由△ABC 的三边c b a ,,成等差数列,则c a b +=2,222cos 2a c bB ac+-=,消去b 化得223()1611cos 84842a c ac B acac+=-≥-=.所以]3,0(π∈B .(2)同样可以求得]3,0(π∈B .[举例2]在△ABC 中,若C A B sin sin cos 2=,则△ABC 的形状一定是――――( )A 、等腰直角三角形;B 、直角三角形;C 、等腰三角形;D 、等边三角形. 分析:在三角形ABC 中:A B B A B A B A C sin cos 2sin cos cos sin )sin(sin =+=+=,则B A B A B A B A =⇒=-⇒=-0)sin(0sin cos cos sin .所以△ABC 是等腰三角形.[举例3]△ABC 中,内角A 、B 、C 的对边分别为c b a ,,,已知c b a ,,成等比数列,且43cos =B .(1)求ctgC ctgA +的值;(2)设23=⋅BC BA ,求c a +的值.分析:(1)先切化弦:CA BC A C A C C A A ctgC ctgA sin sin sin sin sin )sin(sin cos sin cos =+=+=+.由c b a ,,成等比,C A B ac b sin sin sin22=⇒=,所以BctgC ctgA sin 1=+.由43cos =B 得47sin =B ,则774=+ctgC ctgA .(2)注意到2343cos ===⋅ac B ac BC BA ,所以2=ac ,则22=b .又由余弦定理得:B ac c a b cos 2222-+=,得522=+c a ,92)(222=++=+cac a c a ,所以3=+c a .29、x x x x x x cos sin ,cos sin ,cos sin -+这三者之间的关系虽然没有列入同角三角比的基本关系式,但是它们在求值过程中经常会用到,要能熟练地掌握它们之间的关系式:2(sin cos )12sin cos x x x x ±=±.求值时能根据角的范围进行正确的取舍.[举例1]已知关于x 的方程02)cos (sin 2sin =+++x x a x 有实数根,求实数a 的取值范围. 分析:由x x x x x x x 2sin 1coscos sin 2sin)cos (sin 222+=++=+,令t x x =+cos sin ,则12sin 2-=t x ,其中]2,2[-∈t .则关于t 的方程012=++at t 在]2,2[-∈t 上有解.注意到方程012=++at t 两根之积为1,若有实根必有一根在]1,1[-内,只要△0≥即可,得2≥a 或2-≤a .[举例2]已知),,0(πα∈且51cos sin -=+αα,则=αtg _____.分析:此类问题经常出现在各类考试中,而且错误率都比较高.原因是不能根据角所在的象限,对函数值进行正确的取舍.由51cos sin -=+αα平方得02524cos sin 2<-=αα,又由),0(πα∈知),2(ππα∈.则有0c o s ,0s i n <>αα.2549cos sin 21)cos (sin 2=-=-αααα,得57c o s s i n =-αα.有54cos ,53sin -==αα,所以43-=αtg .30、正(余)弦函数图像的对称轴是平行于y 轴且过函数图像的最高点或最低点,两相邻对称轴之间的距离是半个周期;正(余)弦函数图像的对称中心是图像与“平衡轴”的交点,两相邻对称中心之间的距离也是半个周期.函数ctgx y tgx y ==,的图像没有对称轴,它们的对称中心为Z k k ∈),0,2(π.两相邻对称轴之间的距离也是半个周期.[举例1]已知函数x x f 2sin )(=,且)(t x f +是偶函数,则满足条件的最小正数=t __; 分析:)22sin()(t x t x f +=+是偶函数,则0=x 是它图像的一条对称轴.0=x 时,函数取最大(小)值.12sin ±=t ,)(22Z k k t ∈+=ππ.所以满足条件的最小正数4π=t .[举例2]若函数x x a x f cos sin )(+=的图像关于点)0,3(π-成中心对称,则=a ___.分析:由x x a x f cos sin )(+=的图像关于点)0,3(π-成中心对称知0)3(=-πf ,33=a .第四部分 复数31、复数问题实数化时,设复数bi a z +=,不要忘记条件R b a ∈,.两复数bi a z +=1,),,,(,2R d c b a di c z ∈+=,21z z =的条件是d b c a ==,.这是复数求值的主要依据.根据条件,求复数的值经常作实数化处理.[举例]若复数z 满足:ii i z z z z +-=++⋅23)(,则=z _____.分析:设),(R b a bi a z ∈+=,原式化为i ai b a -=++1222,得⎩⎨⎧-==+12122a b a ,求得i z 2321±-=.32、实系数一元二次方程若存在虚根,则此两虚根互为共轭.若虚系数一元二次方程存在实根不能用判别式判断.[举例]若方程)(022R b bx x ∈=++的两根βα,满足2||=-βα,求实数b 的值.分析:在复数范围内22)(||βαβα-=-不一定成立,但22|||)(|βαβα-=-一定成立.对于二次方程,韦达定理在复数范围内是成立的.⎩⎨⎧=-=+2αββαb ,4|8||)(|22=-=-b βα,则42=b 或122=b,所以2±=b 或32±=b .33、||21z z -的几何意义是复平面上21,z z 对应点之间的距离,r z z =-||0的几何意义是复平面上以0z 对应点为圆心,r 为半径的圆.[举例]若4|||2|0=-+-z z i z 表示的动点的轨迹是椭圆,则||0z 的取值范围是___. 分析:首先要理解数学符号的意义:4|||2|0=-+-z z i z 表示复数z 对应的动点到复数i 2与0z 对应的两定点之间的距离之和等于4.而根据椭圆的定义知,两定点之间的距离要小于定值4,所以有4|2|0<-i z ,而此式又表示0z 对应的点在以i 2对应点为圆心,4为半径的圆内,由模的几何意义知)6,0[||0∈z .34、对于复数z ,有下列常见性质:(1)z 为实数的充要条件是z z =;(2)z 为纯虚数的充要条件是0=+z z 且0≠z ;(3)2||z z z =⋅;(4)1212||||||z z z z =. [举例]设复数z 满足:(1),4R zz ∈+(2)2|2|=-z ,求复数z .分析:由,4R zz ∈+则z z z z z zz zz =⇒=--⇒+=+0)4|)(|(442或2||=z .当z z =时,则R z ∈,由2|2|=-z 得4=z 或0=z (舍去);当2||=z 时,可求得i z 31±=.综上知:i z z 31,4±==.第五部分 数列与极限35、等差数列{n a }中,通项b dn a n +=,前n 项和cn nd S n +=22(d 为公差,N n ∈).证明某数列是等差(比)数列,通常利用等差(比)数列的定义加以证明,即证:n n a a -+1是常数)(N n ∈(1n na a +=常数,)n N ∈,也可以证明连续三项成等差(比)数列.即对于任意的自然数n 有:n n n n a a a a -=-+++112(nn n n a a a a 112+++=).[举例]数列}{n a 满足:)(22,111N n a a a a n n n ∈+==+.(1)求证:数列}1{na 是等差数列;(2)求}{n a 的通项公式. 分析:注意是到证明数列}1{n a 是等差数列,则要证明n n a a 111-+是常数.而nn n a a a 2211+=+,所以21111=-+n n a a .即数列}1{na 是等差数列.又111=a ,则21)1(2111+=-+=n n a n,所以12+=n a n .36、等差数列前n 项和、次n 项和、再后n 项和(即连续相等项的和)仍成等差数列;等比数列前n 项和(和不为0)、次n 项和、再后n 项和仍成等比数列.类比还可以得出:等比数列的前n 项的积、次n 项的积、再后n 项的积仍成等比数列.[举例1]已知数列}{n a 是等差数列,n S 是其前n 项的和,20,884==S S ,则=12S _; 分析:注意到812484,,S S S S S --是等差数列的连续4项的和,它们成等差数列.可以得到16812=-S S ,所以3612=S .[举例2]已知数列}{n a 是等比数列,n T 是其前n 项的积,20,584==T T ,则=12T _. 分析:由812484,,T T T T T 成等比,则8124248)(T T T T T ⋅=,所以64)(34812==T T T . 37、在等差数列}{n a 中,若),,,(N q p n m q p n m ∈+=+,则q p n m a a a a +=+;在等比数列}{n a 中,若),,,(N q p n m q p n m ∈+=+,则q p n m a a a a ⋅=⋅等差(等比)数列中简化运算的技巧多源于这条性质.[举例]数列}{n a 是等比数列,124,5128374=+-=⋅a a a a ,且公比q 为整数,则10a 的值为_______.。
数学高考常用知识点汇总1. 集合中元素的特征:“确定性、互异性、无序性”。
关注集合中的代表元素(如点集、数集).例:{}{}{}|lg |lg (,)|lg A x y x B y y x C x y y x A B C ======集合,,,、、中元素各表示什么?2、关注空集,注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
例:{}{}2|230|1,A x x x B x ax =--===集合,B A a ⊆若,则实数取值集合为______答案: 1103⎧⎫-⎨⎬⎩⎭,, 3. 集合的重要性质与结论:(1)对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n2,12-n,12-n.22-n(2)A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ ()U C A B R ⇔= (3)德摩根定律:()()()()()()U U U U U U A B A B A B A B C C C C C C == , (4)会用补集思想解决问题(排除法、间接法)例:25035ax x M M M a x a-<∈∉-关于的不等式的解集为,若且,求实数的取值范围。
答案:51(9,25]3⎡⎫⎪⎢⎣⎭, 4、复合命题的真假、“非p”:真假相对;“p 或q”:一真即真;“p 且q”:一假即假。
5、命题的否定与否命题(1)命题的否定只否定结论;否命题是条件和结论都否定。
(2)“p 且q”的否定是“非p 或非q”;“p 或q”的否定是“非p 且非q ”;原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互否互(3)全称命题()x M p x ∀∈,的否定:0()x M p x ∃∈⌝,特称命题0()x M p x ∃∈,的否定:()x M p x ∀∈⌝,6、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)7、函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设非常数函数)(x f y =在某个区间内可导,如果()0f x '≥⇔)(x f 为增函数;如果()0f x '≤)(x f 为减函数.(3)复合函数的单调性:“同增异减” 8、函数的奇偶性:函数图象关于原点对称为奇函数⇔⇔-=-)()()(x f x f x f 轴对称函数图象关于为偶函数y x f x f x f ⇔⇔=-)()()(注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
2011年高考数学复习知识点分类指导一、集合与简易逻辑1.集合元素具有确定性、无序性和互异性.(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8)(2)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个(答:7)2. “极端”情况否忘记∅=A :集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B = ,则实数a =______.(答:10,1,2a =) 3.满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
(答:7)4.运算性质:设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =)5.集合的代表元素:(1)设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N = ___(答:[4,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈ ,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____(答:)}2,2{(--)6.补集思想:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p的取值范围。
(答:3(3,)2-) 7.复合命题真假的判断:在下列说法中:⑴“p 且q ”为真是“p 或q ”为真的充分不必要条件;⑵“p 且q ”为假是“p 或q ”为真的充分不必要条件;⑶“p 或q ”为真是“非p ”为假的必要不充分条件;⑷“非p ”为真是“p 且q ”为假的必要不充分条件。
2011年高考数学考试重点及大纲一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即”;“并的补等于补的交,即”.5.判断命题的真假关键是“抓住关联字词”;注意:“不…或‟即…且‟,不…且‟即…或‟”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“…逆‟者…交换‟也”、“…否‟者…否定‟也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.. 注意:命题的否定是“命题的非命题,也就是…条件不变,仅否定结论‟所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”8.充要条件二、函数1.指数式、对数式,,,,,,,,,,.2.(1)映射是“…全部射出‟加…一箭一雕‟”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有:.(2)若奇函数定义域中有0,则必有.即的定义域时,是为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。
高考数学总复习资料高三数学第三轮总复习分类讨论押题针对训练复习目标:1.掌握分类讨论必须遵循的原则 2.能够合理,正确地求解有关问题 命题分析:分类讨论是一种重要的逻辑方法,也是一种常用的数学方法,这可以培养学生思维的条理性和概括性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.这次的一模考试中,尤其是西城与海淀都设置了解答题来考察学生对分类讨论问题的掌握情况.重点题型分析:例1.解关于x 的不等式:)()(232R a x a a a x ∈+<+ 解:原不等式可分解因式为:(x-a)(x-a 2)<0 (下面按两个根的大小关系分类)(1)当a>a 2⇒a 2-a<0即 0<a<1时,不等式的解为 x ∈(a 2, a). (2)当a<a 2⇒a 2-a>0即a<0或a>1时,不等式的解为:x ∈(a, a 2) (3)当a=a 2⇒a 2-a=0 即 a=0或 a=1时,不等式为x 2<0或(x-1)2<0 不等式的解为 x ∈∅.综上,当 0<a<1时,x ∈(a 2, a) 当a<0或a>1时,x ∈(a,a 2) 当a=0或a=1时,x ∈∅.评述:抓住分类的转折点,此题分解因式后,之所以不能马上写出解集,主要是不知两根谁大谁小,那么就按两个根之间的大小关系来分类.例2.解关于x 的不等式 ax 2+2ax+1>0(a ∈R) 解:此题应按a 是否为0来分类.(1)当a=0时,不等式为1>0, 解集为R. (2)a ≠0时分为a>0 与a<0两类①10)1(00440002>⇒⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->⇒⎩⎨⎧>>a a a a a a a a ∆时,方程ax 2+2ax+1=0有两根aa a a aa a a a a a x )1(12442222,1-±-=-±-=-±-=.则原不等式的解为),)1(1())1(1,(+∞-+-----∞aa a a a a . ②101000440002<<⇒⎩⎨⎧<<>⇒⎪⎩⎪⎨⎧<->⇒⎩⎨⎧<>a a a a a a a ∆时, 方程ax 2+2ax+1=0没有实根,此时为开口向上的抛物线,则不等式的解为(-∞,+∞).③ 11000440002=⇒⎩⎨⎧==>⇒⎪⎩⎪⎨⎧=->⇒⎩⎨⎧=>a a a a a a a a 或∆时,方程ax 2+2ax+1=0只有一根为x=-1,则原不等式的解为(-∞,-1)∪(-1,+∞).④01000440002<⇒⎩⎨⎧><<⇒⎪⎩⎪⎨⎧>-<⇒⎩⎨⎧><a a a a a a a a 或∆时,方程ax 2+2ax+1=0有两根,aa a a a a a x )1(12)1(22,1-±-=-±-=此时,抛物线的开口向下的抛物线,故原不等式的解为:))1(1,)1(1(aa a a a a ----+-. ⑤φ∈⇒⎩⎨⎧≤≤<⇒⎪⎩⎪⎨⎧≤-<⇒⎩⎨⎧≤<a a a a a a a 1000440002∆综上:当0≤a<1时,解集为(-∞,+∞).当a>1时,解集为),)1(1())1(1,(+∞-+-----∞aa a a a a . 当a=1时,解集为(-∞,-1)∪(-1,+∞).当a<0时,解集为))1(1,)1(1(a a a a a a ----+-. 例3.解关于x 的不等式ax 2-2≥2x-ax(a ∈R)(西城2003’一模 理科) 解:原不等式可化为⇔ ax 2+(a-2)x-2≥0, (1)a=0时,x ≤-1,即x ∈(-∞,-1]. (2)a ≠0时,不等式即为(ax-2)(x+1)≥0.① a>0时, 不等式化为0)1)(2(≥+-x ax ,当⎪⎩⎪⎨⎧->>120a a ,即a>0时,不等式解为),2[]1,(+∞--∞a .当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在.② a<0时,不等式化为0)1)(2(≤+-x ax ,当⎪⎩⎪⎨⎧-<<120a a ,即-2<a<0时,不等式解为]1,2[-a当⎪⎩⎪⎨⎧-><120aa ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a .-2<a<0时,x ∈]1,2[-a .a<-2时,x ∈]2,1[a-.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为:10:能不分则不分;20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值.解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x令sinx=t, t ∈[-1,1].则6243)2()(22++---=a a a t t f (t ∈[-1,1]).(1)当12>a即a>2时,t=1,2533max =++-=a a y解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max =++-=a a y ,解方程为:34-=a 或a=4(舍).(3)当12-<a即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2. 例5.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S . 证明:(1)当q=1时,S n =na 1从而0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S n n --=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n n S S S .∵ 函数xy 5.0log =为单调递减函数.∴ 15.025.05.0log 2log log ++>+n n n S S S . 例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率.分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---b y a x ,一条渐近线的斜率为2=a b, ∴ b=2.∴ 555222==+==a a a b a c e .(2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=ba,此时25=e .综上(1)(2)可知,双曲线的离心率等于255或.评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a .解:原不等式 012)1(55<⇔+--x x a 0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或 由(1) a=1时,x-2>0, 即 x ∈(2,+∞).由(2)a<1时,012>--aa,下面分为三种情况. ①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(a a --.②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a a a a 时,解为∅.③ ⎪⎩⎪⎨⎧<--<2121aa a ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(a a --.由(3)a>1时,aa--12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a aa a ⇒ a 不存在. ② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a a a a 当a>1时,原不等式的解为:),2()12,(+∞---∞ a a.综上:a=1时,x ∈(2,+∞).a<1时,x ∈)12,2(aa--a=0时,x ∈∅.0<a<1时,x ∈)2,12(a a--a>1时,x ∈),2()12,(+∞---∞ aa.评述:对于分类讨论的解题程序可大致分为以下几个步骤: 10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321 2.]4943[,3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
江苏省常州市中学2011高考冲刺复习单元卷—函数1一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卷相应位置上。
1、函数)34(log 1)(22-+-=x x x f 的定义域为 ▲ 。
2、设f(x)=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f[f(21)]= ▲ 。
3、已知)2(x f 的定义域为]2,0[,则)(log 2x f 的定义域为 ▲ 。
4、若0.52a =,πlog 3b =,22πlog sin5c =,则a 、b 、c 从大到小的顺序是 ▲ 。
5、若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = ▲ 。
6、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为 ▲ 。
7、定义运算法则如下:1112322181,lg lg ,2,,412525a b a ba b a b M N -⊕=+⊗=-=⊕=则M +N = ▲ 。
8、设10<<a ,函数2()log (22)x xa f x a a =--,则使()0f x <的x 取值范围是 ▲ 。
9、设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是 ▲ 。
10、设方程2ln 72x x =-的解为0x ,则关于x 的不等式02x x -<的最大整数解为 ▲ 。
11、若关于x 的不等式22x x t <--至少有一个负数解,则实数t 的取值范围是 ▲ 。
12、设(32()log f x x x =++,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的▲ 条件。
注意点及易错点归纳一.集合与简易逻辑1.注意集合的代表元素及元素的“确定性、互异性、无序性”。
例:集合A={x |)ln(x y -=},集合{}65,62+-=x x B ,若A ∩B=∅,求x 的取值范围。
解:∵集合A 的代表元素为x (不为y )∴)0,(-∞=A 0652≥+-⇒x x …① 又∵元素的“互异性”∴6652≠+-x x 052≠-⇒x x …②结合①②知,()()()()+∞⋃⋃⋃∞-∈,55,32,00,x 2.整数集Z 可以表示为{}整数,但不能表示为{}全体整数。
3.当讨论B A ⊆时,不要忘了讨论∅=A 的情况。
4.集合S 中A 的补集是有限集,则集合A 不一定是有限集。
{}0,,===+A C N A N S S 则例:5.点集与数集的交集是∅。
6. n 个元素组成的集合,其子集有n 2个,真子集有()12-n 个,非空子集有()12-n 个,非空真子集有()22-n 个。
7.)(B A C B C A C U U U ⋃=⋂ )(B A C B C A C U U U ⋂=⋃8.)()()(C A B A C B A ⋂⋃⋂=⋃⋂ )()()(C A B A C B A ⋃⋂⋃=⋂⋃ 9.)()()(B C A C B A C U U U ⋃=⋂ )()()(B C A C B A C U U U ⋂=⋃10.在原命题、逆命题、否命题和逆否命题中,对角线命题必同真同假。
11.21≠≠y x 且⇔/3≠+y x ,即21≠≠y x 且是3≠+y x 的既不充分也不必要条件。
12.325≠≠⇒≠+y x y x 或13.设集合A 代表条件p ,集合B 代表条件q 。
若p 是q 的充分条件,则B A ⊆;又若p 是q 的必要条件,则A B ⊆。
即小范围推出大范围,大范围推不出小范围。
此时,亦不要忘了讨论∅=B A 或的情况。
14.理解逻辑联结词“或”、“且”、“非”的含义,不要混淆原命题的否命题和原命题的否定形式。
高考前数学知识点总结一. 备考内容: 知识点总结二. 复习过程:高考临近,对以下问题你是否有清楚的认识?1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C CC C U U U UU U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_____________。
贵州省贵大附中2011届数学复习教学案:3.5 等比数列的前n 项和(1)教学目的:1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题教学重点:等比数列的前n 项和公式推导教学难点:灵活应用公式解决有关问题授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件.也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法教学过程:一、复习引入:首先回忆一下前两节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n n a a =q (q ≠0) 2.等比数列的通项公式:)0(111≠⋅⋅=-q a q a a n n , )0(11≠⋅⋅=-q a q a a m m n3.{n a }成等比数列⇔nn a a 1+=q (+∈N n ,q ≠0) “n a ≠0”是数列{n a }成等比数列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列.5.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号).6.性质:若m+n=p+q ,q p n m a a a a ⋅=⋅7.判断等比数列的方法:定义法,中项法,通项公式法8.等比数列的增减性:当q>1, 1a >0或0<q<1, 1a <0时, {n a }是递增数列;当q>1, 1a <0,或0<q<1, 1a >0时, {n a }是递减数列;当q=1时, {n a }是常数列;当q<0时, {n a }是摆动数列;二、讲解新课:例如求数列1,2,4,…262,263的各项和即求以1为首项,2为公比的等比数列的前64项的和,可表示为:636264228421+++++= S ①26463642216842+++++= S ②由②—①可得:126464-=S这种求和方法称为“错位相减法” “错位相减法”,是研究数列求和的一个重要方法公式的推导方法一:一般地,设等比数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321由⎩⎨⎧=+++=-11321n n nn q a a a a a a S得⎪⎩⎪⎨⎧++++=++++=---n n n n n n qa q a q a q a q a qS q a q a q a q a a S 1113121111212111 n n q a a S q 11)1(-=-∴∴当1≠q 时,qq a S n n --=1)1(1 ① 或q q a a S n n --=11 ② 当q=1时,1na S n =公式的推导方法二:有等比数列的定义,q a a a a a a n n ====-12312根据等比的性质,有q a S a S a a a a a a nn n n n =--=++++++-112132 即 q a S a S nn n =--1⇒q a a S q n n -=-1)1((结论同上) 围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式.公式的推导方法三:=n S n a a a a +++321=)(13211-++++n a a a a q a=11-+n qS a =)(1n n a S q a -+⇒q a a S q n n -=-1)1((结论同上)“方程”在代数课程里占有重要的地位,方程思想是应用十分广泛的一种数学思想,利用方程思想,在已知量和未知量之间搭起桥梁,使问题得到解决三、例题讲解例1 求等比数列1,2,4,…从第5项到第10项的和.解:由2 2,121===q a a 得1521)21(144=--⨯=∴S , 102321)21(11010=--⨯=S 从第5项到第10项的和为10S -4S =1008例2一条信息,若一人得知后用一小时将信息传给两个人,这两个人又用一小时各传给未知此信息的另外两人,如此继续下去,一天时间可传遍多少人?解:根据题意可知,获知此信息的人数成首项2,11==q a 的等比数列 则:一天内获知此信息的人数为:12212124244-=--=S 例3 已知{n a }为等比数列,且n S =a ,n S 2=b ,(ab ≠0),求n S 3.分析:要求n S 3,需知1a ,q ,而已知条件为n S 和n S 2.能否进一步挖掘题目的条件,使已知和未知沟通起来?当1≠q 时 qq a S n n --=1)1(1=a ① n S 2=q q a n --1)1(21=qq q a n n --+1)1)(1(1=b ②②/①得 ab q n =+1 ③ 将③代入①,得 ba a q a -=-2121 ∴n S 3=qq a n --1)1(31=q a -11)1(3n q -=b a a -22])1(1[3--a b 以下再化简即可.这样处理问题很巧妙.没有分别求得1a 与q 的值,而改为求n q 与qa -11的值,这样使问题变得简单但在分析的过程中是否完备? 第①式就有问题,附加了条件q ≠1.而对q=1情况没有考虑.使用等比数列前n 项和公式时,要特别注意适用条件,即q=1时,n S =n 1a ;当1≠q 时,q q a a S n n --=11 或qq a S n n --=1)1(1 (含字母已知数的等比数列求和题目,学生常忽略q=1情况,要引起足够重视,以培养学生思维的严密性)解法1:设等比数列{n a }的公比为q .若q=1(此时数列为常数列),则n S =n 1a =a ,122na S n ==b ,从而有2a=b ∴a na S n 3313==(或233313b a na S n ===) 若q ≠1(即2a ≠b ),由已知 q q a S n n --=1)1(1=a ① qq a S n n --=1)1(212=b ② 又ab ≠0, ②/①得 a b q n =+1 , 1-=ab q n ③ 将③代入①,得 ba a q a -=-2121 ∴n S 3=qq a n --1)1(31=q a -11)1(3n q -=b a a -22])1(1[3--a b =ab ab a 22+- 解法2:由n S ,n S 2-n S ,n S 3-n S 2成等比数列(练习中证此结论),即a,b-a, n S 3-b 成等比,所以a(n S 3-b)=( b-a)2从而有 n S 3=ab ab a 22+- (包含了q=1的情况) 四、练习:{}n a 是等比数列,n S 是其前n 项和,数列k k k k k S S S S S 232,,-- (+∈Nk )是否仍成等比数列?解:设{},n a 首项是1a ,公比为q,①当q =-1且k 为偶数时,k k k k k S S S S S 232,,--不是等比数列.∵此时,k k k k k S S S S S 232-=-= =0. 例如:数列1,-1,1,-1,…是公比为-1的等比数列,46242S S S S S -=-=S 2=0, ②当q ≠-1或k 为奇数时,k S =k a a a a +++3210≠k k S S -2=)(321k k a a a a q +++0≠k k S S 23-=)(3212k k a a a a q +++0≠⇒k k k k k S S S S S 232,,--(+∈N k )成等比数列评述:应注意等比数列中的公比q 的各种取值情况的讨论,还易忽视等比数列的各项应全不为0的前提条件.五、小结 1. 等比数列求和公式:当q=1时,1na S n =当1≠q 时,q q a a S n n --=11 或qq a S n n --=1)1(1 ; 2.n S 是等比数列{}n a 的前n 项和,①当q =-1且k 为偶数时,k k k k k S S S S S 232,,--不是等比数列.②当q ≠-1或k 为奇数时,k k k k k S S S S S 232,,-- 仍成等比数列3.这节课我们从已有的知识出发,用多种方法(迭加法、运用等比性质、错位相减法、方程法)推导出了等比数列的前n 项和公式,并在应用中加深了对公式的认识.六、课后作业:已知数列{}n a 是等比数列,n S 是其前n 项的和,求证7S ,14S -7S ,21S -14S 成等比数列.解:(1)①当q =1时,7S =71a ,14S =141a , 14S -7S =141a -71a =71a ,21S -14S =211a -14a 1=71a ∴7S ,14S -7S ,21S -14S 为以71a 为首项,1为公比的等比数列.②当q ≠1时,7S =()()()qq a S q q a S q q a --=--=--11,11,11211211411471 ()()q q a q q a S S -----=-111171141714()qq q a --=11771 ()()q q a q q a S S -----=-11111412111421()q q q a --=11771 ()()22714212714)1(1q q q a S S --=-∴()()q q q a q q a S S S --⋅--=-⋅1111)(71417114217()2271421)1(1q q q a --= ∴()2714S S -=)(14217S S S -⋅∴7S ,14S -7S ,21S -14S 成等比数列.[这一过程也可如下证明:14S -7S =)(14321a a a a +++-)(7321a a a a +++ =141098a a a a +++=)(73217a a a a q +++=77S q 0≠ 同理,21S -14S =21171615a a a a +++= 714S q 0≠ ∴7S ,14S -7S ,21S -14S 为等比数列.七、板书设计(略)八、课后记:。