变压器保护类型及原理介绍
- 格式:ppt
- 大小:1.13 MB
- 文档页数:81
变压器保护原理与配置变压器是电力系统中重要的电力设备之一,其主要功能是将一个电压等级的电能转换为另一个电压等级的电能,并在输电中进行电能传输和分配。
为保障变压器的正常运行,必须对其进行保护。
以下是变压器保护原理与配置的介绍。
一、变压器保护原理1. 过载保护当变压器负载电流超过额定电流时,将引起变压器温升过高,甚至可能导致短路,从而损坏变压器。
因此,需要对变压器进行过载保护。
过载保护装置通常采用电流互感器检测变压器负载电流,并通过保护继电器等装置实现过载保护。
2. 短路保护当变压器发生短路故障时,电流会急剧升高,引起变压器内部温度瞬间升高,将损坏变压器绕组和绝缘。
因此,需要对变压器进行短路保护。
短路保护装置通常采用电流互感器检测变压器电流,并通过保护继电器等装置实现短路保护。
3. 地闸保护当变压器出现地闸故障时,会导致变压器绕组和绝缘被损坏,从而影响变压器正常运行。
因此,需要进行地闸保护。
地闸保护装置通常采用变压器的中性点作为检测点,并通过保护继电器等装置实现地闸保护。
4. 过压保护当变压器输入电压超过额定电压时,会导致变压器绕组和绝缘的击穿,损坏变压器正常运行。
因此,需要进行过压保护。
过压保护装置通常采用电压互感器检测输入电压,并通过保护继电器等装置实现过压保护。
5. 欠压保护当变压器输入电压低于额定电压时,会导致变压器负载电流急剧升高,造成变压器绕组温度异常升高,从而损坏变压器。
因此,需要进行欠压保护。
欠压保护装置通常采用电压互感器检测输入电压,并通过保护继电器等装置实现欠压保护。
二、变压器保护配置变压器保护装置应按照变压器及其用途来确定配置方案。
变压器通常采用机械继电器、数字化继电器、微处理器等不同类型的保护装置。
1. 机械继电器保护机械继电器保护装置是一种传统的设备保护方案,通常用于小型变压器的保护。
它具有工作可靠、升级容易、操作简单等优点,但不支持远程通信,难以实现自动化和故障诊断。
2. 数字化继电器保护数字化继电器保护装置是一种新型设备保护方案,通常用于大型变压器的保护。
电厂发电机变压器保护原理及继电保护方式研究
电厂的发电机变压器保护是电力系统中重要的工作,主要是为了确保设备安全运行和提高电力系统的可靠性。
本文将探讨发电机变压器的保护原理及继电保护方式。
一、保护原理
1.过流保护
发电机变压器过流保护是保护电路中最为常见的一种保护方式,其基本原理是检测电流是否超过设定值,如果超过,则说明电路中有故障发生,继电器将输出信号启动主断路器或切断故障电路。
过流保护装置的主要组成部分是电流互感器、电流比较器和继电器。
2.差动保护
4.欠压保护
二、继电保护方式
1.机械式继电保护
机械式继电保护是最早应用的一种继电保护方式,其主要机构包括触发机构、保护机构和复位机构,通过机械、电磁等方式实现继电器的操作。
机械式继电保护消除了电气型保护所存在的误动、失灵等问题,但其操作可靠性较差,检修难度较高,不利于实现自动化操作和监控。
2.静态继电保护
静态继电保护是电子技术发展后出现的一种保护方式,采用电子元件取代机械部件,大大提高了保护装置的稳定性和可靠性。
静态继电保护具有操作速度快、精度高、稳定性好、易于集成等优点。
3.数字化继电保护
数字化继电保护主要是利用数字技术、计算机技术和通信技术,实现对电力系统的保护、控制和监控。
数字化继电保护采用数字信号处理技术,能够快速、精确地检出系统故障和隐患,具有快速响应、先进性强、功能完善等优点。
总之,发电机变压器的保护是保证电厂安全稳定运行的重要工作,为了提高电厂的可靠性,必须对其进行全面的保护。
在保护方式的选择上,应根据工作环境、工作要求和保护装置的特点进行综合考虑,选择最合适的保护方式。
变压器保护原理及技术分析变压器是电力系统中一个重要的电气设备,它将输电线路上高电压的电能转换为用户需要的低电压,起着电能传输和电能转换的作用。
变压器的保护是确保变压器安全运行的重要措施,保护原理及技术分析如下。
变压器的保护原理是在变压器的正常运行范围内,当发生故障或异常时,及时采取措施,使故障得到限制,避免故障扩大,同时保护设备和系统的稳定运行。
1.过载保护:变压器在长期工作中,可能会由于电流超载而造成温度升高,进而引发短路和绕组烧坏等故障。
为了保护变压器不发生过载故障,通常采用过载保护装置。
过载保护装置可以根据变压器的负载电流实时监测和判断是否超过额定电流标准,一旦超过则对变压器进行保护动作。
2.短路保护:变压器短路故障是变压器中最常见的故障之一,它往往会造成变压器严重损坏。
短路保护的主要目的是快速地切除短路故障,并保护变压器不受到损害。
短路保护装置一般采用差动保护,即通过对变压器的输入和输出电流进行差动计算,当计算值超过设定阈值时,短路保护装置进行保护动作。
3.过压保护:当系统发生过电压时,变压器会受到电压冲击,绝缘可能会受到破坏。
因此,过压保护装置是变压器保护中不可缺少的一环。
过压保护装置可以监测和检测系统电压是否超过额定值,一旦超过,则迅速切断变压器的电源,保护变压器免受到过电压的损害。
4.欠压保护:欠压保护主要是为了保护变压器,在电网电压过程中发生欠压情况,不致导致变压器正常电力传输和电能转换。
欠压保护装置一般设置在变压器的低压侧,当欠压发生时,保护装置会迅速切断变压器的电源,防止欠压引起的变压器故障。
5.温度保护:变压器在运行过程中,过高的温度会导致绝缘老化和设备损坏,因此需要进行温度保护。
温度保护装置通常采用温度传感器实时监测变压器的温度,一旦温度超过设定阈值,保护装置会对变压器进行保护动作,如切断电源或发出警报信号。
6.油压保护:变压器油压保护主要是防止变压器油泄漏或油泄放大,导致变压器损坏。
变压器主保护原理
变压器主保护的原理是通过监测和保护变压器的重要参数,如电流、温度、压力等,来确保变压器的安全运行。
主要的保护原理如下:
1. 过流保护:通过监测变压器主回路的电流,当电流超过变压器额定电流的设定值时,保护装置会及时切断电源,防止变压器过载损坏。
2. 短路保护:当变压器主回路出现短路故障时,保护装置会通过电流变化的快速监测,迅速切断电源,以避免短路电流对变压器造成更大的损害。
3. 远/近端差动保护:差动保护是保护变压器的一种重要手段。
它通过对变压器两侧电流的差值进行监测,当差值超过设定值时,表示存在故障。
远/近端差动保护根据保护范围的不同,
可以区别监测变压器近端和远端的电流。
4. 温度保护:变压器的温度是影响其正常运行的重要因素。
温度保护装置通过探测变压器的温度,当温度超过安全范围时,会切断电源或发送警报信号,以防止变压器过热引发事故。
5. 油位保护:变压器的油位保护装置可以监测和控制变压器油箱中的油位。
当油位低于安全限制时,保护装置会切断电源,以防止变压器因油位过低而无法正常冷却。
除了以上主要的保护原理外,还有一些辅助的保护原理,如过
压保护、欠压保护、过载保护、接地保护等,它们通过监测和控制变压器运行过程中的各种参数,从而确保变压器的安全运行。
变压器差动保护原理及作用1.基础差动原理:当正常工作时,变压器的主绕组和副绕组的电流应当是相等的,即主绕组电流与副绕组电流之差为零。
而当存在绕组短路时,短路电流会流入接地电流,使主绕组电流与副绕组电流不再相等。
2.基本结构:变压器差动保护系统通常由电流互感器、电流比率继电器、差动继电器等组成。
电流互感器将主副绕组电流分别采集,然后经过电流比率继电器进行比较,最终由差动继电器实现差动保护功能。
3.过电流定向元件:为了防止外部故障信号对差动保护的干扰,还需要加入过电流定向元件。
过电流定向元件可以通过比较主绕组电流和副绕组电流的幅值和相位,确定差动电流方向,从而确保差动保护的准确性。
1.短路故障保护:变压器差动保护可以快速、可靠地检测变压器主副绕组之间的电流差异,及时发现变压器内部的短路故障,并迅速对故障区域进行保护。
这种保护措施能够避免短路电流继续加大,造成更严重的设备损坏,甚至危及人员生命安全。
2.电气设备保护:变压器差动保护不仅仅用于保护变压器本身,还可以对接在变压器绕组上的其他设备进行保护,如电动机、发电机等。
当这些设备发生短路故障时,差动保护能够迅速判断并隔离这些故障,保护其他设备不受到冲击。
3.滤波器保护:变压器差动保护还可以用于滤波器的保护。
在变压器的输入和输出侧都设置差动保护,可以有效地避免滤波器内部的短路故障对电网和变压器产生不利影响。
4.系统稳定性:通过及时发现和保护变压器内部的故障,变压器差动保护可以避免故障扩大,降低系统不稳定的风险。
同时,差动保护还可以提供故障信息,有助于运维人员及时采取措施进行维修,保证电网的运行安全和稳定。
总之,变压器差动保护是一种重要的保护装置,通过检测变压器主副绕组之间的电流差异,实现对变压器及相关设备的短路故障保护,不仅能够避免设备损坏和人员安全事故的发生,还有助于提高电网的稳定性和可靠性。
变压器保护的基本知识简介:变压器是电力系统中广泛应用的一种电气设备,用于改变交流电的电压。
为了确保变压器的安全运行和延长其使用寿命,电力系统需要对变压器进行有效的保护。
本文将介绍变压器保护的基本知识,包括常见的保护方案和保护装置。
一、变压器的运行原理变压器是一种通过电磁感应原理来改变电压的电气设备。
它主要由铁芯和线圈组成。
当通过一侧线圈的电流发生变化时,会在另一侧线圈中感应出相应的电压。
通过调整一侧线圈和另一侧线圈的匝数比例,可以实现电压的升降。
二、变压器的故障情况变压器在运行过程中可能会遇到各种故障情况,如短路、过载、过热等。
这些故障如果不能及时得到处理,可能会导致变压器的损坏甚至引发火灾等严重后果。
三、常见的变压器保护方案为了确保变压器的安全运行,通常采用多种保护方案进行综合保护。
以下是几种常见的变压器保护方案。
1. 短路保护短路是变压器故障中最常见的类型之一。
短路保护的主要目的是在短时间内将变压器与故障点隔离,防止故障扩大。
短路保护装置通常包括熔断器或断路器,能够迅速切断故障电路。
2. 过载保护过载是指变压器长时间运行超过其额定容量。
过载可能导致变压器的过热和损坏。
过载保护的主要目的是在变压器超过额定容量一定时间后切断电源,以防止变压器损坏。
过载保护装置通常包括热继电器或电流保护装置。
3. 过压保护过压是指变压器输入端或输出端电压超过额定值。
过压可能会导致绝缘击穿和设备损坏。
过压保护的主要目的是在电压超过额定阈值一定时间后切断电源,以保护变压器和其他设备。
过压保护装置通常包括电压继电器或自动开关。
4. 欠压保护欠压是指变压器输入端或输出端电压低于额定值。
欠压可能导致设备无法正常工作,甚至引发其他故障。
欠压保护的主要目的是在电压低于额定阈值一定时间后切断电源,以确保设备的正常运行。
欠压保护装置通常包括电压继电器或自动开关。
5. 温度保护变压器的温度过高可能会导致绝缘老化和设备损坏。
因此,温度保护对于保护变压器至关重要。
主变差动保护一、主变差动保护简介主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障 ,差动保护是输入的两端CT电流矢量差,当两端CT电流矢量差达到设定的动作值时启动动作元件.差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零.驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源.二、纵联差动保护原理(一)、纵联差动保护的构成纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的.为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。
其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂.(二)、纵联差动保护的工作原理根据基尔霍夫第一定律,=∑•I;式中∑•I表示变压器各侧电流的向量和,其物理意义是:变压器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。
因此,纵差保护不应动作。
当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。
见变压器纵差保护原理接线。
(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1。
5.5(a)所示,则流入继电器的电流为继电器不动作。
(2)区内故障时,被保护元件两端的电流和的方向如图 1.5.5(b)所示,则流入继电器的电流为此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器.由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。
变压器故障类型及差动保护原理
中压变压器故障类型包括:
1、断相短路故障:短路事故发生在负载断开(分段未接)或中压电压变低时,当高压两侧电流不断张时,一定量的电能局部短路流入变压器内,产生快速短路异常,引起热、电损耗大。
2、过电流故障:过电流可导致中压变压器热损耗大,轴承温度过高,容积受损、铁芯漏磁,甚至可能出现变压器的烧坏故障。
3、电气放电故障:由于不合理的设计或安装,中压变压器内部绝缘放电,形成空缺或变换电压,使变压器出现无功损耗,变压器产生热、电损耗。
4、机械破坏故障:由于变压器结构不符合设计要求,油压不稳定,油压特性较差,机械节流器部分受损,。
变压器保护原理及应用变压器是电能传送的重要设备,其正常工作对电力系统具有重要意义。
变压器在运行中可能会发生各种故障,如短路、过载、接地故障等,这些故障如果得不到及时保护和处理,不仅会引起设备的损坏,还会影响整个电力系统的正常运行。
因此,变压器保护是电力系统中重要的一环。
电流保护是变压器保护中最基本的一种保护方式,其原理是通过监测变压器的电流变化,当电流超过额定值时,保护装置会发出信号,进而切断供电电路,以避免超负荷损坏。
温度保护是根据变压器负载工作时的温度变化情况,通过监测变压器的温度,当温度过高时,保护装置会自动切断供电电路,以保护变压器。
油温保护是通过监测变压器绕组上的油温变化,当油温过高时,保护装置会自动切断供电电路,以防止绕组的过热损坏。
压力保护是通过监测变压器的油箱或冷却系统的压力变化,当压力异常时,保护装置会发出信号以切断电源。
差动保护是变压器保护中最重要的一种保护方式,其原理是通过监测变压器的输入和输出侧电流之间的差别,当差别超过额定值时,保护装置会发出信号,以切断供电电路。
变压器保护在电力系统中的应用非常广泛。
在输电和配电系统中,变压器是将电能由高压输送到低压的重要设备,因此其保护具有重要意义。
在变电站中,变压器是重要的电力转换设备,因此其保护不仅关系到变压器本身的安全运行,还关系到整个变电站和电力系统的稳定运行。
在工厂、矿山等大型用电场所中,变压器保护也是不可或缺的一部分,及时准确地判断变压器的工作状态,保证其正常工作,对电力供应具有重要保障作用。
总之,变压器保护是电力系统中重要的一环,它通过监测变压器运行状态和电气量的变化,以保证变压器在正常运行范围内。
变压器保护装置主要包括电流保护、温度保护、油温保护、压力保护、差动保护等。
变压器保护在输电、配电系统、变电站和大型用电场所等电力系统中都有广泛应用,具有重要保障作用。
变压器差动保护作用及原理是什么1、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35kV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作;差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器做主保护。
2、保护原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。
差动保护把被保护的变压器看成是一个接点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的;从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。
当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过程序的运行,各侧电流存在的相位差由软件自动开展校正,自动计算出各侧电流IH-(IM- IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流),则保护不动作。
当变压器内部发生相间或匝间短路故障时,两侧(或三侧)向故障点提供短路电流,在差动回路中由于IM或IL改变了方向或等于零,流入差动继电器的电流IH-(IM- IL)不再接近于零;当差动电流大于差动保护装置的整定值时,保护动作,将被保护变压器的各侧断路器跳开,使故障变压器断开电源。
南瑞继保变压器保护设计及原理介绍1.过载保护过载保护是指当变压器承受的负载超过了其额定容量时,通过监测变压器的电流来及时发现过负荷情况并采取相应的措施。
南瑞继保变压器保护的过载保护原理是基于热稳定方程模型,通过测量变压器的输入电流、输出电流和温度等参数,计算变压器的热状态,当超过一定的温度阈值时,发出过载报警和保护信号。
2.短路保护短路保护是指当变压器绕组出现短路故障时,及时切断故障电路以防止电流过大对变压器造成损坏。
南瑞继保变压器保护的短路保护原理是基于电流比较法,通过比较变压器的实际电流与额定电流之间的差异,当超过一定的电流阈值时,判断为短路故障,并发出短路报警和保护信号。
3.接地保护接地保护是指当变压器绕组或绝缘出现接地故障时,及时切断故障电路以保障人身安全和设备正常运行。
南瑞继保变压器保护的接地保护原理是基于绝缘电阻检测法,通过测量变压器的绕组与地之间的电阻,当电阻低于设定值时,判断为接地故障,并发出接地报警和保护信号。
4.绕组保护绕组保护是指当变压器内部绕组或线圈出现故障时,及时切断故障电路以防止进一步损坏。
南瑞继保变压器保护的绕组保护原理是基于电压比较法,通过比较变压器不同绕组之间的电压差异,当超过一定的电压阈值时,判断为绕组故障,并发出绕组报警和保护信号。
此外,南瑞继保变压器保护还可以提供一些辅助保护功能,如压力保护、温度保护和油位保护等,以增强变压器的可靠性和安全性。
综上所述,南瑞继保变压器保护是一种很好的保护装置,它能够准确地监测变压器的运行状态,并在故障发生时及时做出响应,保护变压器免受进一步损坏。
其主要原理是基于电流比较法、热稳定方程模型和绝缘电阻检测法等,能够提供过载保护、短路保护、接地保护和绕组保护等多种保护功能,以保证变压器的安全运行。
变压器主保护原理及应用一、变压器主保护原理:1.差动保护:差动保护是一种通过比较变压器的输入电流和输出电流来判断是否有故障发生的保护方式。
在正常情况下,变压器的输入电流和输出电流保持平衡。
当变压器内部发生故障时,输入电流和输出电流将不再平衡,此时差动保护系统会发出警报并采取相应的保护措施,如断开故障电路。
2.过流保护:过流保护是一种通过检测变压器中的电流是否超过额定值来判断是否发生故障的保护方式。
当变压器内部短路或过负荷时,电流将超过额定值,过流保护系统会及时采取措施,如断开故障电路、切换备用电源。
3.过温保护:过温保护是通过测量变压器的温度来判断是否发生故障的一种保护方式。
当变压器内部温度超过设定的安全温度时,过温保护系统会发出警报并采取措施,如切断电源、通风散热等。
以上是变压器主保护常用的几种保护原理,通过这些保护原理的组合使用可以有效保护变压器的安全运行,减少故障损失,提高设备的可靠性。
二、变压器主保护的应用:1.励磁变压器:励磁变压器是电力变压器的重要组成部分,用于提供给主变压器所需的励磁电流。
励磁变压器主保护的应用主要包括差动保护、过流保护等。
这是因为在励磁变压器发生故障时,输出电流和输入电流将不再平衡,同时电流也可能超过额定值,因此这两种保护方式在励磁变压器中具有重要作用。
2.干式变压器:干式变压器主要应用于室内环境,其主要特点是不含油,结构简单,运行稳定。
在干式变压器中,差动保护和过温保护是主要的保护手段,以防止变压器发生短路和过热的情况。
3.油浸式变压器:油浸式变压器是电力系统中最常见的变压器类型,适用于大功率、长距离输电和变电站等场合。
在油浸变压器中,差动保护、过流保护、过温保护等保护方式都得到了广泛的应用。
其主要原因是油浸变压器在运行中容易发生故障,而这些保护方式可以有效检测和保护变压器在故障时的安全运行。
总结:变压器主保护是保护变压器安全运行的重要手段,通过差动保护、过流保护和过温保护等方式可以有效检测并保护变压器内部的故障。
1、变压器保护功能及原理⼀、变压器保护分类1、500KV⾃耦变压器1.1 500KV⾃耦变压器主保护分为三类差动:1)纵联差动(纵联差动速断保护、纵联⽐率差动保护、纵联⽐率变化量差动保护):由⾼、中、低各侧开关CT组成的传统纵联差动保护。
2)分相差动(分相差动速断保护、分相⽐率差动保护、分相⽐率变化量差动保护):由⾼、中压侧开关CT及低压侧三⾓绕组(套管)CT 组成的分相差动保护。
3)分侧差动:由⾼、中压侧开关CT、公共绕组套管CT组成。
1.2 500KV变压器差动保护差流计算:1)纵联差动:差动电流与制动电流的相关计算,都是在电流相位校正和平衡补偿后的基础上进⾏。
变压器各侧CT⼆次电流相位由软件⾃动校正,采⽤在Y侧进⾏校正相位。
例如对于Y0/Δ-11的接线,其校正⽅法如下:IA’ = (IA-IB)/根号3;IA’为校正后的Y侧校正后的电流差动电流=⾼压侧校正后电流 + 中压侧平衡系数中压侧校正后电流 +低压侧平衡系数低压侧相电流2)分相差动:差动电流=⾼压侧相电流 + 中压侧平衡系数中压侧相电流 + 低压套管CT侧平衡系数低压套管绕组相电流中压侧平衡系数 = (中压侧CT变⽐/⾼压侧CT变⽐)(中压侧额定电压/⾼压侧额定电压);低压套管CT侧平衡系数 = (低压套管CT变⽐/⾼压侧CT变⽐)(低压侧额定电压根号3/⾼压侧额定电压)3)分侧差动差动电流=⾼压侧相电流 + 中压侧平衡系数中压侧相电流 + 公共绕组平衡系数*公共绕组相电流中压侧平衡系数 = 中压侧CT变⽐/⾼压侧CT变⽐;公共绕组平衡系数 = 公共绕组CT变⽐/⾼压侧CT变⽐1.3 差动保护异常检测和⼀些判别1)CT断线:正常情况下判断CT断线是通过检查构成差动的所有相别的电流中有⼀相或两相⽆流且差流⼤于差流越限门槛值,即判为CT断线。
2)PT断线:PT断线检测逻辑分为三相断线和不对称断线两种判据:第⼀三相电压均⼩于18V,判断为PT三相断线,延时10s发PT断线告警信号;第⼆⾃产3U0 ⼤于18V,且三个线电压不相等并且存在两个线电压之差⼤于18V(⽤于区分⼩电流接地系统的⼀点接地),判断为PT不对称断线,1延时0s发PT断线告警信号;第三保护启动后不再进⾏PT断线检测。