九年级数学下册 3.3 垂径定理 北师大版
- 格式:ppt
- 大小:676.00 KB
- 文档页数:10
垂径定理一、教学目标1.利用圆的轴对称性研究垂径定理及其逆定理; 2.运用垂径定理及其逆定理解决问题. 二、教学重点和难点重点:利用圆的轴对称性研究垂径定理及其逆定理.难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线 三、教学过程 (一)情境引入:1.如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M . (1)该图是轴对称图形吗?如果是,其对称轴是什么? (2)你能图中有哪些等量关系?(3)你能给出几何证明吗?(写出已知、求证并证明)(二)知识探究:【探究一】通过上面的证明过程,我们可以得到:1.垂径定理_____________________________________________________2.注意:①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧。
③定理中的两个条件缺一不可——______________,______________. 3.给出几何语言如图,已知在⊙O 中,AB 是弦,CD 是直径,如果CD ⊥AB,垂足为E, 那么AE=_______,⋂AC =______,⋂BD =________4.辨析:判断下列图形,能否使用垂径定理?【探究二】 1.,作一条平分AB 的直径CD ,交AB 于点M .(1)下图是轴对称图形吗?如果是,其对称轴是什么? (2)图中有哪些等量关系?说一说你的理由.O E CBAO C DB A OCDE O CD BO DB AC2.垂径定理的推论:______________________________________________________________ 3.辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.”如果该定理 少了“不是直径”,是否也能成立? 反例:4.如图,在⊙O 中,AB 是弦(不是直径),CD 是直径, (1)如果AE=BE 那么CD____AB,⋂AC =____⋂BD =____ (2)如果⋂AC =⋂BC 那么CD____AB ,AE______BE ,⋂BD =____ (3)如果⋂AD =⋂BD 那么CD____AB ,AE_____BE ,⋂AC =______ (三)典例讲解:1.例:如图,一条公路的转弯处是一段圆弧(即图中⌒CD ,点0是⌒CD 所在圆的圆心),其中CD =600m ,E 为⌒CD 上的一点,且OE ⊥CD ,垂足为F ,EF =90m.求这段弯路的半径.2.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?(四)巩固训练: 题组一1.如图,在⊙O 中,AB 为弦,OC ⊥AB 于C ,若AO=5,OC=3,求弦AB 的长。
2024北师大版数学九年级下册3.3《垂径定理》教学设计一. 教材分析《垂径定理》是北师大版数学九年级下册第3.3节的内容,本节课主要介绍垂径定理及其应用。
垂径定理是指:圆中,如果一条直径垂直于一条弦,那么这条直径把这条弦平分。
这个定理是圆的基本性质之一,对于解决与圆有关的问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、性质以及一些基本的运算。
但是,对于证明一个定理,他们可能还不是很熟悉。
因此,在教学过程中,需要引导学生通过观察、思考、推理等方法,逐步理解并证明垂径定理。
三. 教学目标1.理解垂径定理的内容,并掌握其证明过程。
2.能够运用垂径定理解决与圆有关的问题。
3.培养学生的观察能力、思考能力和推理能力。
四. 教学重难点1.教学重点:垂径定理的内容及其证明过程。
2.教学难点:如何引导学生通过观察、思考、推理等方法,证明垂径定理。
五. 教学方法1.引导法:通过提问、引导,激发学生的思考,帮助他们理解垂径定理。
2.推理法:引导学生通过观察、推理,证明垂径定理。
3.实例法:通过具体的例子,让学生学会如何运用垂径定理解决实际问题。
六. 教学准备1.教学PPT:包括垂径定理的定义、证明过程以及应用实例。
2.教学素材:一些与圆有关的问题,用于巩固和拓展学生的知识。
3.黑板:用于板书重要的概念和证明过程。
七. 教学过程1.导入(5分钟)通过一个简单的与圆有关的问题,引导学生复习之前学过的知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍垂径定理的定义和证明过程。
首先,让学生观察一些与圆有关的几何图形,引导他们发现其中的规律。
然后,通过推理和论证,得出垂径定理的结论。
3.操练(10分钟)让学生分组讨论,尝试用垂径定理解决一些与圆有关的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生的讨论结果,进行讲解和分析,巩固他们对垂径定理的理解。
同时,通过一些具体的例子,让学生学会如何运用垂径定理解决实际问题。
北师大版九年级数学下册:3.3《垂径定理》教学设计一. 教材分析《垂径定理》是北师大版九年级数学下册第3章第3节的内容。
本节主要介绍圆中的垂径定理及其应用。
垂径定理是圆的基本性质之一,对于解决与圆相关的问题具有重要意义。
通过学习垂径定理,学生能够更深入地理解圆的性质,提高解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了圆的基本概念和性质,具备了一定的观察、分析和推理能力。
但在学习垂径定理时,学生可能对定理的理解和应用还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解并掌握垂径定理。
三. 教学目标1.理解垂径定理的内容及证明过程。
2.能够运用垂径定理解决与圆相关的问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.重点:垂径定理的理解和应用。
2.难点:垂径定理的证明过程。
五. 教学方法1.引导发现法:教师引导学生观察、分析、推理,发现垂径定理。
2.实例讲解法:教师通过具体例子,讲解垂径定理的应用。
3.合作交流法:学生分组讨论,分享学习心得和解决问题的方法。
六. 教学准备1.教学PPT:包含垂径定理的定义、证明和应用。
2.实例图片:用于讲解垂径定理的应用。
3.练习题:巩固所学内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示PPT,介绍垂径定理的定义、证明和应用。
引导学生观察、分析,理解垂径定理的意义。
3.操练(10分钟)教师提出几个与垂径定理相关的问题,让学生分组讨论,共同解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成几道练习题,巩固所学内容。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)教师提出一些拓展问题,引导学生运用垂径定理解决实际问题。
学生分组讨论,分享解题方法。
6.小结(5分钟)教师引导学生总结本节课所学内容,回顾学习过程,分享学习心得。