高一数学试题-新人教版高一数学上册知识点检测试题3 最新
- 格式:doc
- 大小:107.99 KB
- 文档页数:6
一、选择题1.已知函数(1)f x +是偶函数,当121x x <<时,()()()21210f x f x x x ⎡⎤-->⎣⎦恒成立,设1,(2),(3)2a f b f c f ⎛⎫=-== ⎪⎝⎭,则,,a b c 的大小关系为( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<2.已知函数()()2265mm m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断3.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32 D .524.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞B .()()2021,00,2021-C .()(),20212021,-∞-+∞D .()(),20210,2021-∞-5.已知函数()312xx f x x x e e=-+-+,其中e 是自然对数的底数,若()()2120f a f a -+≤则实数a 的取值范围是( )A .11,2⎡⎤-⎢⎥⎣⎦B .[]1,2-C .(]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭D .(][),21,-∞-+∞6.已知“函数()y f x =的图像关于点(),P a b 成中心对称图形”的充要条件为“函数()y f x a b =+-是奇函数”,现有函数:①1224x y x -=-;②1(2)|2|2y x x x =--+;③()321y x x =+--;④2332x x y x -+=-,则其中有相同对称中心的一组是( )A .①和③B .①和④C .②和③D .②和④7.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8D .88.已知函数()f x 的定义域为,(4)R f x +是偶函数,(6)3f =,()f x 在(,4]-∞上单调递减,则不等式(24)3f x -<的解集为( ) A .(4,6)B .(,4)(6,)-∞⋃+∞C .(,3)(5,)-∞⋃+∞D .(3,5) 9.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是( )A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭C .1,15⎛⎫⎪⎝⎭D .(),1-∞10.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0- B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞11.函数()f x =是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数12.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞13.设函数()()212131log 1313x xe e xf x x --=++++,则做得()()31f x f x ≤-成立的x 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .11,,42⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ D .11,42⎡⎤⎢⎥⎣⎦14.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-201815.下列各组函数表示同一函数的是( ) A.()f x =2()f x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()21f x x=-与()11g x x x =+⋅- D .()1f x x 与2()1x g x x=-二、填空题16.已知定义在R 上的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,则使不等式(1)0f x x+≤成立的x 的取值范围是_________. 17.已知函数()y f x =是定义域为R 的奇函数,满足()()11f x f x -=+,若()11f =,则()()()()12350f f f f +++⋯+=__________.18.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.19.研究函数22())a x f x a b c -=<<<,得到如下命题:①此函数图象关于y 轴对称;②此函数存在反函数;③此函数在()0,a 上为增函数;④此函数有最大值ab c+和最小值0; 你认为其中正确的是_______(写出所有正确的编号).20.已知函数246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,则()()2f f -=______. 21.如果函数f (x )=(2)1,1,1xa x x a x -+<⎧⎨≥⎩满足对任意12x x ≠,都有()()1212f x f x x x -->0成立,那么实数a 的取值范围是________.22.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:①()f x 是以2为周期的函数;②()0f 是函数的最大值;③()f x 在[]2,3上是减函数;④()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)23.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:(1)()0f 是函数的最大值;(2)()f x 的图像关于点()1,0P 对称;(3)()f x 在[]2,3上是减函数;(4)()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)24.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.25.已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 2﹣5x ,则f (x ﹣1)>f (x )的解集为_____.26.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[8,10]单调递增;④若方程()f x m =在[6,2]--上的两根为1x 、2x ,则128.x x +=- 以上命题中所有正确命题的序号为___________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题知函数()f x 图象关于直线1x =对称,在区间()1,+∞上单调递增,故15(2)(3)22b f a f f c f ⎛⎫⎛⎫=<=-=<= ⎪ ⎪⎝⎭⎝⎭,所以b a c <<.【详解】解:因为当121x x <<时,()()()21210f x f x x x ⎡⎤-->⎣⎦恒成立, 所以函数()f x 在区间()1,+∞上单调递增,由于函数(1)f x +是偶函数,故函数(1)f x +图象关于y 轴对称, 所以函数()f x 图象关于直线1x =对称, 所以1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,由于5232<<,函数()f x 在区间()1,+∞上单调递增, 所以15(2)(3)22b f a f f c f ⎛⎫⎛⎫=<=-=<= ⎪ ⎪⎝⎭⎝⎭. 故选:A. 【点睛】本题解题的关键在于根据题意得函数()f x 图象关于直线1x =对称,在区间()1,+∞上单调递增,再结合函数对称性与单调性比较大小即可,考查化归转化思想与数学运算求解能力,是中档题.2.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=- ∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.3.C解析:C 【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求.因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C. 【点睛】关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.4.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=, ()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩, 解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点: 若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.5.C解析:C求导判断函数()312xx f x x x e e=-+-+的单调性,再利用定义判断函数的奇偶性,根据单调性与奇偶性求解即可. 【详解】根据题意,()2132xxf x x e e '=-+--,因为当且仅当0x =时,()213220x x f x x e e -'=-+-≤-=,所以函数()f x 在R 上单调递减;又()3311()220x xx x f x f x x x e x x e e e---+=-++-+-+=,所以函数()f x 为奇函数,()()2120f a f a -+≤,则()()212f a f a -≤-,因为函数()f x 为奇函数,()()212f a f a -≤-,又因为函数()f x 在R 上单调递减,所以212a a -≥-,可得1a ≤-或12a ≥. 故选:C. 【点睛】对于求值或范围的问题,一般先利用导数得出区间上的单调性,再利用定义判断奇偶性,再利用其单调性脱去函数的符号“f ”,转化为解不等式组的问题,若()f x 为偶函数,则()()()f x f x f x -==.6.D解析:D 【分析】根据定义依次判断即可求出. 【详解】 对于①,()12312422x y x x -==----,则()()3212y f x x=+--=-是奇函数,故函数关于()2,1-对称; 对于②,()1212y f x x x x =+-=+是奇函数,故函数关于()2,1对称; 对于③,()321y f x x x =--=-是奇函数,故函数关于()2,1-对称;对于④,22334421121222x x x x x y x x x x -+-++-+===-++---,则()121y f x x x=+-=+是奇函数,故函数关于()2,1对称. 故有相同对称中心的一组是②和④.【点睛】关键点睛:本题考查函数对称性的判断,解题的关键是能根据解析式化简整理,正确利用对称的定义进行判断,能根据解析式整理出奇函数特征.7.C解析:C 【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C 【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.8.D解析:D 【分析】由题知函数()f x 的图象关于直线4x =对称,则有()f x 在[4,)+∞上单调递增,且有(6)(2)3f f ==,再利用单调性解不等式即可得结果.【详解】因为(4)f x +是偶函数,所以函数()f x 的图象关于直线4x =对称,则(6)(2)3f f ==. 因为()f x 在(,4]-∞上单调递减,所以()f x 在[4,)+∞上单调递增, 故(24)3f x -<等价于224x <-6<,解得35x <<. 故选:D 【点睛】关键点睛:本题的关键是能得出函数()f x 的图象关于直线4x =对称,进而判断出函数的单调性来,要求学生能够熟悉掌握函数性质的综合应用.9.C解析:C 【分析】根据0x >时()()0f x f x x'+>可得:()()0xf x f x '+>;令()()g x xf x =可得函数在()0,∞+上单调递增;利用奇偶性的定义可证得()g x 为偶函数,则()g x 在(),0-∞上单调递减;将已知不等式变为()()231g x g x >-,根据单调性可得自变量的大小关系,解不等式求得结果. 【详解】当0x >时,()()0f x f x x'+> ()()0xf x f x '∴+>令()()g x xf x =,则()g x 在()0,∞+上单调递增()f x 为奇函数 ()()()()g x xf x xf x g x ∴-=--== ()g x ∴为偶函数则()g x 在(),0-∞上单调递减()()()2213310xf x x f x ∴+-->等价于()()231g x g x >-可得:231x x >-,解得:115x << 本题正确选项:C 【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.10.A解析:A 【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围. 【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩,当()212f x x ax a =+-在[)2,+∞上单调递增时,22a-≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a≤,所以0a ≤,且()()12224f f ==,所以[]4,0a ∈-, 故选:A. 【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤: (1)先分析每一段函数的单调性并确定出参数的初步范围; (2)根据单调性确定出分段点处函数值的大小关系; (3)结合(1)(2)求解出参数的最终范围.11.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()f x =所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x x-==-=-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;12.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.13.D解析:D 【分析】先判断()f x 是偶函数且在0,上递减,原不等式转化为31x x ≥-,再解绝对值不等式即可. 【详解】()()()211221133111log 13log 131313x x xxe e e e xxf x x x ---⎛⎫=+++=+++ ⎪++⎝⎭,()121311log 1,,313x xe e xy x y y -⎛⎫=+== ⎪+⎝⎭在0,上都递减所以()f x 在0,上递减,又因为()()()()121311log 1313x xe e xf x x f x ----⎛⎫-=+-++= ⎪+⎝⎭,且()f x 的定义域为R ,定义域关于原点对称, 所以()f x 是偶函数, 所以()()()()313131f x f x f x f x x x ≤-⇔≤-⇔≥-,可得113142x x x x -≤-≤⇒≤≤,x 的取值范围是11,42⎡⎤⎢⎥⎣⎦, 故选:D. 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.14.B解析:B 【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=, 所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=.故选:B . 【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.15.B解析:B 【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解. 【详解】对于A 中,函数()f x =R ,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数; 对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数. 故选:B. 【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.二、填空题16.【分析】先由定义域为R 的偶函数在区间内单调递减且画出的草图结合图象对进行等价转化解不等式即可【详解】由题意可知在区间内为增函数函数的图象可看作是由的图象向左平移1个单位长度得到的作出和的大致图象如图 解析:[)()2,00,-⋃+∞【分析】先由定义域为R 的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,画出()f x 的草图,结合图象对(1)0f x x+≤进行等价转化,解不等式即可. 【详解】由题意可知()f x 在区间(),0-∞内为增函数,函数()1y f x =+的图象可看作是由()y f x =的图象向左平移1个单位长度得到的,作出()y f x =和()1y f x =+的大致图象,如图所示.不等式(1)0f x x+≤可化为: ()010x f x <⎧⎨+≥⎩,当0x <时()10f x +≥,观察图象,得20x -≤<; ()010x f x >⎧⎨+≤⎩,当0x >时()10f x +≤,观察图象,得0x >; 所以不等式的解集为[)()2,00,-⋃+∞ 故答案为:[)()2,00,-⋃+∞. 【点睛】常见解不等式的类型:(1)解一元二次不等式用图象法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.17.1【分析】据题意分析可得则有即函数是周期为4的周期函数结合奇函数的性质及周期可求【详解】因为所以所以即函数是周期为4的周期函数所以所以原式等于故答案为:【点睛】方法点睛:函数在定义域R 上满足可知函数解析:1 【分析】据题意,分析可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,结合奇函数的性质及周期可求. 【详解】因为()()11f x f x -=+, 所以(2)()()f x f x f x +=-=-,所以(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数.所以()()()33411f f f f =-=-=-(),(4)(0)(2)0f f f ===, (1)(2)(3)(4)0f f f f +++=,所以原式等于()()()12(123(4))(49)(50)(49)(50)(1)(2)1f f f f f f f f f f +++++=+=+=故答案为:1 【点睛】方法点睛:函数在定义域R 上满足()()f a x f a x +=-,可知函数图象关于x a =对称,如果同时函数为奇函数,且关于直线x a =对称,可推出函数为周期函数.18.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可. 【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+, 又因为函数()f x 是定义域为R 的奇函数, 所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩.【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值; (2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.19.①④【分析】直接利用函数的定义域和函数的奇偶性判断①②进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④【详解】解:函数由于整理得则:由于函数为偶函数函数的图象关于y 轴对解析:①④ 【分析】直接利用函数的定义域和函数的奇偶性判断①②,进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④. 【详解】解:函数22())a x f x a b c -=<<<,由于220a x -≥,整理得a x a -≤≤.则:2222()||||a x a x f x x b x c b c--==++-+. 由于函数为偶函数,函数的图象关于y 轴对称,所以函数不存在反函数,存在反函数的函数的前提该函数具有单调性.故①正确②错误.因为22y a x =-在()0,a 上为减函数,所以()f x 在()0,a 上为减函数,故故③错误; 可知()f x 在[],0a -单调递增,()0,a 单调递减,且为偶函数,则()f x 在0x =出取得最大值ab c+,在x a =±处取得最小值0,故④正确. 故答案为:①④. 【点睛】本题考查函数性质的应用,属于基础题.20.11【分析】用分段函数的解析式先求出从而可得的值【详解】解:∵且∴∴故答案为:【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对抽象思维解析:11 【分析】用分段函数的解析式先求出()2f - ,从而可得()()2f f -的值.【详解】解:∵ 246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,且20-<, ∴ ()222log 10f -=->= ∴ ()()()42116111f f f -==++=. 故答案为:11. 【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.21.【分析】先由条件判断出在R 上是增函数所以需要满足和单调递增并且在处对应的值大于等于对应的值解出不等式组即可【详解】对任意都有>0所以在R 上是增函数所以解得故实数a 的取值范围是故答案为:【点睛】本题考解析:3,22⎡⎫⎪⎢⎣⎭【分析】先由条件判断出()y f x =在R 上是增函数,所以需要满足(2)1y a x =-+和xy a = 单调递增,并且在1x =处xy a =对应的值大于等于(2)1y a x =-+对应的值,解出不等式组即可. 【详解】对任意12x x ≠,都有()()1212f x f x x x -->0,所以()y f x =在R 上是增函数,所以201(2)11a a a a->⎧⎪>⎨⎪-⨯+≤⎩,解得322a ≤<,故实数a 的取值范围是3,22⎡⎫⎪⎢⎣⎭.故答案为:3,22⎡⎫⎪⎢⎣⎭.【点睛】本题考查含有参数的分段函数根据单调性求参数范围问题,需要满足各部分单调并且在分段处的函数值大小要确定,属于中档题.22.③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:所以函数是以4为周期的函数故①错误;偶函数在上是减函数在上是增函数在上最小值为是以4为周期的函数是函数的最小值故②错误;在上是减解析:③④ 【分析】根据函数的周期性及对称性判断各个选项即可得解; 【详解】 解:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=,所以函数()f x 是以4为周期的函数,故①错误;偶函数()f x 在[2-,0]上是减函数,()f x ∴在[0,2]上是增函数,∴在[2-,2]上,最小值为(0)f ,()f x 是以4为周期的函数,(0)f ∴是函数的最小值,故②错误;()f x 在[2-,0]上是减函数,()f x ∴在[2,4]上是减函数,故③正确; (2)()(2)f x f x f x -+=--=+,()f x ∴的图象关于直线2x =对称,即④正确.故答案为:③④. 【点睛】本题考查函数的周期性,偶函数在对称区间上单调性相反这一结论,考查学生分析解决问题的能力,属于中档题.23.(2)(3)(4)【分析】(1)利用定义在R 上的偶函数在上是减函数即可判断;(2)根据偶函数的定义和条件即可判断;(3)利用函数的周期为4在-20上是减函数即可判断;(4)利用可得的图象关于直线对称解析:(2)(3)(4) 【分析】(1)利用定义在R 上的偶函数()f x 在[]2,0-上是减函数,即可判断; (2)根据偶函数的定义和条件()()2f x f x +=-,即可判断; (3)利用函数的周期为4,()f x 在[-2,0]上是减函数,即可判断;(4)利用()()()22f x f x f x -+=--=+,可得()f x 的图象关于直线2x =对称,即可判断. 【详解】(1)∵定义在R 上的偶函数()f x 在[]2,0-上是减函数, 故()()20f f ->,()0f 不可能是函数的最大值,故错; (2)由定义在R 上的偶函数()f x 得()()f x f x -=, 又()()2f x f x +=-,故()()20f x f x ++-=,即图象关于()10,对称,故正确; (3)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=, 故()f x 为周期函数,且4为它的一个周期,由在[20]-,上是减函数,可得()f x 在[2]4,上是减函数,故正确; (4)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=, 又()()f x f x -=,故()()4f x f x +=-, 即图象关于直线2x =对称,故正确. 故答案为:(2)(3)(4). 【点睛】本题主要考查了抽象函数的函数的奇偶性、周期性和对称性,考查了转化思想,属于中档题.24.(-22)【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<0的解为解析:(-2,2) 【详解】∵函数f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x <2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).25.【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数和的解析式在同一坐标系中做出和的图像求出交点的坐标根据不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的 解析:{23}x x -<<【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数()f x 和()1f x -的解析式,在同一坐标系中做出()f x 和()1f x -的图像,求出交点的坐标,根据不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由图示可得出解集.【详解】当0x <时, 0x ->,所以 ()()22()55f x x x x x -=--⨯-=+, 又f (x )是R 上的奇函数,所以 2()()5f x f x x x =--=--,所以225,0()5,0x x x f x x x x ⎧-≥=⎨--<⎩,所以()()()()22151,1(1)151,1x x x f x x x x ⎧---≥⎪-=⎨----<⎪⎩,即2276,1(1)34,1x x x f x x x x ⎧-+≥-=⎨--+<⎩, 做出()f x 和()1f x -的图像如下图所示,不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合, 由22576,x x x x -=-+得3,x =所以()3,6A -,由22534x x x x --=--+得2x =-,所以()2,6B -, 所以不等式(1)()f x f x ->的解集为{23}x x-<<. 故答案为:{23}x x -<<.【点睛】本题考查根据函数的奇偶性求得对称区间上的解析式,图像的平移,以及运用数形结合的思想求解不等式,关键在于综合熟练地运用函数的奇偶性,解析式的求法,图像的平移,以及如何在图像上求出不等式的解集等一些基本能力,属于中档题.26.①②④【分析】先求出从而得到为周期函数再根据函数为偶函数可逐项判断命题的正误【详解】令得故又函数是偶函数故;根据①可得则函数的周期是4由于偶函数的图象关于轴对称故也是函数图象的一条对称轴;根据函数的解析:①②④ 【分析】先求出()20f =,从而得到()f x 为周期函数,再根据函数为偶函数可逐项判断命题的正误. 【详解】令2x =-,得()()()222f f f =-+,故()20f =. 又函数()f x 是偶函数,故()20f =;根据①可得()()4f x f x +=,则函数()f x 的周期是4,由于偶函数的图象关于y 轴对称,故4x =-也是函数()y f x =图象的一条对称轴; 根据函数的周期性可知,函数()f x 在[]8,10上单调递减,③不正确; 由于函数()f x 的图象关于直线4x =-对称,故如果方程()f x m =在区间[]6,2-- [-6,-2]上的两根为12,x x ,则1242x x +=-,即128x x +=-.故正确命题的序号为①②④. 故答案为:①②④.. 【点睛】本题考查函数的奇偶性、周期性和单调性,注意偶函数在对称两侧区间上的单调性相反,具有周期性的偶函数的图象的对称轴有无数条,本题属于基础题.。
第一、二章综合能力检测题本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.点C 在线段AB 上,且AC →=25AB →,若AC →=λBC →,则λ等于( ) A.23 B.32 C .-23D .-32[答案] C[解析] 由AC →=25AB →知,|AC →BC →|=,且方向相反,∴AC→=-23BC →,∴λ=-23.2.要想得到函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象,只须将y =cos x 的图象( )A .向右平移π3个单位 B .向左平移π3个单位 C .向右平移5π6个单位 D .向左平移5π6个单位[答案] C[解析] ∵y =sin ⎝ ⎛⎭⎪⎫x -π3=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x -π3=cos ⎝ ⎛⎭⎪⎫5π6-x =cos ⎝ ⎛⎭⎪⎫x -5π6,∴将y =cos x 的图象向右移5π6个单位可得到 y =sin ⎝ ⎛⎭⎪⎫x -π3的图象. 3.设e 1与e 2是不共线向量,a =k e 1+e 2,b =e 1+k e 2,若a ∥b 且a ≠b ,则实数k 的值为( )A .1B .-1C .0D .±1 [答案] B[解析] ∵a ∥b ,∴存在实数λ,使a =λb (b ≠0), ∴k e 1+e 2=λ(e 1+k e 2),∴(k -λ)e 1=(λk -1)e 2,∵e 1与e 2不共线,∴⎩⎪⎨⎪⎧k -λ=0λk -1=0,∴λ=k =±1,∵a ≠b ,∴k ≠1.[点评] e 1与e 2不共线,又a ∥b ,∴可知1k =k1,∴k =±1,∵a ≠b ,∴k =-1.一般地,若e 1与e 2不共线,a =m e 1+n e 2,b =λe 1+μe 2,若a ∥b ,则有m λ=n μ.4.若sin θ=m ,|m |<1,-180°<θ<-90°,则tan θ等于( )A.m 1-m 2 B .-m 1-m 2 C .±m1-m2 D .-1-m 2m [答案] B[解析] ∵-180°<θ<-90°, ∴sin θ=m <0,tan θ>0, 故可知tan θ=-m1-m2. 5.△ABC 中,AB →·BC →<0,BC →·AC →<0,则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 [答案] C[解析] 由AB →·BC →<0知,∠ABC 为锐角;由BC →·AC →<0知∠ACB 为钝角,故选C.6.设α是第二象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] C[解析] ∵α为第二象限角,∴α2为第一或三象限角,∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2≤0,∴选C.7.已知点A (2,-1),B (4,2),点P 在x 轴上,当P A →·PB →取最小值时,P 点的坐标是( )A .(2,0)B .(4,0)C.⎝⎛⎭⎪⎫103,0 D .(3,0) [答案] D[解析] 设P (x,0),则P A →=(2-x ,-1),PB →=(4-x,2),P A →·PB →=(2-x )(4-x )-2=x 2-6x +6=(x -3)2-3,当x =3时,取最小值-3,∴P (3,0).8.O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA→|,则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形 [答案] B[解析] ∵|OB→-OC →|=|OC →+OB →-2OA →|,∴|CB →|=|AB →+AC →|,由向量加法的平行四边形法则知,以AB 、AC 为邻边的平行四边形两对角线长度相等,∴AB→⊥AC →. 9.如图是函数f (x )=A sin ωx (A >0,ω>0)一个周期的图象,则f (1)+f (2)+f (3)+f (4)+f (5)+f (6)的值等于( )A. 2B.22 C .2+ 2 D .2 2 [答案] A[解析] 由图知:T =8=2πω,∴ω=π4, 又A =2,∴f (x )=2sin π4x ,∴f (1)+f (2)+f (3)+f (4)+(5)+f (6)=2sin π4+sin 2π4+sin 3π4+sin 4π4+sin 5π4+sin 6π4=2sin 3π4= 2.[点评] 观察图象可知f (x )的图象关于点(4,0)中心对称,故f (3)+f (5)=0,f (2)+f (6)=0,又f (4)=0,故原式=f (1)= 2.10.已知y =A sin(ωx +φ)在同一周期内,x =π9时有最大值12,x =4π9时有最小值-12,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫x 3-π6B .y =12sin ⎝ ⎛⎭⎪⎫3x +π6C .y =2sin ⎝ ⎛⎭⎪⎫3x -π6D .y =12sin ⎝ ⎛⎭⎪⎫3x -π6 [答案] B[解析] 由条件x =π9时有最大值12,x =4π9时有最小值-12可知,A =12,T 2=4π9-π9,∴T =2π3,∴ω=3,∴y =12sin(3x +φ),将⎝ ⎛⎭⎪⎫π9,12代入得,12=12sin ⎝ ⎛⎭⎪⎫π3+φ,∴π3+φ=2k π+π2(k ∈Z ),∴φ=2k π+π6, 取k =0知选B.11.设点O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为( )A .2B .1 C.12 D.13 [答案] B[解析] 如图,以OA 、OB 为邻边作▱OADB ,则OD →=OA →+OB →,结合条件OA→+OB →+2OC →=0知,OD →=-2OC →,设OD 交AB 于M ,则OD →=2OM →,∴OM →=-OC →, 故O 为CM 的中点,∴S △AOC =12S △CAM =14S △ABC =14×4=1.12.已知sin α+cos α=713 (0<α<π),则tan α=( ) A .-512 B .-125 C.512D .-125或-512 [答案] B[解析] 解法一:∵sin α+cos α=713,0<713<1,0<α<π,∴π2<α<π, ∴sin α>0,cos α<0,且|sin α|>|cos α|, ∴tan α<0且|tan α|>1,故选B.解法二:两边平方得sin αcos α=-60169,∴tan αtan 2α+1=-60169,∴60tan 2α+169tan α+60=0, ∴(12tan α+5)(5tan α+12)=0,∴tan α=-125或-512,∵0<α<π,sin α+cos α=713>0,∴tan α=-125.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知扇形的圆心角为72°,半径为20cm ,则扇形的面积为________.[答案] 8πcm 2[解析] ∵72°=π180×72=2π5,∴l =2π5×20=8π, S =12l ·r =12×8π×20=80π(cm 2).14.已知a =(3,4),b =(2,m )且a 与b 夹角为锐角,则m 的取值范围是________.[答案] m >-32且m ≠83[解析] a ·b =6+4m >0,∴m >-32, 又当a 与b 同向时,23=m 4,∴m =83, 故m >-32且m ≠83.15.集合A ={x |k π-π4<x <k π+π4,k ∈Z },B ={x |sin x >12},则A ∩B =________.[答案] {x |π6+2k π<x <π4+2k π,k ∈Z }∪{x |3π4+2k π<x <5π6+2k π,k ∈Z }[解析] B ={x |π6+2k π<x <5π6+2k π,k ∈Z }. 如图可求A ∩B.16.已知θ为第三象限角,1-sin θcos θ-3cos 2θ=0,则5sin 2θ+3sin θcos θ=________.[答案] 265[解析] ∵1-sin θcos θ-3cos 2θ=0, ∴sin 2θ-sin θcos θ-2cos 2θ=0, ∴(sin θ-2cos θ)(sin θ+cos θ)=0, ∵θ为第三象限角,∴sin θ+cos θ<0, ∴sin θ=2cos θ,∴tan θ=2,∴5sin 2θ+3sin θcos θ=5tan 2θ+3tan θtan 2θ+1=265.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)已知cos ⎝⎛⎭⎪⎫θ+π2=-12,求cos(θ+π)sin ⎝ ⎛⎭⎪⎫π2-θ[]cos(3π-θ)-1+cos(θ-2π)cos(-θ)·cos(π-θ)+sin ⎝⎛⎭⎪⎫θ+5π2的值. [解析] ∵cos ⎝⎛⎭⎪⎫θ+π2=-12,∴sin θ=12,原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+11-cos θ=2sin 2θ=8.18.(本题满分12分)已知A (-1,2),B (2,8). (1)若AC →=13AB →,DA →=-23AB →,求CD→的坐标; (2)设G (0,5),若AE→⊥BG →,BE →∥BG →,求E 点坐标. [解析] (1)∵AB →=(3,6),AC →=13AB →=(1,2), DA →=-23AB →=(-2,-4), ∴C (0,4),D (1,6),∴CD→=(1,2). (2)设E (x ,y ),则AE→=(x +1,y -2),BE →=(x -2,y -8),∵BG →=(-2,-3),AE→⊥BG →,BE →∥BG →, ∴⎩⎪⎨⎪⎧-2(x +1)-3(y -2)=0-3(x -2)+2(y -8)=0,∴⎩⎪⎨⎪⎧x =-2213y =3213.∴E 点坐标为⎝ ⎛⎭⎪⎫-2213,3213.19.(本题满分12分)在▱ABCD 中,点M 在AB 上,且AM =3MB ,点N 在BD 上,且BN→=λBD →,C 、M 、N 三点共线,求λ的值. [证明] 设AB →=e 1,AD →=e 2,则BD →=e 2-e 1, BN →=λBD →=λ(e 2-e 1),MB →=14AB →=14e 1,BC →=AD →=e 2,∴MC →=MB →+BC → =14e 1+e 2,MN →=MB →+BN →=14e 1+λ(e 2-e 1)=λe 2+⎝⎛⎭⎪⎫14-λe 1,∵M 、N 、C 共线,∴MN→与MC →共线, ∵e 1与e 2不共线,∴14-λ14=λ1,∴λ=15.20.(本题满分12分)是否存在实数a ,使得函数y =sin 2x +a cos x -1+58a 在闭区间⎣⎢⎡⎦⎥⎤0,π2上最大值为1?若存在,求出对应的a 值,若不存在,说明理由.[解析] y =-cos 2x +a cos x +5a8=-(cos x -a 2)2+a 24+5a8, ∵0≤x ≤π2,∴0≤cos x ≤1, ∵最大值为1, ∴(Ⅰ)⎩⎪⎨⎪⎧0≤a 2≤1a 24+5a 8=1或(Ⅱ)⎩⎪⎨⎪⎧a 2<05a8=1或(Ⅲ)⎩⎪⎨⎪⎧a 2>1-1+a +5a8=1,由(Ⅰ)解得a =89-54,(Ⅱ)(Ⅲ)无解, ∴a =89-54.[点评] 此类问题一般把cos x (或sin x )看成未知数整理为二次函数,然后由x 的范围,得出cos x (或sin x )的取值范围A 后,分为①A 在对称轴左侧(或右侧),用单调性讨论;②对称轴在A 内,在顶点处取得最值.试一试解答下题:是否存在实数λ,使函数f (x )=-2sin 2x -4λcos x +1⎝⎛⎭⎪⎫0≤x ≤π2的最小值是-32?若存在,求出对应的λ值,若不存在,试说明理由.答案为λ=58或12. 21.(本题满分12分)(1)角α的终边经过点P (sin150°,cos150°),求tan α. (2)角α的终边在直线y =-3x 上,求sin α、cos α. [解析] (1)∵P ⎝ ⎛⎭⎪⎫12,-32,∴tan α=-3212=- 3.(2)在角α终边上任取一点P (x ,y ),则y =-3x , P 点到原点距离r =x 2+y 2=10|x |,当x >0时,r =10x ,∴sin α=y r =-3x 10x =-31010,cos α=x r =x 10x=1010,当x <0时,r =-10x ,∴sin α=y r =31010, cos α=x r =-1010.22.(本题满分14分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数?[解析] (1)由图知A =3,34T =4π-π4=15π4,∴T =5π,∴ω=25,∴f (x )=3sin ⎝ ⎛⎭⎪⎫25x +φ, ∵过(4π,-3),∴-3=3sin ⎝ ⎛⎭⎪⎫8π5+φ, ∴8π5+φ=2k π-π2,∴φ=2k π-21π10, ∵|φ|<π2,∴φ=-π10,∴f (x )=3sin ⎝ ⎛⎭⎪⎫25x -π10. (2)由2k π+π2≤25x -π10≤2k π+3π2得, 5k π+3π2≤x ≤5k π+4π (k ∈Z ),∴函数f (x )的单调减区间为⎣⎢⎡⎦⎥⎤5k π+3π2,5k π+4π (k ∈Z ).函数f (x )的最大值为3,取到最大值时x 的集合为 {x |x =5k π+3π2,k ∈Z }.(3)解法一:f (x )=3sin ⎝⎛⎭⎪⎫2x 5-π10=3cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x 5-π10=3cos ⎝ ⎛⎭⎪⎫2x 5-3π5 =3cos ⎣⎢⎡⎦⎥⎤25⎝⎛⎭⎪⎫x -3π2,故至少须左移3π2个单位才能使所对应函数为偶函数.解法二:f (x )=3sin ⎝ ⎛⎭⎪⎫2x 5-π10的图象的对称轴方程为25x -π10=k π+π2,∴x =5k π2+3π2,当k =0时,x =3π2,k =-1时,x =-π,故至少左移3π2个单位.解法三:函数f (x )在原点右边第一个最大值点为2x 5-π10=π2,∴x =3π2,把该点左移到y 轴上,需平移3π2个单位.解法四:观察图象可知,欲使函数图象左移后为偶函数,由其周期为5π可知,须把⎝ ⎛⎭⎪⎫π4,0点变为⎝ ⎛⎭⎪⎫-5π4,0或把点(4π,-3)变为⎝ ⎛⎭⎪⎫5π2,-3等,可知应左移3π2个单位.。
一、选择题1.已知0.31()2a =,12log 0.3b =,0.30.3c =,则a b c ,,的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<2.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<3.设函数21,2()7,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭5.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32D .526.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式(21)(3)f x f x ->的x 的解集是( )A .31,5⎛⎫- ⎪⎝⎭B .3(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .11,5⎛⎫- ⎪⎝⎭7.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦8.已知函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数,且11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦,则(1)f 的值为( ) A .1B .2C .3D .49.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-⋃+∞10.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-111.函数f (x )的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 12.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412313.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则b a -的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .70,4⎛⎤ ⎥⎝⎦C .90,8⎛⎤ ⎥⎝⎦D .150,8⎛⎤⎥⎝⎦14.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-2018 15.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( )A .2x y =B .2yx C .2log y x =D .21y x =+二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.18.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________19.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.20.已知函数2()2f x x x =-,()2(0)g x ax a =+>,若对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,则实数a 的取值范围是_____.21.函数()21log f x x=-___________.22.以下结论正确的是____________(1)如果函数()y f x =在区间(,)a b 上是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点;(2)命题:0,1xp x e ∀>>都有,则00:0,1x p x e⌝∃≤≤使得;(3)空集是任何集合的真子集; (4)“a b >”是“22a b >的充分不必要条件” (5)已知函数(23)43,1(),1xa x a x f x a x +-+≥⎧=⎨<⎩在定义域上是增函数,则实数a 的取值范围是(1,2]23.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m ,则f (﹣1)=_______. 24.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___. 25.定义在()0,∞+上的函数()f x ,满足对于任意正实数x ,y 恒有()()()f xy f x f y =+,且()31f =,如果对任意的1x ,()20,x ∈+∞,当12x x ≠时,都有()()()12120x x f x f x -⋅->⎡⎤⎣⎦,则不等式()()82f x f x +-<的解集是_________.26.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[8,10]单调递增;④若方程()f x m =在[6,2]--上的两根为1x 、2x ,则128.x x +=- 以上命题中所有正确命题的序号为___________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由指数函数的性质可得112a <<,由对数函数的性质可得1b >,由幂函数的性质可得0.30.310.32⎛⎫< ⎪⎝⎭,从而可得结果. 【详解】∵0.31()2a =,12log 0.3b = 0.30.3c =∴10.3111112222a ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 11221log 0.3log 12b =>=, 0.30.310.32c ⎛⎫=< ⎪⎝⎭,∴c a b << 故选:B 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.2.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=, ()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 3.D解析:D【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<. 故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.5.C解析:C【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求. 【详解】因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C. 【点睛】关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.6.A解析:A 【分析】根据题意,分析可得()f x 的图象关于直线1x =对称,结合函数的单调性可得(21)(3)f x f x ->等价于|22||31|x x ->-,两边平方解得x 的取值范围,即可得答案.【详解】因为函数(1)f x +为偶函数,所以(1)y f x =+的图象关于直线0x =对称, 因为(1)y f x =+的图象向右平移1个单位得到()y f x =的图象, 则()y f x =的图象关于直线1x =对称, 又因为()f x 在区间[1,)+∞上单调递增, 所以()f x 在区间(],1-∞上单调递减,所以()f x 的函数值越大,自变量与1的距离越大, ()f x 的函数值越小,自变量与1的距离越小,所以不等式(21)(3)f x f x ->等价于|22||31|x x ->-, 两边平方()()()()2222315310x x x x ->-⇒-+<, 解得315x -<<, 即不等式的解集为31,5⎛⎫- ⎪⎝⎭. 故选:A . 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.7.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】 根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦,所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =, 故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤,故选:D.8.A解析:A 【分析】采用赋值法,在11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦中,分别令1x =和1x a =+,联立两个式子,根据函数的单调性可解. 【详解】解:根据题意知,设(1)0f a =≠, 令1x =,则[]1(1)(1)12f f f +=,则()112af a +=,()112f a a+=, 令1x a =+,则11(1))21(1f a f f a a ⎡⎤+++=⎢⎥⎣⎦+, 所以()11121f a f a a ⎛⎫+== ⎪+⎝⎭, 又因为函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数, 所以11121a a +=+,2210a a --=,所以1a =或12a =-(舍去),()11f =.故选:A. 【点睛】思路点睛:抽象函数求函数值问题一般是换元法或者赋值法,再结合函数的性质解方程即可.9.C解析:C 【分析】先求得()f x 的值域,根据题意可得()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,分0,0a a ><两种情况讨论,根据()g x 的单调性及集合的包含关系,即可求得答案.【详解】因为2()(2)2,[0,2]f x x x =--+∈,所以min max ()(0)1()(2)2f x f f x f ==⎧⎨==⎩,即()f x 的值域为[1,2],因为对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,所以()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,当0a >时,()g x 在[1,1]-上为增函数,所以(1)()(1)g g x g -≤≤,所以()[1,1]g x a a ∈---,所以1112a a --≤⎧⎨-≥⎩,解得3a ≥,当0a <时,()g x 在[1,1]-上为减函数,所以(1)()(1)g g x g ≤≤-,所以()[1,1]g x a a ∈---所以1112a a -≤⎧⎨--≥⎩,解得3a ≤-,综上实数a 的取值范围是(,3][3,)-∞-+∞,故选:C 【点睛】解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.10.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.11.C解析:C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合.12.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.13.B解析:B 【分析】根据分段函数的单调性以及()()()f a f b a b =<,可得11,128a b ≤<≤≤且122log 2b a +=,令122log 2b a k +==,则24k <≤,然后用k 表示,a b ,再作差,构造函数,并利用单调性可求得结果. 【详解】因为函数()f x 在1[,1)8上递减,在[1,2]上递增,又()()()f a f b a b =<,所以11,128a b ≤<≤≤,且122log 2b a +=,令122log 2b a k +==,则24k <≤, 所以212k a -⎛⎫= ⎪⎝⎭,2log b k =,所以221log 2k b a k -⎛⎫-=- ⎪⎝⎭,设函数221()log 2x g x x -⎛⎫=- ⎪⎝⎭,(2,4]x ∈,∵()g x 在(]2,4上单调递增, ∴(2)()(4)g g x g <≤,即70()4g x <≤, ∴70,4b a ⎛⎤-∈ ⎥⎝⎦,故选:B . 【点睛】关键点点睛:根据分段函数的单调性以及()()()f a f b a b =<得到11,128a b ≤<≤≤,且122log 2b a +=是解题关键.属于中档题.14.B解析:B 【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=, 所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=.故选:B . 【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.15.D解析:D【解析】根据基本初等函数的性质知,符合条件的是21y x =+,因为满足2()1()f x x f x -=+=,且在(0,)+∞上是增函数,故选D.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-,所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T=,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,所以()f x 在[0,2]上单调递减,而()10f =, 由偶函数得当(1,1)x ∈-时,()0f x >; 又()()()4f x f x f x +=-=可得周期4T =,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >; 于是()0f x >的解集为(2019,2021). 故答案为:(2019,2021) 【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解.18.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立,即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦. 故答案为:31,22⎡⎤-⎢⎥⎣⎦.【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.19.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩.【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可. 【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+, 又因为函数()f x 是定义域为R 的奇函数, 所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值; (2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.20.【分析】由题可知在区间上函数的值域为值域的子集从而求出实数的取值范围【详解】函数的图象开口向上对称轴为时的最小值为最大值为的值域为为一次项系数为正的一次函数在上单调递增时的最小值为最大值为的值域为对 解析:[3,)+∞【分析】由题可知,在区间[]1,2-上函数1()f x 的值域为2()g x 值域的子集,从而求出实数a 的取值范围. 【详解】函数()22f x x x =-的图象开口向上,对称轴为1x =,∴[]11,2x ∈-时,()f x 的最小值为(1)1f =-,最大值为(1)3f -=,1()f x 的值域为[1,3]-.()2(0)g x ax a =+>为一次项系数为正的一次函数,在[]1,2-上单调递增,∴[]11,2x ∈-时,()g x 的最小值为(1)2g a -=-+,最大值为(2)22g a =+,2()g x 的值域为[2,22]a a -++.对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,∴在区间[]1,2-上,函数1()f x 的值域为2()g x 值域的子集,∴212230a a a -+≤-⎧⎪+≥⎨⎪>⎩解得3a ≥ 故答案为:[3,)+∞. 【点睛】本题考查函数的值域,考查分析解决问题的能力,解题的关键是对“任意”、“存在”的正确理解,确定两个函数值域之间的关系.21.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题 解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可. 【详解】 因为()f x =所以21log 00x x ->⎧⎨>⎩,即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2), 故答案为:(0,2) 【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.22.(1)(5)【分析】利用零点存在定理可判断命题(1)的正误根据全称命题的否定可判断命题(2)的正误根据集合的包含关系可判断命题(3)的正误根据充分必要条件可判断命题(4)的正误根据函数的单调性求出参解析:(1)(5). 【分析】利用零点存在定理可判断命题(1)的正误,根据全称命题的否定可判断命题(2)的正误,根据集合的包含关系可判断命题(3)的正误,根据充分必要条件可判断命题(4)的正误,根据函数()y f x =的单调性求出参数a 的取值范围,可判断出命题(5)的正误. 【详解】对于命题(1),由零点存在定理可知,该命题正确;对于命题(2),由全称命题的否定可知,该命题不正确,应该是00:0,1x p x e ⌝∃>≤使得;;对于命题(3),空集是任何非空集合的真子集,但不是空集本身的真子集,该命题错误; 对于命题(4),取2a =,3b =-,则a b >,但22a b <,所以,“a b >”不是“22a b >”的充分不必要条件,该命题错误;对于命题(5),由于函数()y f x =在R 上是增函数,则()1230123143a a a a a ⎧+>⎪>⎨⎪≤+⨯-+⎩,解得12a <≤,该命题正确. 故答案为(1)(2)(5). 【点睛】本题考查命题真假的判断,考查零点存在定理、全称命题的否定、集合的包含关系、充分不必要条件的判断以及分段函数单调性,解题时应充分利用这些基础知识,意在考查学生对这些基础知识的掌握,属于中等题.23.【分析】由函数是上的奇函数求得得到当时函数再由即可求解【详解】由题意因为函数是上的奇函数则解得即当时函数又由故答案为:【点睛】本题主要考查了函数的奇偶性的应用以及函数值的求解其中解答中熟练应用函数的 解析:3-【分析】由函数()f x 是R 上的奇函数,求得1m =-,得到当0x ≥时,函数()221x f x x =+-,再由()()11f f -=-,即可求解. 【详解】由题意,因为函数()f x 是R 上的奇函数,则()002200f m =+⨯+=,解得1m =-,即当0x ≥时,函数()221xf x x =+-,又由()()111(2211)3f f -=-=-+⨯-=-.故答案为:3-. 【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中熟练应用函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.24.-1【解析】试题解析:-1 【解析】 试题因为2()y f x x =+是奇函数且(1)1f =,所以,则,所以.考点:函数的奇偶性.25.【分析】由对任意的当时都有可知该函数是单调增函数再结合定义域且将转化为两函数值的大小比较问题最终列出关于的不等式求解【详解】解:因为对于任意正实数恒有且可化为:因为对任意的当时都有故在上单调递增所以 解析:()8,9【分析】由“对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->”可知该函数是单调增函数,再结合“定义域、()()()f xy f x f y =+,且(3)1f =,将()(8)2f x f x +-<转化为两函数值的大小比较问题,最终列出关于x 的不等式求解.【详解】解:因为对于任意正实数x ,y 恒有()()()f xy f x f y =+,且(3)1f =, ()(8)2f x f x +-<可化为:[(8)](3)(3)(9)f x x f f f -<+=.因为对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->,故()f x 在(0,)+∞上单调递增,所以080(8)9x x x x >⎧⎪->⎨⎪-<⎩,解得89x <<.故答案为:(8,9). 【点睛】本题考查抽象函数的性质,此例主要是利用单调性研究不等式问题的解,属于中档题.26.①②④【分析】先求出从而得到为周期函数再根据函数为偶函数可逐项判断命题的正误【详解】令得故又函数是偶函数故;根据①可得则函数的周期是4由于偶函数的图象关于轴对称故也是函数图象的一条对称轴;根据函数的解析:①②④ 【分析】先求出()20f =,从而得到()f x 为周期函数,再根据函数为偶函数可逐项判断命题的正误. 【详解】令2x =-,得()()()222f f f =-+,故()20f =. 又函数()f x 是偶函数,故()20f =;根据①可得()()4f x f x +=,则函数()f x 的周期是4,由于偶函数的图象关于y 轴对称,故4x =-也是函数()y f x =图象的一条对称轴; 根据函数的周期性可知,函数()f x 在[]8,10上单调递减,③不正确; 由于函数()f x 的图象关于直线4x =-对称,故如果方程()f x m =在区间[]6,2-- [-6,-2]上的两根为12,x x ,则1242x x +=-,即128x x +=-.故正确命题的序号为①②④. 故答案为:①②④.. 【点睛】本题考查函数的奇偶性、周期性和单调性,注意偶函数在对称两侧区间上的单调性相反,具有周期性的偶函数的图象的对称轴有无数条,本题属于基础题.。
一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2C .0D .12.已知函数()1f x +是偶函数,当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a 、b 、c 的大小关系为( ) A .b a c << B .c b a << C .b c a <<D .a b c <<3.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-134.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<-D .(4)(0)(4)f f f <<-5.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-16.函数()21x f x x-=的图象大致为( )A .B .C .D .7.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x ⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭8.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A . B .C .D .9.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( )A .12B .1-C .±1D .12±10.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,211.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341 D .412312.已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞13.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(,3⎤-∞⎦D .)3,⎡+∞⎣14.下列各组函数表示同一函数的是( ) A .2()f x x =与2()()f x x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()21f x x =-与()11g x x x =+⋅- D .()1f x x 与2()1x g x x=-15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.17.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________. 18.函数24xy x =+的严格增区间是_____________. 19.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.20.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.21.函数()f x =___________.22.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.23.以下结论正确的是____________(1)如果函数()y f x =在区间(,)a b 上是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点;(2)命题:0,1xp x e ∀>>都有,则00:0,1x p x e⌝∃≤≤使得;(3)空集是任何集合的真子集; (4)“a b >”是“22a b >的充分不必要条件”(5)已知函数(23)43,1(),1xa x a x f x a x +-+≥⎧=⎨<⎩在定义域上是增函数,则实数a 的取值范围是(1,2]24.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知()()()22112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭_________【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值; (3)最后得出结果.2.A解析:A 【分析】推导出函数()f x 为()1,+∞上的增函数,且有()()11f x f x +=-,可得出52a f ⎛⎫= ⎪⎝⎭,进而可得出a 、b 、c 的大小关系. 【详解】当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦,则()()21f x f x >, 所以,函数()f x 为()1,+∞上的增函数, 由于函数()1f x +是偶函数,可得()()11f x f x +=-,1335112222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,53212>>>,因此,b a c <<. 故选:A. 【点睛】 思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.3.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.4.C解析:C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【详解】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.5.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.6.D解析:D【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.7.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩, 由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=, 可得11()(2)(4)24f x f x f x =+=+ 当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .8.A解析:A 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos 2f x x '=-,当0,3xπ⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即0fx所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C 故选:A 【点睛】本题主要考查了函数图像的识别,属于中档题.9.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.10.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.11.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.12.A解析:A 【分析】根据已知函数的解析式易判断出函数的奇偶性及单调性,结合单调性可将不等式(2)4()f x t f x +>可化为22x t x +>,将恒成立问题转化为最值问题后,易得答案.【详解】 解:||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立,即当[,2]x t t ∈+时,不等式22x t x +>恒成立即2x t <恒成立即22t t +<解得2t >故实数t 的取值范围是(2,)+∞故选:A【点睛】本题考查的知识点是函数奇偶性与单调性的综合应用,恒成立问题,其中分析出函数的单调性并将不等式(2)4()f x t f x +>可化为22x t x +>是解答的关键.13.C解析:C【分析】先解()3f t ≤,再由t 的范围求x 的范围.【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.14.B解析:B【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A 中,函数()f x =R ,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数;对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数.故选:B.【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.15.B解析:B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意; 对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误.【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩, ()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=, 故答案为:9.【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.17.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3- 【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-. 故答案为:(3,0)(1,3)-18.【分析】根据的解析式可得为奇函数当时不妨令x>0设根据对勾函数的性质可求得的单调减区间可得的单调增区间综合分析即可得答案【详解】因为定义域为R 所以即在R 上为奇函数根据奇函数的性质可得在y 轴两侧单调性解析:[]22-,【分析】根据()f x 的解析式,可得()f x 为奇函数,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x=+,根据对勾函数的性质,可求得()g x 的单调减区间,可得()f x 的单调增区间,综合分析,即可得答案.【详解】 因为2()4x y f x x ==+,定义域为R , 所以22()()()44x x f x f x x x ---===--++,即()f x 在R 上为奇函数, 根据奇函数的性质可得,()f x 在y 轴两侧单调性相同,当x =0时,()0y f x ==,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x =+, 根据对勾函数的性质可得,当02x <≤上单调递减,证明如下:在(0,2]上任取12,x x ,且12x x <, 则12121212124444()()()f x f x x x x x x x x x -=+-+=-+-=1212124()x x x x x x ⎛⎫-- ⎪⎝⎭, 因为1202x x <<≤,所以1212120,40,0x x x x x x -<-<>, 所以121212124()()()0x x f x f x x x x x ⎛⎫--=-> ⎪⎝⎭,即12()()f x f x >, 所以4()g x x x=+在(0,2]上为减函数,所以21()44x f x x x x==++在(0,2]上为增函数,当0x +→时,()0f x →,0x -→,()0f x →, 又(0)0f =,所以2()4x f x x =+在[0,2]为增函数 根据奇函数的性质,可得21()44x f x x x x ==++在[2,0)-也为增函数,所以()f x 在 []22-,上为严格增函数, 故答案为:[]22-,【点睛】解题的关键是熟练掌握函数的奇偶性、单调性,并灵活应用,结合对勾函数的性质求解,考查分析理解,计算证明的能力,属中档题.19.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=; 又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4.故答案为:{}0,1,3,4【点睛】关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解. 20.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.21.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可.【详解】因为()f x = 所以21log 00x x ->⎧⎨>⎩, 即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2),故答案为:(0,2)【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.22.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.23.(1)(5)【分析】利用零点存在定理可判断命题(1)的正误根据全称命题的否定可判断命题(2)的正误根据集合的包含关系可判断命题(3)的正误根据充分必要条件可判断命题(4)的正误根据函数的单调性求出参解析:(1)(5).【分析】利用零点存在定理可判断命题(1)的正误,根据全称命题的否定可判断命题(2)的正误,根据集合的包含关系可判断命题(3)的正误,根据充分必要条件可判断命题(4)的正误,根据函数()y f x =的单调性求出参数a 的取值范围,可判断出命题(5)的正误.【详解】对于命题(1),由零点存在定理可知,该命题正确;对于命题(2),由全称命题的否定可知,该命题不正确,应该是00:0,1x p x e ⌝∃>≤使得;;对于命题(3),空集是任何非空集合的真子集,但不是空集本身的真子集,该命题错误; 对于命题(4),取2a =,3b =-,则a b >,但22a b <,所以,“a b >”不是“22a b >”的充分不必要条件,该命题错误;对于命题(5),由于函数()y f x =在R 上是增函数,则()1230123143a a a a a ⎧+>⎪>⎨⎪≤+⨯-+⎩,解得12a <≤,该命题正确.故答案为(1)(2)(5).【点睛】本题考查命题真假的判断,考查零点存在定理、全称命题的否定、集合的包含关系、充分不必要条件的判断以及分段函数单调性,解题时应充分利用这些基础知识,意在考查学生对这些基础知识的掌握,属于中等题.24.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式.【详解】根据题意此人运动的过程分为三个时段,当0 2.5t ≤≤时,60s t =;当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】可令得出的值再代入可得答案【详解】解:令得解得故答案为【点睛】本题主要考查已知函数解析式求函数值的问题解析:15【分析】 可令1()2g x =,得出x 的值,再代入可得答案. 【详解】 解:令1()2g x =,得1122x -=,解得14x =. 221511()11164()[()]151124()416f fg -∴====. 故答案为15.【点睛】本题主要考查已知函数解析式求函数值的问题.。
一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2-B .ln 2C .0D .12.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞3.已知0.31()2a =,12log 0.3b =,0.30.3c =,则a b c ,,的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<4.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-135.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2xg x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤6.函数y x=的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[]0,1C .10,2⎡⎤⎢⎥⎣⎦D .[)0,+∞7.若定义在R 的奇函数()f x 在(],0-∞单调递减,则不等式()()20f x f x +-≥的解集为( ) A .(],2-∞B .(],1-∞C .[)1,+∞D .[)2,+∞8.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-19.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±10.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}{},x x m =即.在此基础上给出下列关于函数的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11,22⎡⎤-⎢⎥⎣⎦;则其中真命题的序号是 ( )A .①②B .①③C .②④D .③④第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,212.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0- B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞13.若01m n <<<且1mn =,则2m n +的取值范围是( ) A .[22,)+∞B .[3,)+∞C .(22,)+∞D .(3,)+∞14.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .15.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数二、填空题16.已知定义在R 上的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,则使不等式(1)0f x x +≤成立的x 的取值范围是_________. 17.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________. 18.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________19.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.20.研究函数22()(0)||||a x f x abc x b x c -=<<<++-,得到如下命题:①此函数图象关于y 轴对称;②此函数存在反函数;③此函数在()0,a 上为增函数;④此函数有最大值ab c+和最小值0; 你认为其中正确的是_______(写出所有正确的编号).21.若函数()f x 在定义域D 内的某区间M 上是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”.已知函数()()24g x x a x a =+-+在(]0,2上是“弱增函数”,则实数a 的值为______. 22.函数()21log f x x=-___________.23.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.24.已知函数()f x =ln 2x x +,则()232f x -<的解集为_____.25.已知函数()1lg11xf x x-=++,若()4f m =,则()f m -=______.26.设函数()()21ln 11f x x x =+-+,则使得()()12f x f x >-成立的x 的取值范围为_____________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值; (3)最后得出结果.2.C解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-, 所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-,所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e<≤, 即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.3.B解析:B 【分析】由指数函数的性质可得112a <<,由对数函数的性质可得1b >,由幂函数的性质可得0.30.310.32⎛⎫< ⎪⎝⎭,从而可得结果.【详解】∵0.31()2a =,12log 0.3b = 0.30.3c =∴10.3111112222a ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 11221log 0.3log 12b =>=, 0.30.310.32c ⎛⎫=< ⎪⎝⎭,∴c a b << 故选:B 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.4.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.5.B解析:B 【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果. 【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈,又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.6.C解析:C 【分析】令t =,转化为21ty t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =, 当0t ≠时,2110112t y t t t <==≤=++,当且仅当1t =时,即2x =时等号成立, 综上102y ≤≤, 故选:C 【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题.7.B解析:B 【分析】由奇函数性质结合已知单调性得出函数在R 上的单调性,再由奇函数把不等式化为(2)()f x f x -≥-,然后由单调性可解得不等式.【详解】∵()f x 是奇函数,在(,0]-∞上递减,则()f x 在[0,)+∞上递减, ∴()f x 在R 上是减函数,又由()f x 是奇函数,则不等式()()20f x f x +-≥可化为(2)()f x f x -≥-, ∴2x x -≤-,1x ≤. 故选:B . 【点睛】方法点睛:本题考查函数的奇偶性与单调性.这类问题常常有两种类型:(1)()f x 为奇函数,确定函数在定义域内单调,不等式为12()()0f x f x +>转化为12()()f x f x >-,然后由单调性去掉函数符号“f ”,再求解;(2)()f x 是偶函数,()f x 在[0,)+∞上单调,不等式为12()()f x f x >,首先转化为12()()f x f x >,然后由单调性化简. 8.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.9.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±.故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.10.B解析:B 【解析】111()(1)222f -=---= ;111()(0)444f -=--=-,111()(0)444f =-=,所以11()()44f f -<; (3.4) 3.430.4f =-=;()y f x = 的定义域是R ,值域是11(,]22- ,所以选B.点睛:解决新定义问题,关键是明确定义含义,正确运用定义进行运算.对于抽象的概念,可先列举一些具体的数值进行理解与归纳.本题易错点在区间端点是否可取上,难点在于整数的确定.11.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==, 要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >,即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.12.A解析:A 【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围. 【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩,当()212f x x ax a =+-在[)2,+∞上单调递增时,22a-≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-, 故选:A. 【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤: (1)先分析每一段函数的单调性并确定出参数的初步范围; (2)根据单调性确定出分段点处函数值的大小关系; (3)结合(1)(2)求解出参数的最终范围.13.D解析:D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >,函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.14.B解析:B【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项.【详解】()22,12222,1x xx x f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B .【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.15.A解析:A【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可.【详解】解:因为()|3|3f x x =+- 所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x =,[)(]2,00,2x ∈-,又()()f x f x -===- 所以函数为奇函数;故选:A【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;二、填空题16.【分析】先由定义域为R 的偶函数在区间内单调递减且画出的草图结合图象对进行等价转化解不等式即可【详解】由题意可知在区间内为增函数函数的图象可看作是由的图象向左平移1个单位长度得到的作出和的大致图象如图 解析:[)()2,00,-⋃+∞【分析】先由定义域为R 的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,画出()f x 的草图,结合图象对(1)0f x x +≤进行等价转化,解不等式即可. 【详解】由题意可知()f x 在区间(),0-∞内为增函数,函数()1y f x =+的图象可看作是由()y f x =的图象向左平移1个单位长度得到的,作出()y f x =和()1y f x =+的大致图象,如图所示.不等式(1)0f x x+≤可化为: ()010x f x <⎧⎨+≥⎩,当0x <时()10f x +≥,观察图象,得20x -≤<; ()010x f x >⎧⎨+≤⎩,当0x >时()10f x +≤,观察图象,得0x >; 所以不等式的解集为[)()2,00,-⋃+∞故答案为:[)()2,00,-⋃+∞.【点睛】常见解不等式的类型:(1)解一元二次不等式用图象法或因式分解法;(2)分式不等式化为标准型后利用商的符号法则;(3)高次不等式用穿针引线法;(4)含参数的不等式需要分类讨论.17.【分析】先由定义域为R 的奇函数在区间上为严格减函数且画出的草图结合图像对进行等价转化解不等式即可【详解】是定义域为R 的奇函数且在区间上为严格减函数有∴在区间上为严格减函数且可作出的草图:不等式可化为 解析:[]3,1--【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可. 【详解】 ()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =, ∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为: ()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解; 对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤ 解得:31x -≤≤-所以不等式(1)01f x x +≥-的解集为[]3,1--. 故答案为:[]3,1--【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法;(2)分式不等式化为标准型后利用商的符号法则;(3)高次不等式用穿针引线法;(4)含参数的不等式需要分类讨论.18.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函 解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立, 所以12ax +≤对任意[]1,2x ∈都成立,即212ax -≤+≤对任意[]1,2x ∈都成立, 变形可得31a x x-≤≤, 由函数3y x =-在[]1,2为增函数,1y x =在[]1,2上为减函数, 故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦. 故答案为:31,22⎡⎤-⎢⎥⎣⎦. 【点睛】 关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.19.【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是关于原点解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式.【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB ,不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩, 故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题. 20.①④【分析】直接利用函数的定义域和函数的奇偶性判断①②进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④【详解】解:函数由于整理得则:由于函数为偶函数函数的图象关于y 轴对解析:①④【分析】直接利用函数的定义域和函数的奇偶性判断①②,进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④.【详解】解:函数())f x a b c =<<<, 由于220a x -≥,整理得a x a -≤≤.则:()f x ==. 由于函数为偶函数,函数的图象关于y 轴对称,所以函数不存在反函数,存在反函数的函数的前提该函数具有单调性.故①正确②错误.因为22y a x =-在()0,a 上为减函数,所以()f x 在()0,a 上为减函数,故故③错误;可知()f x 在[],0a -单调递增,()0,a 单调递减,且为偶函数,则()f x 在0x =出取得最大值a b c+,在x a =±处取得最小值0,故④正确. 故答案为:①④.【点睛】本题考查函数性质的应用,属于基础题.21.4【分析】由在上的单调性求出a 的一个范围再令则在上是减函数分类讨论根据的单调性求参数a 的范围两范围取交集即可得解【详解】由题意可知函数在上是增函数解得令则在上是减函数①当时在上为增函数不符合题意;② 解析:4【分析】由()g x 在(]0,2上的单调性求出a 的一个范围,再令()()f x h x x=,则()h x 在(]0,2上是减函数,分类讨论根据()h x 的单调性求参数a 的范围,两范围取交集即可得解.【详解】由题意可知函数()()24g x x a x a =+-+在(]0,2上是增函数, 402a -∴≤,解得4a ≤, 令()()4f x a x a x x h x +==+-,则()h x 在(]0,2上是减函数, ①当0a ≤时,()h x 在(]0,2上为增函数,不符合题意;②当0a >时,由对勾函数的性质可知()h x在上单调递减,2≥,解得4a ≥,又4a ≤,4a ∴=.故答案为:4【点睛】本题考查函数的单调性、一元二次函数的单调性,属于中档题.22.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可.【详解】因为()f x = 所以21log 00x x ->⎧⎨>⎩, 即2log 10x x <⎧⎨>⎩ 解得02x <<,所以函数的定义域为(0,2),故答案为:(0,2)【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.23.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.24.【分析】可判断出函数在上单调递增将不等式化为可得出解出即可【详解】因为单增单增所以函数在区间上单增而==等价于所以即解得或即的解集为故答案为:【点睛】解函数不等式:首先根据函数的性质把不等式转化为的解析:(()2,3,2- 【分析】可判断出函数()f x 在()0,∞+上单调递增, 将不等式化为()()231f x f -<,可得出2031x <-<,解出即可.【详解】因为ln y x =单增,2x y =单增,所以函数()f x 在区间()0,∞+上单增.而()1f =1ln12+=()22,32f x -<等价于()()231f x f -<,所以2031x <-<,即234x <<,解得2x -<<2x <<.即()232f x -<的解集为(()2,3,2-.故答案为:(()2,3,2-. 【点睛】 解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内25.【分析】首先构造新的函数然后运用函数的奇偶性的定义判断函数的奇偶性用整体思想求解出【详解】令则又为上的奇函数又故答案为:【点睛】本题考查函数的奇偶性构造方法构造新的函数整体思想求出答案属于中档题 解析:2-【分析】首先构造新的函数,然后运用函数的奇偶性的定义判断函数的奇偶性,用整体思想求解出()()12f m g m -=-+=-.【详解】令1()lg 1x g x x-=+ (11)x -<<,则()()1f x g x =+, 又11()lglg ()11x x g x g x x x+--==-=--+,()g x ∴为(1,1)-上 的奇函数, 又()4f m =,()()13g m f m ∴=-=,()()3g m g m ∴-=-=-,()()12f m g m ∴-=-+=-.故答案为:2-.【点睛】本题考查函数的奇偶性,构造方法构造新的函数,整体思想求出答案 ,属于中档题. 26.【分析】根据条件判断函数的奇偶性和单调性结合函数的奇偶性和单调性的性质将不等式进行转化求解即可【详解】则是偶函数当函数为增函数则等价与所以平方得所以所以即不等式的解集为故答案为:【点睛】本题主要考查解析:113x x ⎧⎫<<⎨⎬⎩⎭【分析】根据条件判断函数的奇偶性和单调性,结合函数的奇偶性和单调性的性质将不等式进行转化求解即可.【详解】 ()()()()2211ln 1ln 111f x x x f x x x-=+--=+-=++,则()f x 是偶函数, 当0x ≥函数()f x 为增函数,则()()12f x f x >-等价与()()12f x f x >-, 所以12x x >-,平方得22144x x x -+>, 所以23410x x -+<,所以1 13x <<,即不等式的解集为113xx ⎧⎫<<⎨⎬⎩⎭, 故答案为:113xx ⎧⎫<<⎨⎬⎩⎭. 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性是解决本题的关键,难度中等.。
一、选择题1.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f ex ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞2.奇函数()f x 在(0)+∞,内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .()()(),21,02,-∞--+∞ B .()()2,12,--+∞C .()(),22,-∞-+∞D .()()(),21,00,2-∞--3.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()cosh x f x c a c a =+=2xxa ae e a -++⋅(e 为自然对数的底数).当0c ,1a =时,记(1)p f =-,12m f ⎛⎫= ⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<4.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2xg x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤5.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =6.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦7.函数()21x f x x-=的图象大致为( )A .B .C .D .8.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A .20,2⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞9.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412310.定义在[]1,1-的函数()f x 满足下列两个条件:①任意的[1,1]x ∈-都有()()f x f x -=-;②任意的,[0,1]m n ∈,当m n ≠,都有()()0f m f n m n-<-,则不等式(12)(1)0f x f x -+-<的解集是( )A .10,2⎡⎫⎪⎢⎣⎭B .12,23⎛⎤⎥⎝⎦C .11,2⎡⎫-⎪⎢⎣⎭D .20,3⎡⎫⎪⎢⎣⎭11.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭ C .11,22⎛⎫-⎪⎝⎭ D .13,22⎛⎫⎪⎝⎭12.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .13.若函数()f x 满足()()a f x b a b ≤≤<,定义b a -的最小值为()f x 的值域跨度,则是下列函数中值域跨度不为2的是( ) A .2()23f x x x =-++B .||()2x f x -= C .24()4xf x x =+D .()|1|||f x x x =+-14.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数15.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(3-∞D .)3,+∞二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.18.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.19.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.20.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.21.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________22.设12{21 2}33k ∈--,,,,,若(1 0)(0 1)x ∈-,,,且||k x x >,则k 取值的集合是___________.23.已知函数()()()2421log 1a x ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间(),-∞+∞上是减函数,则a 的取值范围为______ . 24.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.25.已知11()x x f x e e x --=-+,则不等式()(63)2f x f x +-≤的解集是________. 26.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:①()f x 是以2为周期的函数;②()0f 是函数的最大值;③()f x 在[]2,3上是减函数;④()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-,所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e<≤, 即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.2.A解析:A 【分析】由已知可作出函数的大致图象,结合图象可得到答案. 【详解】因为函数()f x 在(0)+∞,上单调递减,(2)0f =, 所以当(02)x ∈,时,()0f x >,当(2)x ∈+∞,,()0f x <, 又因为()f x 是奇函数,图象关于原点对称,所以()f x 在()0-∞,上单调递减,(2)0f -=, 所以当(20)x ∈-,时,()0f x <,当2()x ∈-∞-,时,()0f x >, 大致图象如下,由(1)()0x f x +<得10()0x f x +>⎧⎨<⎩或10()0x f x +<⎧⎨>⎩,解得2x >,或10x -<<,或2x <-, 故选:A. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 的大致图象,考查了学生分析问题、解决问题的能力.3.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2f f f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.4.B解析:B 【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果. 【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈,又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.5.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.6.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦,所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =, 故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤,故选:D.7.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.8.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10tt ++-<, 所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增, 所以由()(1)g t g <,得314t ≤<,所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.9.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.10.D解析:D 【分析】根据题意先判断函数()f x 的奇偶性与单调性,然后将不等式变形得(12)(1)f x f x -<-,再利用单调性和定义域列出关于x 的不等式求解. 【详解】根据题意,由①知函数()f x 为奇函数,由②知函数()f x 在[0,1]上为减函数,所以可得函数()f x 在[]1,1-是奇函数也是减函数,所以不等式(12)(1)0f x f x -+-<,移项得(12)(1)f x f x -<--,变形(12)(1)f x f x -<-,所以11121x x -≤-<-≤,得203x ≤<. 故选:D. 【点睛】 本题考查的是函数单调性与奇偶性的综合问题,需要注意:(1)判断奇偶性:奇函数满足()()f x f x -=-;偶函数满足()()f x f x -=;(2)判断单调性:增函数()[]1212()()0x x f x f x -->;1212()()0f x f x x x ->-; 减函数:()[]1212()()0x x f x f x --<;1212()()0f x f x x x -<-; (3)列不等式求解时需要注意定义域的问题.11.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x xx =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭故选:A12.B解析:B 【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项. 【详解】()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B . 【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.13.B解析:B 【分析】根据函数解析式,利用根式非负性、绝对值的区间讨论、分式的性质求值域,即可判断正确选项. 【详解】A 选项:22023(1)44x x x ≤-++=--+≤,所以0()2f x ≤≤,值域跨度为2;B 选项:||0x -≤,所以0()1f x <≤,值域跨度不为2;C 选项:当0x =时()0f x =;当0x >时,244()144x f x x x x ==≤=++;当0x <时,244()144()()x f x x x x ==-≥=-+-+-;故1()1f x -≤≤,值域跨度为2;D 选项:1,0()21,101,1x f x x x x ≥⎧⎪=+-≤<⎨⎪-<-⎩,故1()1f x -≤≤,值域跨度为2;故选:B 【点睛】本题考查了根据解析式求值域,注意根式、指数函数、对勾函数、绝对值的性质应用,属于基础题.14.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()f x =所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x =,[)(]2,00,2x ∈-,又()()f x f x -===-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;15.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-,所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】先由解出a 讨论的单调性利用函数单调性解不等式即可【详解】因为且所以解得在R 上单增可化为:解得:不等式的解集为故答案为:【点睛】利用单调性解不等式通常用于:(1)分段函数型不等式;(2)复合函 解析:()1,+∞【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【详解】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+'ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增. ()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;18.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T=,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,所以()f x 在[0,2]上单调递减,而()10f =, 由偶函数得当(1,1)x ∈-时,()0f x >; 又()()()4f x f x f x +=-=可得周期4T =,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >; 于是()0f x >的解集为(2019,2021). 故答案为:(2019,2021) 【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解.19.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9 【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误. 【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=,故答案为:9. 【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.20.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=; 又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4. 故答案为:{}0,1,3,4 【点睛】关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解.21.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立, 即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦.故答案为:31,22⎡⎤-⎢⎥⎣⎦.【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.22.【分析】根据不能是奇函数排除和再利用幂函数的性质排除2即可得出【详解】若且则幂函数的图象一定在的上方故不可能为奇函数即不能取和当取时是偶函数故只需满足即可此时即则即则可取故取值的集合是故答案为:【点解析:2{2 }3-, 【分析】根据k y x =不能是奇函数排除1-和13,再利用幂函数的性质排除2即可得出. 【详解】若(10)(0 1)x ∈-,,,且||k x x >,则幂函数ky x =的图象一定在y x =的上方,故ky x =不可能为奇函数,即k 不能取1-和13, 当k 取22,,23-时,ky x =是偶函数,故只需满足(0 1)x ∈,即可, 此时k x x >,即11k x ->,则10k -<,即1k <,则k 可取22,3-,故k 取值的集合是2{2 }3-,. 故答案为:2{2 }3-,. 【点睛】本题考查幂函数的性质,解题的关键是正确理解幂函数的性质的特点,以及不同幂函数的图象特点.23.【分析】根据题意讨论时是二次函数在对称轴对称轴左侧单调递减时是对数函数在时单调递减;再利用端点处的函数值即可得出满足条件的的取值范围【详解】解:由函数在区间上是减函数当时二次函数的对称轴为在对称轴左 解析:1324a ≤≤ 【分析】根据题意,讨论1x <时,()f x 是二次函数,在对称轴对称轴左侧单调递减,1x 时,()f x 是对数函数,在01a <<时单调递减;再利用端点处的函数值即可得出满足条件的a 的取值范围. 【详解】解:由函数242(1)()(1)a x ax x f x log x x ⎧-+<=⎨⎩在区间(,)-∞+∞上是减函数,当1x <时,2()42f x x ax =-+,二次函数的对称轴为2x a =, 在对称轴左侧单调递减,21a ∴,解得12a; 当1x 时,()log a f x x =,在01a <<时单调递减; 又2142log 1a a -+, 即34a;综上,a 的取值范围是1324a . 故答案为:1324a . 【点睛】本题考查了分段函数的单调性问题,也考查了分类讨论思想的应用问题,属于中档题.24.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞.【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.25.【分析】先构造函数得到关于对称且单调递增再结合对称性与单调性将不等式转化为即可求解【详解】构造函数那么是单调递增函数且向左移动一个单位得到的定义域为且所以为奇函数图象关于原点对称所以图象关于对称不等 解析:[2,)+∞【分析】先构造函数111()()1(1)x x g x f x e x e --=-=-+-,得到()g x 关于(1,0)对称,且单调递增,再结合对称性与单调性将不等式()(63)2f x f x +- 转化为34x x -即可求解. 【详解】构造函数111()()1(1)x x g x f x e x e --=-=-+-,那么()g x 是单调递增函数,且向左移动一个单位得到1()(1)xx h x g x e x e=+=-+, ()h x 的定义域为R ,且1()()x x h x e x h x e-=--=-, 所以()h x 为奇函数,图象关于原点对称,所以()g x 图象关于(1,0)对称. 不等式()(63)2f x f x +- 等价于()1(63)10f x f x -+--, 等价于()(63)0()[2(63)](34)g x g x g x g x g x +-∴--=-,结合()g x 单调递增可知342x x x -∴, 所以不等式()(63)2f x f x +- 的解集是[2,)+∞. 故答案为:[2,)+∞. 【点睛】本题主要考查函数的奇偶性和单调性的应用,考查函数的对称性的应用,意在考查学生对这些知识的理解掌握水平.26.③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:所以函数是以4为周期的函数故①错误;偶函数在上是减函数在上是增函数在上最小值为是以4为周期的函数是函数的最小值故②错误;在上是减解析:③④ 【分析】根据函数的周期性及对称性判断各个选项即可得解; 【详解】 解:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=,所以函数()f x 是以4为周期的函数,故①错误;偶函数()f x 在[2-,0]上是减函数,()f x ∴在[0,2]上是增函数,∴在[2-,2]上,最小值为(0)f ,()f x 是以4为周期的函数,(0)f ∴是函数的最小值,故②错误;()f x 在[2-,0]上是减函数,()f x ∴在[2,4]上是减函数,故③正确; (2)()(2)f x f x f x -+=--=+,()f x ∴的图象关于直线2x =对称,即④正确.故答案为:③④. 【点睛】本题考查函数的周期性,偶函数在对称区间上单调性相反这一结论,考查学生分析解决问题的能力,属于中档题.。
最新人教版高一上学期数学练习测验最新的人教版高一上学期数学练习测验本次数学练习测验主要涵盖了人教版高一上学期的数学知识,包括以下几个方面:1.集合与命题2.在这个部分,我们将测试学生对集合概念、性质、运算以及简单命题的理解和掌握情况。
试题将考查学生对集合交、并、补运算的掌握情况,同时也会涉及一些命题真假判断的题目。
3.代数式与不等式4.这个部分主要考查学生对代数式的基本概念、不等式的性质以及简单证明的掌握情况。
试题将测试学生对代数式的化简、不等式的变形和证明方法等基本技能的运用。
5.函数及其性质6.此部分着重考查学生对函数的概念、性质及图像应用的掌握情况。
试题将涉及函数的定义域、值域、单调性、奇偶性以及图像的变换等知识点。
7.三角函数8.这个部分将测试学生对三角函数的定义、计算及基本性质的掌握情况。
试题将涵盖三角函数的和差角公式、图像性质、周期计算等知识点。
9.数列与数学归纳法10.此部分考查学生对数列的概念、性质及数学归纳法的理解和应用能力。
数列相关试题将涉及等差数列和等比数列的通项公式、求和公式等知识点;数学归纳法方面将考查学生对数学归纳法证明步骤的掌握情况。
11.矩阵与行列式12.这个部分将测试学生对矩阵和行列式的概念、计算及简单应用的理解情况。
试题将涵盖二阶矩阵、三阶矩阵的初等变换以及行列式的计算等知识点。
13.算法与程序14.此部分考查学生对算法和程序的基本概念和实现方法的了解情况。
试题将涉及程序流程图、伪代码等知识点,要求学生能够理解并运用这些基本概念和方法进行简单算法的设计和实现。
15.统计与概率16.此部分考查学生对统计和概率的基本概念和应用的掌握情况。
统计部分的试题将涉及数据的收集、整理、描述和分析;概率部分的试题将涉及事件的概率计算、随机变量的分布等知识点。
17.极坐标与参数方程18.这个部分将测试学生对极坐标和参数方程的概念、计算及简单应用的理解情况。
试题将涵盖极坐标系下点的坐标表示、直线的参数方程等知识点,同时也会涉及到一些简单的参数方程的应用题。
高一上期数学知识点试卷1. 函数与方程在高一上学期的数学课程中,函数与方程是一个重要的知识点。
通过学习这一知识点,同学们可以了解到数学中的函数概念和方程求解方法,为后续学习打下坚实的基础。
函数是数学中的重要概念,它描述了变量之间的关系。
在函数中,通常有一个自变量和一个因变量。
自变量是一个独立变化的量,而因变量则依赖于自变量的变化而变化。
函数可以用表格、图像或公式的形式来表示。
在求解函数时,我们需要了解函数的定义域、值域、奇偶性等属性。
另一方面,方程是一个等式,其中含有未知数。
通过解方程,我们可以找到未知数的值,从而满足等式。
解方程的方法有很多种,如分离变量法、代入法、消元法等。
不同的方程类型需要使用不同的方法进行求解。
2. 幂与根另一个重要的数学知识点是幂与根。
幂是指数与底数的运算,也可以理解为一个数自乘若干次。
幂运算的特性包括指数规律和运算法则。
指数规律包括乘方运算规律、零指数规律和负指数规律。
运算法则包括乘法法则、除法法则和幂法则等。
根是幂数运算的逆运算,也可以理解为对数的求解过程。
根运算的特性包括开方法则、乘方法则和平方根法则等。
求根的过程需要注意根指数的正负、根式的化简等技巧。
理解和熟练掌握幂与根的概念和运算规则对于解题非常重要。
在后面的学习中,我们会接触到很多与幂与根相关的知识点,比如指数函数、对数函数和二次方程等。
3. 三角函数三角函数是高中数学中一个重要的章节。
它研究的是角和角的函数关系。
我们熟知的正弦、余弦和正切等函数都属于三角函数的范畴。
在学习三角函数时,我们需要了解角度和弧度的转换关系,掌握正弦定理和余弦定理等重要的几何定理,并熟练运用它们解决实际问题。
此外,三角函数还涉及到图像的变化规律、周期性等概念。
通过学习三角函数,我们可以用函数的方式来描述角度和三角函数之间的关系。
三角函数不仅在数学中有重要的应用,也在物理、工程等领域广泛应用。
例如在工程测量中,通过三角函数可以计算物体的高度、角度和距离等。
1.1第1课时一、选择题1.与600°角终边相同的角可表示为(k∈Z)()A.k·360°+220°B.k·360°+240°C.k·360°+60° D.k·360°+260°[答案] B[解析]与600°终边相同的角α=n·360°+600°=n·360°+360°+240°=(n+1)·360°+240°=k·360°+240°,n∈Z,k∈Z.∴选B.2.若α是第一象限角,则下列各角中属于第四象限角的是() A.90°-αB.90°+αC.360°-αD.180°+α[答案] C[解析]特例法,取α=30°,可知C正确.[点评]作为选择题,用特例求解更简便些.一般角所在的象限讨论,应学会用旋转的方法找角所在的象限.如,α+90°,将角α的终边逆时针旋转90°,α-90°,则将α的终边顺时针旋转90°,角180°+α的终边为角α的终边反向延长线,180°-α,先将角α的终边关于x轴对称,再关于原点对称,即可得到180°-α的终边等等.3.集合M={x|x=k·90°+45°,k∈Z}与P={x|x=k·45°,k∈Z}之间的关系是()A.M P B.M PC.M=P D.M∩P=∅[答案] A[解析]∵x=k·90°+45°=(2k+1)·45°,k∈Z[点评]k·45°(k∈Z)是45°的整数倍,(2k+1)·45°(k∈Z)是45°的奇数倍,故M P.在角的集合中,{α|α=k·180°+45°(k∈Z)}={α|α=(k+2)·180°+45°,(k∈Z)}.{α|α=2k·90°+30°,k∈Z}∪{α|α=(2k +1)·90°+30°,k∈Z}={α|α=k·90°+30°,k∈Z}.这一部分是最容易出错的地方,应当从集合意义上理解.4.给出下列四个命题,其中正确的命题有()①-75°是第四象限角②225°是第三象限角③475°是第二象限角④-315°是第一象限角A.1个B.2个C.3个D.4个[答案] D[解析]由终边相同角的概念知:①②③④都正确,故选D.5.角α与角β的终边关于y轴对称,则α与β的关系为() A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z[答案] B[解析]解法一:特殊值法:令α=30°,β=150°,则α+β=180°.解法二:直接法:∵角α与角β的终边关于y轴对称,∴β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.6.(2018~2018·北京通州高一期末)下列各角中,与60°角终边相同的角是()A.-300°B.-60°C.600°D.1380°[解析]与60°角终边相同的角α=k·360°+60°,k∈Z,令k=-1,则α=-300°,故选A.7.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是()A.A=B=C B.A CC.A∩C=B D.B∪C⊆C[答案] D[解析]第一象限角可表示为k·360°<α<k·360°+90°,k∈Z;锐角可表示为0°<β<90°,小于90°的角可表示为γ<90°,由三者之间的关系可知,选D.8.如图,终边落在阴影部分(含边界)的角的集合是()A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}D.{α|k·360°+120°≤α≤k·360°+315°,k∈Z}[答案] C9.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D .{-126°,54°}[答案] C[解析] 由-180°<k ·90°-36°<180°(k ∈Z )得-144°<k ·90°<216°(k ∈Z ),所以-14490<k <21690(k ∈Z ),所以k =-1,0,1,2,所以A ∩B ={-126°,-36°,54°,144°},故选C.10.在(-360°,0°)内与角1250°终边相同的角是( )A .170°B .190°C .-190°D .-170° [答案] C[解析] 与1250°角的终边相同的角α=1250°+k ·360°,∵-360°<α<0°,∴-16136<k <-12536,∵k ∈Z ,∴k =-4,∴α=-190°.二、填空题11.-1445°是第________象限角.[答案] 四[解析] ∵-1445°=-5×360°+355°,∴-1445°是第四象限的角.12.若角α和β的终边满足下列位置关系,试写出α和β的关系式:(1)重合:________________;(2)关于x 轴对称:________________.[答案] α=k ·360°+β(k ∈Z ) α=k ·360°-β(k ∈Z )[解析] 据终边相同角的概念,数形结合可得:(1)α=k ·360°+β(k ∈Z ),(2)α=k ·360°-β(k ∈Z ).13.若集合A ={α|k ·180°+30°<α<k ·180°+90°,k ∈Z },集合B ={β|k ·360°-45°<β<k ·360°+45°,k ∈Z },则A ∩B __________.[答案] {α|30°+k ·360°<α<45°+k ·360°,k ∈Z }[解析] 集合A 、B 所在区域如图,显然A ∩B ={α|k ·360°+30°<α<k ·360°+45°,k ∈Z }.三、解答题14.已知α=-1910°.(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.[解析] 在0°到360°的范围里找出与α终边相同的角,可用除以360°求余数的办法来解,也可以考虑把问题转化为求某个不等式的最大整数解问题.解答(1)、(2)的关键都是能正确写出与其角终边相同的角.(1)设α=β+k ·360°(k ∈Z ),则β=-1910°-k ·360°(k ∈Z ).令-1910°-k ·360°≥0,解得k ≤-1910360=-51136.k 的最大整数解为k =-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限的角.(2)令θ=250°+k ·360°(k ∈Z ),取k=-1,-2就得到符合-720°≤θ<0°的角:250°-360°=-110°,250°-720°=-470°.故θ=-110°或-470°.15.已知有锐角α,它的10倍与它本身的终边相同,求角α.[解析]与角α终边相同的角连同角α在内可表示为{β|β=α+k·360°,k∈Z}.∵锐角α的10倍角的终边与其终边相同,∴10α=α+k·360°,α=k·40°,k∈Z.又α为锐角,∴α=40°或80°.16.若角α的终边和函数y=-|x|的图象重合,试写出角α的集合.[解析]由于y=-|x|的图象是三、四象限的平分线,故在0°~360°间所对应的两个角分别为225°及315°,从而角α的集合为S={α|α=k·360°+225°或α=k·360°+315°,k∈Z}.17.已知角α与2α的终边相同,且α∈[0°,360°),求角α.[解析]由条件知,2α=α+k·360°,∴α=k·360°(k∈Z),∵α∈[0°,360°),∴α=0°.。