新北师大版初中九年级数学下册2.3 确定二次函数的表达式2公开课优质课教学设计
- 格式:doc
- 大小:1017.50 KB
- 文档页数:4
第2课时由三点确定二次函数的表达式1.经历确定二次函数表达式y=ax2+bx+c的过程,体会求二次函数表达式的思想方法.2.利用二次函数图象上的三个点的坐标,运用待定系数法确定二次函数表达式.1.经历确定二次函数表达式的过程,体会求二次函数表达式的方法,培养数学应用意识.2.在学习过程中体会学以致用,提高运用所学知识解决实际问题的能力.1.逐步培养学生观察、比较、分析、概括等逻辑思维能力.2.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【重点】利用二次函数图象上的三个点的坐标确定二次函数表达式.【难点】运用待定系数法,采用多种方法确定二次函数表达式.【教师准备】多媒体课件.【学生准备】复习待定系数法和三元一次方程组的解法.导入一:思考下面的问题:已知二次函数y=ax2+bx+c的图象经过(0,0),(1,2),(-1,-4)三点,那么你能利用上节课所学的知识求这个二次函数的表达式吗?【学生活动】分析题目中的已知条件,回忆利用待定系数法列二元一次方程组来求二次函数表达式的方法后,互相交流,得出无法解决的结论.[设计意图]通过问题的出示,让学生认识到运用原有的知识无法解决该问题,引起了学生的好奇心,激发了学生探究新知的欲望.导入二:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的B处安装一个喷头向外喷水,该喷泉喷出的最远距离,即地面点A距离点B所在的柱子的距离(OA的长度)是3m,李冰同学建立了如图所示的直角坐标系,得到该抛物线还经过(2,1),两点,你能根据李冰同学给出的数据求出此抛物线的表达式吗?师要求学生仔细观察,思考下面的问题:1.题目中给出了几个点的坐标?2.你能运用上节课的知识求该抛物线的表达式吗?3.应该把二次函数表达式设成什么形式?顶点式还是一般式?[设计意图]通过对喷泉这一情境的探究,使学生不但明确了本节课所要探究的知识,同时更加明确了与上节课知识的联系与区别,可谓一举两得.【引例】已知一个二次函数的图象经过(1,-1),(2,-4)和(0,4)三点,求这个二次函数的表达式.【学生活动】回忆上节课的做法,由学生独立解答,代表展示解题过程.解:∵抛物线经过(0,4),∴c=4.故可设二次函数的表达式为y=ax2+bx+4,把(1,-1),(2,-4)分别代入二次函数y=ax2+bx+4中,得解方程组,得∴这个二次函数的表达式为y=x2-6x+4.【想一想】知道了函数图象上的三个点的坐标,能不能直接用待定系数法设成y=ax2+bx+c进行解答.【师生活动】学生思考后,与同伴交流想法,再参与到小组的讨论中去.组长展示解答过程,师生共同订正.解:设所求的二次函数的表达式为y=ax2+bx+c,将三点(1,-1),(2,-4)和(0,4)分别代入表达式,得解这个方程组,得∴这个二次函数的表达式为y=x2-6x+4.【教师点评】通过上面的探究,可知如果已知二次函数y=ax2+bx+c的图象所经过的三个点,那么就可以确定这个二次函数的表达式.[设计意图]利用上节课所学的知识进行引入,既复习了旧知,又引出了新知,继而再接触本节课所学知识的解题方法,同时也为下面的例题做好了铺垫.(教材例2)已知二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标.〔解析〕由于(-1,10),(1,4),(2,7)三个点都不是特殊点,所以设所求的二次函数的表达式为y=ax2+bx+c,然后把三个点代入,得到三元一次方程组,进而解出a,b,c的值即可.【学生活动】学生先独立解答,然后同伴相互订正.课件出示解题过程(规范学生的解答步骤).解:设所求的二次函数的表达式为y=ax2+bx+c,将三点(-1,10),(1,4),(2,7)的坐标分别代入表达式,得解这个方程组,得所以所求二次函数的表达式为y=2x2-3x+5.因为y=2x2-3x+5=2+,所以二次函数图象的对称轴为直线x=,顶点坐标为.[设计意图]通过进一步探究,掌握了已知三点坐标确定二次函数表达式的方法,提高了解决问题的能力.[知识拓展]已知三点确定二次函数表达式的方法和步骤:利用待定系数法y=ax2+bx+c三元一次方程组a,b,c的值二次函数的表达式.课件出示:【议一议】一个二次函数的图象经过点A(0,1),B(1,2),C(2,1),你能确定这个二次函数的表达式吗?你有几种方法?与同伴进行交流.【师生活动】师要求学生仔细观察给出的三个点的特征,根据点的特征合理地选择解答方法.学生解答,师巡视发现学生不同的解法,并找解法不同的学生板演:解法1:∵二次函数图象与y轴的交点的纵坐标为1,∴c=1.设二次函数的表达式为y=ax2+bx+1,将点(1,2)和(2,1)分别代入y=ax2+bx+1,得解得∴二次函数的表达式为y=-x2+2x+1.解法2:由A(0,1),B(1,2),C(2,1)三个点的特征以及二次函数图象的对称性,可得点B(1,2)是函数图象的顶点坐标.∴二次函数的表达式为y=a(x-1)2+2,将点(0,1)代入y=a(x-1)2+2,得a=-1.∴二次函数的表达式为y=-(x-1)2+2,即y=-x2+2x+1.解法3:设二次函数的表达式为y=ax2+bx+c,将点(0,1),(1,2)和(2,1)分别代入y=ax2+bx+c,得解得∴二次函数的表达式为y=-x2+2x+1.【师生活动】通过两节课的探究,总结确定二次函数表达式的方法.【教师点评】二次函数表达式的确定方法:确定二次函数表达式待定系数法[设计意图]通过对“议一议”的探究,使学生进一步掌握了已知三个点的坐标确定二次函数表达式的步骤和方法,提高了学生一题多解的能力.1.已知三点确定二次函数表达式的方法和步骤.2.二次函数表达式的确定方法.1.一个二次函数,当x=0时,y=-5;当x=-1时,y=-4;当x=-2时,y=5.则这个二次函数的关系式是()A.y=4x2+3x-5B.y=2x2+x+5C.y=2x2-x+5D.y=2x2+x-5解析:设二次函数的关系式是y=ax2+bx+c(a≠0),∵当x=0时,y=-5,当x=-1时,y=-4,当x=-2时,y=5,∴解方程组,得∴二次函数的关系式为y=4x2+3x-5.故选A.2.过A(-1,0),B(3,0),C(1,2)三点的抛物线的顶点坐标是()A.(1,2)B.C.(-1,5)D.解析:设这个二次函数的解析式是y=ax2+bx+c,把(-1,0),(3,0),(1,2)分别代入,得解方程组,得所以该函数的解析式为y=-x2+x+,顶点坐标是(1,2).故选A.3.已知抛物线y=ax2+bx+c经过点(-1,10)和(2,7),且3a+2b=0,则该抛物线的解析式为.解析:根据题意,得解方程组,得所以该抛物线的解析式为y=2x2-3x+5.故填y=2x2-3x+5.4.已知一抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.解:(1)设这个抛物线的解析式为y=ax2+bx+c.由题意知抛物线经过A(-2,0),B(1,0),C(2,8)三点,可得解这个方程组,得∴所求抛物线的解析式为y=2x2+2x-4.(2)y=2x2+2x-4=2(x2+x-2)=2-,∴该抛物线的顶点坐标为.第2课时1.已知三点确定二次函数表达式的方法和步骤:利用待定系数法y=ax2+bx+c三元一次方程组a,b,c的值二次函数的表达式.2.二次函数表达式的确定方法:确定二次表达式待定系数法一、教材作业【必做题】1.教材第45页随堂练习.2.教材第45页习题2.7第1,2题.【选做题】教材第45页习题2.7第3题.二、课后作业【基础巩固】1.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2B.y=x2+3x+2C.y=x2-2x+3D.y=x2-3x+22.已知二次函数y=ax2+bx+c的图象经过点(1,-1),(2,-4),(0,4)三点,那么它的对称轴是直线()A.x=-3B.x=-1C.x=1D.x=33.已知抛物线y=ax2+bx+c的对称轴为直线x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为.4.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(-1,-6)两点,则a+c=.【能力提升】5.已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为()A.y=x2-4x-5B.y=-x2+4x-5C.y=x2+4x-5D.y=-x2-4x-56.已知二次函数的图象与x轴的两个交点A,B关于直线x=-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为.7.已知二次函数y=ax2+bx+c的图象经过(0,-6),(1,0)和(-2,-6)三点.(1)求二次函数的解析式;(2)求二次函数图象的顶点坐标;(3)若点A(m-2n,-8mn-10)在此二次函数图象上,求m,n的值.8.如图所示,已知二次函数y=ax2+bx+c的图象经过A(-1,-1),B(0,2),C(1,3).(1)求二次函数的解析式;(2)画出二次函数的图象.9.(1)任选以下三个条件中的一个,求二次函数y=ax2+bx+c的解析式.①y随x变化的部分数值规律如下表:x-10123y03430②有序数对(-1,0),(1,4),(3,0)满足y=ax2+bx+c;③已知函数y=ax2+bx+c的图象的一部分(如图所示).(2)直接写出(1)中二次函数y=ax2+bx+c的三个性质.【拓展探究】10.如图①所示,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积(图②中阴影部分).【答案与解析】1.D (解析:这个二次函数的解析式是y =ax 2+bx +c ,把(1,0),(2,0)和(0,2)分别代入,得解方程组,得所以该函数的解析式是y =x 2-3x +2.故选D .)2.D (解析:二次函数的解析式为y =ax 2+bx +c ,把(1,-1),(2,-4),(0,4)分别代入表达式,得解方程组,得则二次函数的解析式为y =x 2-6x +4,所以它的对称轴是直线x =-=-=3.故选D .)3.y =-x 2+2x +(解析:根据题意,得解方程组,得所以该抛物线的解析式为y =-x 2+2x +.)4.-2(解析:把点(1,2)和(-1,-6)分别代入y =ax 2+bx +c (a ≠0),得①+②得2a +2c =-4,则a +c =-2.)5.C (解析:根据题意,x 1+x 2=-4,x 1x 2=-5,解得x 1=-5,x 2=1或x 1=1,x 2=-5,所以抛物线y =ax 2+bx +c 经过(-5,0),(1,0),(0,-5)三点,所以解得所以所求二次函数的表达式为y =x 2+4x -5.)6.y =x 2+x -(解析:∵对称轴为直线x =-1,且图象与x 轴交于A ,B 两点,AB =6,∴抛物线与x 轴交于(-4,0),(2,0),顶点的横坐标为-1.∵顶点在函数y =2x 的图象上,∴y =2×(-1)=-2,∴顶点坐标为(-1,-2),设二次函数的解析式为y =a (x +1)2-2,把(2,0)代入得0=9a -2,解得a =,∴y =(x +1)2-2=x 2+x -,∴这个二次函数的表达式为y =x 2+x -.故填y =x 2+x -.)7.解:(1)由已知得解得∴二次函数的解析式为y =2x 2+4x -6.(2)∵y =2x 2+4x -6=2(x +1)2-8,∴顶点坐标为(-1,-8).(3)由已知,得-8mn -10=2(m -2n )2+4(m -2n )-6,m 2+4n 2+2m -4n +2=0,(m +1)2+(2n -1)2=0,∴m =-1,n =.8.解:(1)根据题意,得解得∴所求的解析式为y=-x2+2x+2.(2)二次函数的图象如图所示.9.解:(1)若选择①:根据表格,可知抛物线的顶点坐标为(1,4),设抛物线的解析式为y=a(x-1)2+4,将点(0,3)代入,得a(0-1)2+4=3,解得a=-1,所以抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3;若选择②,设抛物线的解析式为y=ax2+bx+c,将(-1,0),(1,4),(3,0)分别代入得解得所以抛物线的解析式为y=-x2+2x+3;若选择③,由图象得到抛物线的顶点坐标为(1,4),且过(0,3),设抛物线的解析式为y=a(x-1)2+4,将(0,3)代入得a=-1,则抛物线的解析式为y=-(x-1)2+4=-x2+2x+3.(2)抛物线y=-x2+2x+3的性质:①对称轴为直线x=1,②当x=1时,函数有最大值,为4;③当x<1时,y随x的增大而增大.(答案不唯一) 10.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴解得∴抛物线的解析式为y=x2-4x+3. (2)∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2.(3)如图所示,∵抛物线的顶点坐标为(2,-1),∴PP'=1,由题意知阴影部分的面积等于平行四边形A'APP'的面积,平行四边形A'APP'的面积为1×2=2,∴阴影部分的面积为2.本节课的重点是利用待定系数法列三元一次方程组求二次函数的表达式,所以解决问题的前提是会解三元一次方程组,所以提前要求学生对这一部分知识进行复习,就大大降低了本节课的难度,收到了非常好的效果.突破这一难点后,就让学生类比上节课的探究方法利用已知的三个点的坐标确定二次函数表达式.在解答过程中提醒学生对于表达式的选择,要具体问题具体分析,让学生自己总结出确定二次函数表达式的步骤和方法,为后面的“议一议”的一题多解做好充分的准备.没有精心设置问题的难度,使学生步步深入地探究出求二次函数表达式的方法和步骤,对于基础差的学生而言,直接解答有点吃力.课堂上注意讲课的节奏,尽量让中下游的学生跟上老师的步伐,多给学生自己练习的时间,让学生真正成为学习的主体.随堂练习(教材第45页)解:设函数表达式为y=ax2+bx+c,将(0,2),(1,0)和(-2,3)分别代入表达式,得解得所以二次函数表达式为y=-x2-x+2.习题2.7(教材第45页)1.解:设函数表达式为y=ax2+bx+c,将(1,3),(2,0)和(3,4)分别代入表达式,得解得所以二次函数表达式为y=x2-x+13.2.解法1:设函数表达式为y=ax2+bx+c,将(1,0),(3,0)和(2,3)分别代入表达式,得解得所以二次函数表达式为y=-3x2+12x-9.解法2:设函数表达式为y=a(x-1)(x-3),将(2,3)代入表达式,解得a=-3,所以二次函数表达式为y=-3(x-1)(x-3)=-3x2+12x-9.3.解:答案不唯一.如添加:C (-2,13).设函数表达式为y =ax 2+bx +c ,将(0,a ),(1,-2)和(-2,13)分别代入表达式,得解得所以二次函数表达式为y =x 2-4x +1.1.学生通过上节课的学习,已经掌握了利用待定系数法求二次函数表达式的方法,所以本节课可以利用类比的方法进行探究.2.课前做好三元一次方程组解法的复习是求三个未知系数进而确定二次函数表达式的关键.3.要学会对所给出的点的坐标特征进行分析,合理地设出表达式,能运用不同的解法求解二次函数的表达式,提高解决问题的能力.(2014·宁波中考)如图所示,已知二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.〔解析〕(1)根据二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点,代入得出关于a ,b ,c 的三元一次方程组,求得a ,b ,c ,从而得出二次函数的解析式.(2)令y =0,解一元二次方程,求得x 的值,从而得出与x 轴的另一个交点坐标.(3)画出图象,再根据图象直接得出答案.解:(1)∵二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点,∴∴∴二次函数的解析式为y =x 2-x -1.(2)令y =0,得x 2-x -1=0,解得x 1=2,x 2=-1,∴点D的坐标为(-1,0).(3)图象如图所示.当一次函数的值大于二次函数的值时,x的取值范围是-1<x<4.[解题策略]本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x 轴的交点问题,是中档题,要熟练掌握.。
北师大版九年级数学下册:2.3《确定二次函数的表达式》教案一. 教材分析《确定二次函数的表达式》是北师大版九年级数学下册第2章《二次函数》的第3节内容。
这部分内容是在学生已经掌握了二次函数的一般形式和图象的基础上进行讲解的,旨在让学生通过实例了解如何确定二次函数的表达式,提高他们解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念和图象有一定的了解。
但在实际应用中,他们可能对如何根据实际问题确定二次函数的表达式感到困惑。
因此,在教学过程中,教师需要通过具体实例引导学生理解并掌握确定二次函数表达式的方法。
三. 教学目标1.理解二次函数的表达式,并能根据实际问题确定二次函数的表达式。
2.能够运用二次函数解决实际问题,提高解决问题的能力。
3.培养学生的动手操作能力和团队协作能力。
四. 教学重难点1.重点:确定二次函数的表达式。
2.难点:如何根据实际问题确定二次函数的表达式。
五. 教学方法1.采用问题驱动法,引导学生通过解决实际问题来学习二次函数的表达式。
2.使用多媒体教学,展示二次函数的图象,帮助学生更好地理解二次函数。
3.小组讨论,培养学生的团队协作能力和口头表达能力。
六. 教学准备1.多媒体教学设备。
2.相关实例和习题。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,例如:一个物体从地面上升,上升速度逐渐减慢,最终停止在一定高度。
引导学生思考如何用数学模型来描述这个问题。
2.呈现(10分钟)教师展示二次函数的一般形式,解释二次函数的表达式。
通过多媒体展示二次函数的图象,让学生直观地感受二次函数的特点。
3.操练(10分钟)教师给出一个具体的实例,指导学生如何根据实际问题确定二次函数的表达式。
学生分组讨论,每组尝试解决一个实例。
4.巩固(5分钟)教师选取几个典型的实例,让学生独立完成确定二次函数表达式的任务。
教师巡回指导,解答学生的疑问。
5.拓展(5分钟)教师引导学生思考:在实际生活中,还有哪些问题可以用二次函数来解决?让学生举例说明,并尝试确定这些问题的二次函数表达式。
2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计一. 教材分析《确定二次函数的表达式》是北师大版数学九年级下册第2章3.2节的内容。
本节课主要让学生掌握二次函数的通用形式,了解二次函数的各个系数与函数图象的关系,为后续学习二次函数的性质打下基础。
教材通过实例引导学生从实际问题中抽象出二次函数模型,进一步探究二次函数的性质。
二. 学情分析九年级的学生已经学习了函数的基本概念,对一次函数、二次函数有一定的了解。
但学生在确定二次函数表达式方面存在困难,难以把握二次函数的各个系数与函数图象的关系。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出二次函数模型,并通过观察、操作、猜想、验证等方法,让学生体会二次函数的性质。
三. 教学目标1.让学生掌握二次函数的通用形式;2.使学生了解二次函数的各个系数与函数图象的关系;3.培养学生解决实际问题的能力;4.引导学生运用数形结合的方法探究二次函数的性质。
四. 教学重难点1.重点:二次函数的通用形式,二次函数的各个系数与函数图象的关系;2.难点:确定二次函数表达式,二次函数的性质。
五. 教学方法1.情境教学法:通过实际问题引出二次函数模型,激发学生兴趣;2.观察法:让学生观察二次函数图象,发现其性质;3.操作法:让学生动手操作,验证二次函数的性质;4.讨论法:分组讨论,培养学生的合作能力。
六. 教学准备1.课件:制作课件,展示二次函数的图象和性质;2.练习题:准备一些有关二次函数的练习题,巩固所学知识;3.板书:准备黑板,书写关键知识点。
七. 教学过程1.导入(5分钟)教师通过展示一个实际问题,引导学生从实际问题中抽象出二次函数模型。
例如:抛物线与x轴相交于A、B两点,且AB=2,求抛物线的解析式。
2.呈现(10分钟)教师展示二次函数的图象,让学生观察并描述二次函数的性质。
引导学生关注二次函数的顶点、开口方向、对称轴等关键点。
3.操练(10分钟)教师引导学生分组讨论,让学生动手操作,验证二次函数的性质。
《确定二次函数的表达式》教学设计确定二次函数的表达式是义务教育课程标准实验教科书(北师版)《数学》九年级下册第二章第三节内容,本章主要研究二次函数的性质及二次函数的应用;本节要求能够根据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式,会根据条件利用待定系数法求二次函数的表达式。
因此本节的重点是根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式。
【知识与能力目标】1.能够根据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式.2.会根据条件利用待定系数法求二次函数的表达式.【过程与方法目标】经历确定适当的直角坐标系以及根据点的坐标确定二次函数表达式的思维过程,类比求一次函数的表达式的方法,体会求二次函数表达式的思想方法.【情感态度价值观目标】1.能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念.2.养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识.【教学重点】根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.【教学难点】根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.多媒体课件引入新课(放幻灯片2、3)1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.我们在用待定系数法确定一次函数y=kx+b(k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(学生思考讨论后,回答)设计意图:利用类比的方法学习待定系数法确定二次函数的表达式.探究新知1.初步探究(放幻灯片4)(1)如图2-7是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其表达式吗?分析:要求y 与x 之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.解:根据图象是一抛物线且顶点坐标为(4,3),因此设它的关系式为3)4(2+-=x a y , 又∵图象过点(10,0),∴03)410(2=+-a ,解得 121-=a , ∴图象的表达式为3)4(1212+--=x y . (2)想一想:确定二次函数的表达式需要几个条件?(放幻灯片5)小结:确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常需要3 个条件; 当知道顶点坐标(h,k )和知道图象上的另一点坐标两个条件,用顶点式k h x a y +-=2)(可以确定二次函数的关系式.设计意图:以一个推铅球的实际情境引入,教学时要引导学生观察图象中隐含的信息,鼓励他们尝试确定二次函数的表达式.2.例1 (放幻灯片6)已知二次函数y=ax 2+c 的图象经过点(2,3)和(-1,-3),求出这个二次函数的表达式.分析:二次函数y=ax 2+c 中只需确定a,c 两个系数,需要知道两个点坐标,因此此题只要把已知两点代入即可.解:将点(2,3)和(-1,-3)分别代入二次函数y=ax 2+c 中,得 ⎩⎨⎧+=-+=,3,43c a c a 解这个方程组,得⎩⎨⎧-==.5,2c a ∴所求二次函数表达式为:y=2x 2-5.3.深入探究(1)已知二次函数的图象与y 轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式. (放幻灯片7、8)解法1 解:因为抛物线与y 轴交点纵坐标为1,所以设抛物线关系式为12++=bx ax y , ∵图象经过点(2,5)和(-2,13)∴⎩⎨⎧=+-=++,13124,5124b a b a 解得:a=2,b=-2.∴这个二次函数关系式为 1222+-=x x y .解法2 解:设抛物线关系式为 y=ax ²+bx+c ,由题意可知,图象经过点(0,1),(2,5)和(-2,13),∴14254213c a b c a b c =⎧⎪++=⎨⎪-+=⎩解方程组得:a =2,b =-2,c =1.∴这个二次函数关系式为 1222+-=x x y设计意图:此例求二次函数的表达式,一方面让学生深入探究根据不同的条件灵活选用二次函数的不同形式,通过待定系数法求出函数关系式,另一方面让学生通过实践感受到二次函数一般式y=ax ²+bx+c 确定二次函数需要三个条件.但由于这个二次函数图象与y 轴交点的纵坐标为1,所以c=1,因此可设y=ax ²+bx+1把已知的二点代入关系式求出a,b 的值即可.(2)想一想(放幻灯片9)在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?课堂练习课堂小结(放幻灯片10、11)1.用顶点式k h x a y +-=2)(确定二次函数关系式,当知道顶点(h,k )坐标时,那么再知道图象上的另一点坐标,就可以确定这个二次函数的关系式.2.用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.3.用待定系数法确定二次函数表达式的步骤:(设-列-解-答)课后作业略。
北师大版九年级数学下册:2.3《确定二次函数的表达式》教学设计一. 教材分析北师大版九年级数学下册2.3《确定二次函数的表达式》一节,是在学生已经掌握了二次函数的图像和性质的基础上进行的一节内容。
本节课的主要任务是让学生学会如何根据给定的条件,确定二次函数的表达式。
教材通过实例引导学生总结出确定二次函数表达式的步骤,并通过练习让学生加深对知识的理解。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的图像和性质有一定的了解。
但是,如何将理论运用到实际问题中,如何根据实际问题确定二次函数的表达式,对学生来说还是一个新的课题。
因此,在教学过程中,我需要引导学生将已有的知识运用到新的问题中,帮助他们建立新的知识体系。
三. 教学目标1.知识与技能:让学生掌握确定二次函数表达式的步骤和方法。
2.过程与方法:通过实例分析,让学生学会如何将实际问题转化为数学问题,如何运用已有的知识解决新的问题。
3.情感态度与价值观:培养学生独立思考、合作交流的能力,提高他们分析问题和解决问题的能力。
四. 教学重难点1.重点:确定二次函数表达式的步骤和方法。
2.难点:如何根据实际问题确定二次函数的表达式。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例分析,总结出确定二次函数表达式的步骤。
2.利用小组合作学习,让学生在讨论中加深对知识的理解。
3.通过练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关的教学材料,如PPT、实例等。
2.准备练习题,以便学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾二次函数的图像和性质,为新课的学习做好铺垫。
2.呈现(10分钟)展示实例,引导学生分析实例中给出的条件,让学生尝试根据条件确定二次函数的表达式。
学生在独立思考的基础上,进行小组讨论,总结出确定二次函数表达式的步骤。
3.操练(10分钟)让学生根据所学方法,解决一些简单的实际问题。
北师大版九年级数学下册:第二章 2.3.2《确定二次函数的表达式》精品教案一. 教材分析北师大版九年级数学下册第二章第三节《确定二次函数的表达式》的内容是在学生已经掌握了二次函数的一般形式和图象的基础上进行讲解的。
本节课的主要目的是让学生学会如何根据二次函数的图象或者给定的条件来确定二次函数的表达式。
内容主要包括:待定系数法求二次函数的表达式,根据图象确定二次函数的顶点式,利用配方法将一般式化为顶点式。
这些内容对于学生来说,既有挑战性,又有实用性,对于提高学生的数学素养和解决实际问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的一般形式和图象,对于如何从图象或给定条件中获取函数信息有一定的了解。
但是,对于如何运用待定系数法求解二次函数的表达式,如何根据图象确定二次函数的顶点式,以及如何利用配方法将一般式化为顶点式,可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生通过观察、思考、操作、交流等活动,逐步掌握这些方法。
三. 教学目标1.让学生掌握待定系数法求解二次函数的表达式。
2.让学生学会如何根据二次函数的图象确定其顶点式。
3.让学生掌握利用配方法将二次函数的一般式化为顶点式。
4.培养学生的观察能力、思考能力、操作能力和交流能力。
四. 教学重难点1.教学重点:待定系数法求解二次函数的表达式,根据图象确定二次函数的顶点式,利用配方法将一般式化为顶点式。
2.教学难点:待定系数法求解二次函数的表达式,利用配方法将一般式化为顶点式。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过观察、思考、操作、交流等活动,掌握本节课的内容。
六. 教学准备1.准备相关的教学案例和图象。
2.准备教学PPT。
3.准备练习题。
七. 教学过程1.导入(5分钟)通过展示一些二次函数的图象,让学生观察并思考:这些图象有什么特点?你能从中获取哪些信息?从而引出本节课的主题——如何确定二次函数的表达式。
课题:2.3.2确定二次函数的表达式教学目标:1.经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.2.会用待定系数法求二次函数的表达式.3.逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点与难点:重点:用待定系数法求二次函数的解析式.难点:建立适当的直角坐标系,求出函数解析式,与环保知识相结合解决实际问题.教法与学学指导:本节课主要采用“学研一体的教学模式”.坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用讲练结合法、引导学生自主学习、合作学习和探究学习.鼓励学生多思、多说、多练.课前准备:多媒体课件教学过程:一、创设情境,导入新课生命在于运动,保持健康的身体,离不开运动.生命在于运动,运动在于锻炼,锻炼贵在坚持,坚持就是胜利.同学们,让我们行动起来吧.活动内容:你能求出在投篮的过程中得到的抛物线的解析式吗?(温馨提示:建立适当的直角坐标系,求出这段抛物线所对应的二次函数表达式)处理方式:1.学生自主解决;2.小组合作,质疑解惑;3.集体交流,展示成果.二次函数解析式有哪几种表达方式?【设计意图】创设愉悦宽松的学习氛围,让学生在完全放松的情绪下感知生活,增加新鲜感,激发学生兴趣,锻炼学生的反应能力,体会二次函数的重要意义.产生学习函数的兴趣,激发学习数学的热情,同时也进行了思想及责任感教育.教育家霍姆林斯曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫.二、探究学习,感悟新知活动内容:三个不同类型的典型例题【例1】已知一个二次函数的图象过(-1,10),(1,4),(2,7)三点,求这个函数的解析式,并写出它的对称轴和顶点坐标.解:设所求的二次函数为y=ax2+bx+c.将(-1,10) ,(1,4),(2,7)的坐标分别代人表达式,得a-b+c=10,a+b+c=4,4a+2b+c=7,解这个方程组,得: a =2,b=-3,c=5,因此,所求二次函数的解析式是:y=2x2-3x+5.3 31∵y=2x2-3x+5=2(x- )2+4 83 3 31∴二次函数图像的对称轴为直线x= ,顶点坐标为(, )4 4 8【例2】已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5),求该抛物线的解析式?解:因为已知抛物线的顶点为(-1,-3),所以设所求的二次函数解析式为:y=a(x+1)2-3又点( 0,-5 )在抛物线上a-3=-5, 解得a= -2故所求的抛物线解析式为y=-2(x+1)2-3即:y=-2x2-4x-5【例3】已知抛物线与X轴交于A(-1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?解:设所求的二次函数为y=a(x+1)(x-1)点M( 0,1 )在抛物线上所以:a(0+1)(0-1)=1解得:a= -1故所求的抛物线解析式为y=- (x+1)(x-1)即:y=-x2+1处理方式:学生讨论交流,在练习本上完成后再展示说明,学生之间互相补充.教师适时点评,归纳出求二次函数表达式的步骤.学生归纳总结:(确定二次函数表达式的步骤)学生先自主解决,然后组内交换一下看法,拿出最后的解决方案.学生讨论交流,小组代表回答:设--代--解--还原议一议:已知抛物线经过三点A(0,1),B(1,2),C(2,1),求二次函数的解析式,你有几种方法?与同伴进行交流.处理方式:学生自己尝试完成,然后教师通过屏幕演示,加深做题印象,强化做题步骤.【设计意图】做题过程中,鼓励学生采用多种方法去解题,然后对各种方法进行比较,从而得出用顶点式的表达式的方法更为简单;也让学生明确了什么时候该用顶点式的表达式.三、慧眼识珠,感悟新知:活动内容:试判断下列各题分别用哪种方法来求表达式,并说明理由.1.已知抛物线经过三点A(0,3),B(-1,0)C(1,-5),求二次函数的表达式.2.已知抛物线其顶点坐标为(1,4),且该图像经过点A(4,6),求二次函数的表达式.3.已知抛物线顶点在坐标原点,且图像经过(2,8),求二次函数的表达式.处理方式:学生讨论交流,在练习本上完成后再展示说明,学生之间互相补充.教师适时点评.【设计意图】通过几个不同形式的练习题,让学生明确什么时候用一般式,什么时候该用顶点式;采用顶点式的表达式时,它的主要标志有:顶点坐标、最值、对称轴、增减性等.从而达到灵活应用不同形式的抛物线表达式去解题的目的.四、提升运用、回归生活活动内容:一个涵洞的截面边缘成抛物线形,如图,当水面宽AB=6m时,测得涵洞顶点与水面的距离为2m.(1)建立适当的平面直角坐标系?(2)求出抛物线的函数解析式?处理方式:1.学生自主解决;2.小组合作,质疑解惑;3.集体交流,展示成果.相信自己,推荐自我!【设计意图】抛物线这部分的知识是非常抽象又枯燥的,所以与生活实际相联系可以提高学生学习数学的兴趣,达到学以致用的目的;同时通过学生自己动手建立坐标系,求表达式,让学生感受到不同的坐标系对应不同的表达式,使学生根据不同的条件灵活的掌握如何确定二次函数的表达式的方法.五、回顾反思,提炼升华活动内容:同学们,通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!六、达标检测,反馈提高1.已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数的解析式是_______________.2.已知二次函数y=x2+px+q的图象的顶点是(5,-2),那么这个二次函数解析式是________ _______.3.二次函数y=mx2+2x+m-4m2的图象过原点,则此抛物线的顶点坐标是______.4.链接中考:(2014•宁波)如图,已知二次函数y=a x2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.答案提示:(1)∵二次函数y=a x2+b x+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a= ,b=﹣,c=﹣1,∴二次函数的解析式为y= x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.【设计意图】学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本45页,习题2.7第1题、第2题、第3题.选做题:要求:自编一道求二次函数表达式的问题(谜底自己要知道哟).考考同学们,看谁编的题巧妙!【设计意图】由于学生在知识、技能、能力等方面的发展不尽相同,所以分层次布置课外作业,兼顾学习有困难的和学有余力的学生,使他们都能达到数学标准中规定的基本要求并使部分学生能发展他们的数学才能.板书设计:§2.3..2确定二次函数的表达式一、引例:三、拓展应用例题展示二、探究例1:略四、达标检测例2:略。
2.3 确定二次函数的表达式
教学目标:
1.能根据实际问题列出函数关系式、
2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。
3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。
重点难点:
根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是教学的重点又是难点。
教学过程:
一、复习旧知
1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=6x2+12x;(2)y=-4x2+8x-10
2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?
二、范例
有了前面所学的知识,现在就可以应用二次函数的知识去解决第2页提出的两个实际问题;
例1、要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?
解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20
-2x >O ,所以O <x <1O 。
围成的花圃面积y 与x 的函数关系式是
y =x(20-2x)
即y =-2x 2+20x
配方得y =-2(x -5)2+50
所以当x =5时,函数取得最大值,最大值y =50。
因为x =5时,满足O <x <1O ,这时20-2x =10。
所以应围成宽5m ,长10m 的矩形,才能使围成的花圃的面积最大。
例2.某商店元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。
将这种商品的售价降低多少时,能使销售利润最大?
教学要点
(1)学生阅读第2页问题2分析, (2)请同学们完成本题的解答; (3)教师巡视、指导; (4)教师给出解答过程:
解:设每件商品降价x 元(0≤x ≤2),该商品每天的利润为y 元。
商品每天的利润y 与x 的函数关系式是: y =(10-x -8)(100+1OOx)
即y =-1OOx 2
+1OOx +200 配方得y =-100(x -12)2+225
因为x =12
时,满足0≤x ≤2。
所以当x =12
时,函数取得最大值,最大值y =225。
所以将这种商品的售价降低÷元时,能使销售利润最大。
例3。
用6m 长的铝合金型材做一个形状如图所示的矩形窗框。
应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少? 先思考解决以下问题:
(1)若设做成的窗框的宽为xm ,则长为多少m? (6-3x 2
m) (2)根据实没有限制?若有跟制,请指出它的取值范围,并说明理由。
让学生
讨论、交流,达成共识:根据实际情况,应有x >0,且6-3x 2
>0,即解不等式组⎩⎨⎧x >0
6-2x 2>0 ,解这个不等式组,得到不等式组的解集为O <x <2,所以x 的取
值范围应该是0<x <2。
(3)你能说出面积y 与x 的函数关系式吗?
(y =x ·6-3x 2,即y =-32
x 2+3x) 详细解答课本。
小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式; (2)研究自变量的取值范围; (3)研究所得的函数; (4)检验x 的取值是否在自变量的取值范围内,并求相关的值: (5)解决提出的实际问题。
三、课堂练习: 练习第1、2、3题。
四、小结:
1.通过本节课的学习,你学到了什么知识?存在哪些困惑?
2.谈谈你的收获和体会。
五、作业:教后反思:。