初中数学二次函数课件及练习题
- 格式:doc
- 大小:223.50 KB
- 文档页数:7
第十课 二次函数的解析式一、知识点:二次函数的三种表示方式:⑴ 一般式:____________________________________;⑵ 顶点式:____________________________________;⑶ 交点式:____________________________________.二、例题例1 已知二次函数的最大值为2,图象的顶点在直线1+=x y 上,并且图象经过点)1,2(,求此二次函数的解析式.例2 已知二次函数的图象过点)0,3(-、)0,1(,且顶点到x 轴的距离等于2,求此二次函数的表达式.例3 已知二次函数的图象的顶点为)18,2(-,它与x 轴的两个交点之间的距离为6,求该函数的解析式.例4 已知二次函数的图像关于直线3=y 对称,最大值是0,在y 轴上的截距是1-,求这个二次函数的解析式.变式 已知y 是x 的二次函数,当2=x 时,4-=y ,当4=y 时,x 恰为方程0822=--x x 的根,求这个函数的解析式.例5 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位.例6 求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式:(1)直线x =-1; (2)直线y =1.三、练习:1.填空:(1)已知二次函数的图象经过点)2,1(-,)3,0(-,)6,1(--,则它的解析式是__________.(2)已知二次函数当3=x 时,函数有最小值5,且经过点)11,1(,则它的解析式是__________.(3)已知二次函数的图像与x 轴的两交点间的距离是8,且顶点为)5,1(M ,则它的解析式是________.(4)函数4)1(2+--=x y 的图象向左平移2个单位,向下平移3个单位后的图象的解析式是_______.(5)函数3)3(22-+-=x y 的图象关于直线1-=x 对称的图象对应的解析式为______________.2. 已知二次函数c bx ax y ++=2的图像经过点)1,1(--,其对称轴为2-=x ,且在x 轴上截得的线段长为22,求函数的解析式.3. 已知二次函数25)21(2+-=x a y 的最大值为25,且方程025)21(2=+-x a 两根的立方和为19,求函数表达式.4. 已知二次函数22-+-=m mx x y 。
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
板块考试要求A 级要求B 级要求C 级要求二次函数能根据实际情境了解二次函数的意义;会利用描点法画出二次函数的图像能通过对实际问题中的情境分析确定二次函数的表达式;能从函数图像上认识函数的性质;会确定图像的顶点、对称轴和开口方向;会利用二次函数的图像求出二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识结合的有关问题一、二次函数的图像与系数关系1. a 决定抛物线的开口方向:当0a >时⇔抛物线开口向上;当0a <时⇔抛物线开口向下a 决定抛物线的开口大小:a 越大,抛物线开口越小; a 越小,抛物线开口越大.注:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反.2. b 和a 共同决定抛物线对称轴的位置.(对称轴为:2bx a=-)当0b =时,抛物线的对称轴为y 轴; 当,a b 同号时,对称轴在y 轴的左侧; 当,a b 异号时,对称轴在y 轴的右侧.3. c 的大小决定抛物线与y 轴交点的位置.(抛物线与y 轴的交点为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴.二、二次函数的三种表达方式(1)一般式:()20y ax bx c a =++≠ (2)顶点式:()2y a x h k =-+()0a ≠(3)双根式(交点式):()()()120y a x x x x a =--≠2.如何设点:⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +,.其中10x =时,该点为直线与y 轴交知识点睛中考要求第二讲二次函数的解析式点.⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为()2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12bx a=-时,该点为抛物线顶点. ⑶ 点()11x y ,关于()00x x ,的对称点为()010122x x y y --,. 4.如何设解析式:① 已知任意3点坐标,可用一般式求解二次函数解析式;② 已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式;③ 已知抛物线与x 的两个交点坐标,可用交点式求解二次函数解析式.④ 已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例)注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.一、二次函数图象分布与系数的关系【例1】 ⑴(07济南)已知2y ax bx =+的图象如下左图所示,则y ax b =-的图象一定过( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限⑵(07常州)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下中图,则a 的值为( )A. 2-B. 2-C. 1D. 2⑶(07南宁)已知二次函数2y ax bx c =++的图象如下右图所示,则点()P a bc ,在第 象限. OyxyxAO yxO重、难点1. 灵活应用二次函数的三种表达形式,求二次函数解析式。
二次函数课件Document number【980KGB-6898YT-769T8CB-246UT-18GG08】第二章 二次函数A 卷一、选择题(共25分)1.二次函数y=x 2+4x+c 的对称轴方程是 ( ) = -2 =1 C.x=2 D.由c 的值确定2.已知抛物线y=ax 2+bx+c 经过原点和第一、二、三象限,那么 ( ) >0,b>0,c>0 <0,b<0,c=0 C.a<0,b<0,c>0 >0,b>0,c=03.若(2, 5)、(4, 5)是抛物线y = ax 2+bx+c 上的两点,则它的对称轴方程是 ( )= -1 = 1 C.x = 2 = 34.若直线y=x-n 与抛物线y = x 2-x-n 的交点在x 轴上,则n 的取值一定为 ( ).2 C 或2 D.任意实数5.二次函数y = ax 2+bx+c 的图像如图所示,则点(,a bc c)在直角坐标系中的 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.你知道吗平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4m ,手距地面均为lm ,学生丙、丁分别站在距甲拿绳的手水平距离lm 、2.5m 处.绳子在甩到最高处 时刚好通过丙、丁的头顶.已知学生丙的身高是1.5m ,则学 生丁的身高为(建立的平面直角坐标系如图所示)( )A.1.5mB.1.625mC.1.66mD.1.67m7.已知抛物线y=21(4)33x --的部分图像(如图)图像再次与x 轴相交时的坐标是 ( ) A.(5,0) B.(6,0 ) C.(7,0) D.(8,0 ) 8.如图,四个二次函数的图像中,分别对应的是①y = ax 2;②y = ax 2;③y = cx 2; ④y = cx 2.则a 、b 、c 、d 的大小关系为( ) >b>c>d B. a>b>d> c > a >c>d >a>d> c9.(05绍兴)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=(t 的单位:s , h 的单位:m )可以描述他跳跃时重心高度的变化.则他起跳后到重心最高时所用的时间是()二、填空题(共25分)10.抛物线y = ax2+bx+c如图所示,则它关于x轴对称的抛物线的解析式是 .11.若抛物线y = x2+(k-1)x+(k+3)经过原点,则k= .12.如果函数y = ax2+4x-16的图像的顶点的横坐标为l,则a的值为 .13.已知抛物线y = ax2+12x-19的顶点的横坐标是3,则 a= .14.抛物线y = a(x-k)2+m的对称轴是直线,顶点坐标是 .15.抛物线y = 2x2+bx+c的顶点坐标为(2,-3),则b= , c= .三、解答题(共 50 分)16.(8分)已知二次函数的图像经过(3,0)、(2,-3)点,对称轴x=l,求这个函数的解析式.17.(10分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B的水平距离为600cm,炮弹运行的最大高度为1200m.(l)求此抛物线的解析式.(2)若在A、B之间距离A点500m处有一高350cm的障碍物,计算炮弹能否越过障碍物.18.(10分)已知函数y = x2+bx-1的图像经过(3,2).(l)求这个函数的解析式;(2)画出它的图像,并指出图像的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.19.(10分)利用9m长的木料做一“日”字形窗框,它的长和宽各为多少时,窗户面积最大20. (12分)卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示大桥拱内桥长,DE1cm0.45cm2≈第二章 二次函数B 卷一、选择题(共25分)1.在下列关系式中,y 是x 的二次函数的关系式是 ( ) +x 2=1 +2=0 C.y+x 2-2=0 +4=02.设等边三角形的边长为x(x>0),面积为y ,则y 与x 的函数关系式是( ) A.212y x =B.214y x = C.23y x = D.23y x = 3.抛物线y=x 2-8x+c 的顶点在x 轴上,则c 等于( ) B.-4 C.84.若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax 2+bx+c ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴平行于y 轴 C.开口向上,对称轴平行于y 轴 D.开口向下,对称轴是y 轴5.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( )6.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( ),4 ,-4 C.2,-4 ,07.对于函数y=-x 2+2x-2使得y 随x 的增大而增大的x 的取值范围是 ( ) >-1 ≥0 C.x ≤0 <-18.抛物线y=x 2-(m+2)x+3(m-1)与x 轴 ( 0 A.一定有两个交点 B .只有一个交点 C .有两个或一个交点 D .没有交点9.二次函数y=2x 2+mx-5的图像与x 轴交于点A (x 1, 0)、B(x 2,0), 且x 12+x 22=294,则m 的值为( )B.-3C.3或-3D.以上都不对10.对于任何的实数t,抛物线 y=x2 + (2-t) x + t总经过一个固定的点,这个点是( )A . (1, 0) B.(-l, 0) C.(-1, 3) D. (l, 3)二、填空题(共25 分)11.抛物线y=-2x+x2+7的开口向,对称轴是,顶点是 , 所在象限是 .12.若二次函数y=mx2-3x+2m-m2的图像过原点,则m的值是 .13.如果把抛物线y=2x2-1向左平移l个单位,同时向上平移4个单位,那么得到的新的抛物线是 .14.对于二次函数y=ax2, 已知当x由1增加到2时,函数值减少4,则常数a的值是 .15.已知二次函数y=x2-6x+n的最小值为1,那么n的值是 .16.抛物线在y=x2-2x-3在x轴上截得的线段长度是 .17.设矩形窗户的周长为6m,则窗户面积S(m2)与窗户宽x (m)之间的函数关系式是,自变量x的取值范围是 .18.设A、B、C三点依次分别是抛物线y=x2-2x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是 .19.抛物线上有三点(-2, 3)、(2,-8)、(1,3),此抛物线的解析式为 .20.已知一个二次函数与x轴相交于A、B, 与y轴相交于C,使得△ABC为直角三角形,这样的函数有许多,其中一个是 .三、解答题(共50分)21.(4分)已知抛物线的顶点坐标为M(l,-2 ),且经过点N(2,3).求此二次函数的解析式.22.(8分)把抛物线y=ax2+bx+c向左平移2个单位,同时向下平移l个单位后,恰好与抛物线y=2x2+4x+1重合.请求出a、b、c的值,并画出一个比较准确的示意图.23.(8分)二次函数y=ax2+bx+c的图像的一部分如下图,已知它的顶点M在第二象限,且该函数图像经过点A (l,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图像与x轴的另一个交点为c,当△AMC的面积为△ABC面积的倍时,求a的值.24.(10分)对于抛物线y=x2+bx+c给出以下陈述:①它的对称轴为x=2;②它与x轴有两个交点为A、B;③△APB的面积不小于27(P为抛物线的顶点).求使①、②、③得以同时成立时,常数b、c的取值限制.25.(10分)分别写出函数y=x2+ax+3(-1≤x≤1)在常数a满足下列条件时的最小值:(l)0<a<3;(2)a>.提示:可以利用图像哦,最小值可用含有a的代数式表示26.(10分)已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10, OC=6,(1)如图甲:在OA上选取一点D ,将△COD沿CD翻折,使点O落在BC边上,记为E.求折痕CD 所在直线的解析式;(2)如图乙:在OC上选取一点F,将△AOF沿AF翻折,使点O落在BC边,记为G.①求折痕AF所在直线的解析式;②再作GH 2112y x h =-+(3)如图丙:一般地,在以OA 、OC 上选取适当的点I 、J,使纸片沿IJ 翻折后,点O 落在BC 边上,记为K .请你猜想:①折痕IJ 所在直线与第(2)题②中的抛物线会有几个公共点;② 经过K 作KL 将以上两项猜想在(l )的情形下分别进行验证.第二章 二次函数答案A 卷B 卷。
第二课时一、教学目标1. 使学生会用描点法画出二次函数k h x a y +-=2)(的图像; 2. 使学生知道抛物线k h x a y +-=2)(的对称轴与顶点坐标;3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力;4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想;5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。
二、教学重点会画形如k h x a y +-=2)(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。
三、教学难点:确定形如 k h x a y +-=2)(的二次函数的顶点坐标和对称轴。
4.解决办法:四、教具准备 三角板或投影片1.教师出示投影片,复习222)(,,h x a y k ax y ax y -=+==。
2.请学生动手画1)1(212-+-=x y 的图像,正好复习图像的画法,完成表格。
3.小结k h x a y +-=2)(的性质⎪⎪⎩⎪⎪⎨⎧平移顶点坐标对称轴开口方向4.练习五、教学过程提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如222)(,h x a y k ax y ax y -=+==和。
(板书)2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下我们将学习形如什么样的二次函数的问题吗?由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2)(的二次函数的有关问题.(板书)一、复习引入首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(21,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标.这里之所以加上画函数2)1(21+-=x y 的图像,是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、更具体.画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(212-+-=x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用.(l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点.在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确.(2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.)(3)关于连线:特别要注意顶点附近的大致走向。
最后画的抛物线应平滑,对称,并符合抛物线的特点.由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演.学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问:(1)你能否指出抛物线1)1(212-+-=x y 的开口方向,对称轴,顶点坐标?(2)我们已知抛物线的开口方向是由二次函数k h x a y +-=2)(中的a 的值决定的,你能通过上表中的特征,试着总结出抛物线的对称轴和顶点坐标是由什么决定的吗?这个问题由于是本节课的重点问题,而且不是很容易说清楚,可由学生进行广泛的讨论,先得出对称员的表示方法,再得出顶点坐标。
若学生在讨论时没有头绪,教师可适当引导,让学生把这四个函数都改写成k h x a y +-=2)(的形式,可得0)0(212122+--=-=x x y ;[]0)1((21)1(211)0(211212222+---=+-=---=--=x x y x x y[])1()1((21)1(2122-+---=+-=x x y 。
然后从这四个式子中加以观察,分析,得出结论;(板书)一般地,抛物线k h x a y +-=2)(有如下特点: ①0>a 时,开口向上;0<a 时,开口向下; ②对称轴是直线h x =; ③顶点坐标是),(k h 。
(3)抛物线1)1(21,)1(21,121,212222-+-=+-=--=-=x y x y x y x y 有什么关系?答:形状相同,位置不同。
(4)它们的位置有什么关系?这个问题可视学生的程度来决定问还是不问,以及回答到什么程度。
根据上节课的学习,学生能想到是平移科来的,可把这四个图像分成以下几个问题来讨论:①抛物线1212--=x y 是由抛物线221x y -=怎样移动得到的? ②抛物线2)1(21+-=x y 是由抛物线221x y -=怎样移动得到的?③抛物线1)1(212-+-=x y 是由抛物线1212--=x y 怎样移动得到的?④抛物线1)1(212-+-=x y 是由抛物线2)1(21+-=x y 怎样移动得到的?⑤抛物线1)1(212-+-=x y 是由抛物线221x y -=怎样移动得到的?这个问题分两种方式回答:先沿y 轴,再沿x 轴移动;或先沿x 轴,再沿y 轴移动。
通过这5个问题可使学生由浅入深地得到这四者之间的关系,如图所示:注意:基本形式中的符号,特别是h 。
练习:P120练习口答,及时纠正错误。
(四)总结、扩展一般的二次函数,都可以变形成k h x a y +-=2)(的形式,其中: 1.a 能决定什么?怎样决定的?答:a 的符号决定抛物线的开口方向;a 的绝对值大小抛物线的开口大小。
2.它的对称轴是什么?顶点坐标是什么? 六、布置作业教材P124中1(3);P124中3(1)、(2);P125中1B 13.7 二次函数c bx ax y ++=2的图像(二)抛物线k h x a y +-=2)(的特点:例: (1)(2) (3)二次函数试题题号 一 二三 总分 1920 21 22 23 24 25 26分数成功! 一选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系3、在Rt △ABC 中,∠C=90。
,AB=5,AC=3.则sinB 的值是( ) A53 B 54 C 43 D 34 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y=21 x 2-6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,①abc 〈0 ②a +c 〈b③a+b+c 〉0 ④A 1B 2C 3D 47、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =ca b + =ba c+ 的值是( )A -1B 1C 21D -218、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) 9、如图所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 的面积为( )A 6B 4C 3 D1 10、如图所示,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且cos α= 53, AB=4,则AD 的长为( )A 3 B316 C 320 D 51611 某学校的围墙上端由一段段相同的拱形栅栏组面,如图所示,其拱形图形为抛物线的一部分,栅栏的路径A B 间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米,以OA CDE为原点, OC所在的直线为y 轴建立平面直角坐标系,根据以上的数据,则一段栅栏所需立柱的总长度(精确到0.1米)为( )米A 1.5B 1.9C 2.3D 2.512、如图所示,已知△ABC 中,BC =8,BC 上的高h=4,D为BC上一点.EF∥BC,交AB与点E,交AC于点F(EF不过A、B),设E到BC的距离为x ,则△DE F的面积y 关于x 的函数的图象大致为( )A BC D二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是———————————————。
14、函数y=x--211中的自变量的取值范围是———————————————。
15、已知α为等边三角形的一个内角,则sin α等于———————————————。
16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c=-2的根为———————————————。
17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 18、如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=3,AB=1,则点A1的坐标是———————、解答题:19 计算:2cos60°+3sin60°-3tan45°20、 如图,河对岸有古塔AB,小敏在C处测得塔顶A的仰角α,向塔前进s 米到达D点,在D处测得A 的仰角为β,则塔高是多少米?C BD FAE C D B A21 已知抛物线y=x2+(n-3)x+n+1经过坐标原点O。
⑴求这条抛物线的顶点P的坐标⑵设这条抛物线与x轴的另外一个交点为A,求以直线PA为图象的一次函数解析式22 已知:在△ABC中,BC=20,高AD=16,内接矩形EFGH的顶点E、F在BC上,G、H 分别在AC、AB上,求内接矩形EFGH的最大面积。