必修2第三章直线与方程
- 格式:doc
- 大小:790.00 KB
- 文档页数:22
第三章直线与方程3.1.1 直线的倾斜角和斜率授课类型:新授课授课时间:第周年月日(星期)一、教学目标:1、知识与技能:理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式。
2、过程与方法:(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
(2)经历用代数方法刻画直线斜率公式的推导过程。
3、情感态度与价值观:(1)通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力。
(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神。
二、教学重点、难点重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难点:直线的斜率与它的倾斜角之间的关系。
三、学法指导:启发、引导、讨论。
四、教学过程:(一)直线的倾斜角的概念思考:对于平面直角坐标系内的一条直线l,它的位置由哪些条件确定?问题1:已知直线l经过点P,直线l的位置能够确定吗?问题2:过一点P可以作无数条直线l1,l2,l3,…,它们都经过点P(组成一个直线束),这些直线区别在哪里呢?定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角...。
特别地,当直线l 与x 轴平行或重合时,规定α = 0°。
范围:0° ≤ α <180°。
当直线l 与x 轴垂直时,α = 90°。
当直线a ∥b ∥c ,它们的倾斜角α相等,所以一个倾斜角α不能确定一条直线。
确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P .和一个倾斜角......α.. 。
(二)直线的斜率思考:日常生活中,还有没有表示倾斜程度的量?(前进量升高量比坡度=)() 定义:一条直线的倾斜角α(α ≠ 90°)的正切值叫做这条直线的斜率。
高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。
(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。
定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。
②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。
§3.1直线的倾斜角与斜率1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.一、课前准备(预习教材P 90~ P 91,找出疑惑之处)复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学※ 学习探究新知1:当直线与轴相交时,取轴作为基准,轴正向与直线向上方向之间所成的角l x x x l 叫做直线的倾斜角.αl 关键:①直线向上方向;②轴的正方向;③小于平角的正角.x 注意:当直线与轴平行或重合时,我们规定它的倾斜角为0度..x 试试:请描出下列各直线的倾斜角.反思:直线倾斜角的范围?探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?新知2:一条直线的倾斜角的正切值叫做这条直线的斜率.记为.()2παα≠tan k α=试试:已知各直线倾斜角,则其斜率的值为⑴当时,则 ;0o α=k ⑵当时,则 ;090o o α<<k ⑶当时,则 ;90oα=k ⑷当时,则 .090180o α<<k 新知3:已知直线上两点的直线的斜率公式:.111222(,),(,)P x y P x y 12()x x ≠2121y y k x x -=-探究任务三:1.已知直线上两点运用上述公式计算直线的斜率时,与两点坐标的顺序1212(,),(,),A a a B b b ,A B 有关吗?2.当直线平行于轴时,或与轴重合时,上述公式还需要适用吗?为什么?y y ※ 典型例题例1 已知直线的倾斜角,求直线的斜率:⑴;30οα=⑵;135οα=⑶;60οα=⑷90οα=变式:已知直线的斜率,求其倾斜角.⑴;0k =⑵;1k =⑶;k =⑷不存在.k 例2 求经过两点的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝(2,3),(4,7)A B 角.2...[0,180)︒的坐标来111222(,),(,)P x y P x y 时,直线的斜率是不存在的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列叙述中不正确的是( ).A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都惟一对应一个倾斜角C .与坐标轴垂直的直线的倾斜角为或0o 90οD .若直线的倾斜角为,则直线的斜率为αtan α2. 经过两点的直线的倾斜角( ).(2,0),(5,3)A B --A . B . C . D .45ο135ο90ο60ο3. 过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( ).A.1 B.4 C.1或3 D.1或44. 直线经过二、三、四象限,的倾斜角为,斜率为,则为 角;的取值范围 .l αk αk 5. 已知直线l 1的倾斜角为1,则l 1关于x 轴对称的直线l 2的倾斜角为________.α2α1.已知点,若直线l 过点(2,3),(3,2)A B --(1,1)P 且与线段相交,求直线l 的斜率的取值范围.AB k 2. 已知直线过两点,求此直线的斜率和倾斜角.l 2211(2,()),(2,())A t B t t t-+-=12//l l ⇔1k 2k .如果,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?12l l ⊥.121k k =-⇔121k k =-,试判断直线与的位置关系, 并证明你的结论.(4,0),(3,1),(1,2)B P Q ---BA PQ 三点,求点D 的坐标,使直线,且.1),(2,2),(3,0)B C CD AB ⊥//CB AD4变式:已知,试判断三角形的形状.(5,1),(1,1),(2,3)A B C -ABC ※ 动手试试练1. 试确定的值,使过点的直线与过点的直线m (,1),(1,)A m B m -(1,2),(5,0)P Q -⑴平行; ⑵垂直练2. 已知点,在坐标轴上有一点,若,求点的坐标.(3,4)A B 2AB k =B 三、总结提升:※ 学习小结:1.或的斜率都不存在且不重合.1212//l l k k ⇔=12,l l 2.或且的斜率不存在,或且的斜率不存在.12121l l k k ⊥⇔=-A 10k =2l 20k =1l※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是( ).A .若,则12l l ⊥121k k =-A B .若直线,则两直线的斜率相等12//l l C .若直线、的斜率均不存在,则1l 2l 12l l ⊥D .若两直线的斜率不相等,则两直线不平行2. 过点和点的直线与直线的位置关系是( ).(1,2)A (3,2)B -1y =A .相交 B.平行 C.重合 D.以上都不对3. 经过与的直线与斜率为的直线互助垂直,则值为().(,3)m (2,)m l 4-m A . B . C . D .75-75145-1454. 已知三点在同一直线上,则的值为.(,2),(5,1),(4,2)A a B C a -a 5. 顺次连结,所组成的图形是.(4,3),(2,5),(6,3),(3,0)A B C D --1.若已知直线上的点满足,直线上的点满足,1l 260ax y ++=2l 2(1)10(1)x a y a a +-+-=≠试求为何值时,⑴;⑵.a 12//l l 12l l ⊥2. 已知定点,以为直径的端点,作圆与轴有交点,求交点的坐标.(1,3),(4,2)A B -,A B x C C§ 3.2.1直线的点斜式方程1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系.一、课前准备:(预习教材P 101~ P 104,找出疑惑之处)复习1.已知直线都有斜率,如果,则12,l l 12//l l;如果,则.12l l ⊥2.若三点在同一直线上,则的值为.(3,1),(2,),(8,11)A B k C -k 3.已知长方形的三个顶点的坐标分别为,则第四个顶点的坐标 ABCD (0,1),(1,0),(3,2)A B C D .4.直线的倾斜角与斜率有何关系?什么样的直线没有斜率?二、新课导学:※ 学习探究问题1:在直线坐标系内确定一条直线,应知道哪些条件?新知1:已知直线经过点,且斜率为,则方程为直线的点斜式方l 00(,)P x y k 00()y y k x x -=-程.问题2:直线的点斜式方程能否表示坐标平面上的所有直线呢?问题3:⑴轴所在直线的方程是,轴所在直线的方程是.x y ⑵经过点且平行于轴(即垂直于轴)的直线方程是.000(,)P x y x y ⑶经过点且平行于轴(即垂直于轴)的直线方程是.000(,)P x y y x 问题4:已知直线的斜率为,且与轴的交点为,求直线的方程.l k y (0,)b l新知2:直线与轴交点的纵坐标叫做直线在轴上的截距(intercept ).直线l y (0,)b b l y 叫做直线的斜截式方程.y kx b =+注意:截距就是函数图象与轴交点的纵坐标.b y 问题5:能否用斜截式表示平面内的所有直线? 斜截式与我们学过的一次函数表达式比较你会得出什么结论.※ 典型例题例1 直线过点,且倾斜角为,求直线的点斜式和斜截式方程,并画出直线.(1,2)-135οl l 变式:⑴直线过点,且平行于轴的直线方程 (1,2)-x ;⑵直线过点,且平行于轴的直线方程;(1,2)-x ⑶直线过点,且过原点的直线方程.(1,2)-例2 写出下列直线的斜截式方程,并画出图形:⑴,在轴上的距截是-2;y ⑵ 斜角是,在轴上的距截是0135y变式:已知直线的方程,求直线的斜率及纵截距.3260x y+-=※动手试试练1. 求经过点,且与直线平行的直线方程.(1,2)23y x=-练2. 求直线与坐标轴所围成的三角形的面积.48y x=+三、总结提升:※学习小结1.直线的方程:⑴点斜式;⑵斜截式;这两个公式都只能在斜率存00()y y k x x-=-y kx b=+.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 过点,倾斜角为的直线方程是().(4,2)-135οA B20y++-=360y+++=C.D.40x--=40x+-=2. 已知直线的方程是,则().21y x+=--A.直线经过点,斜率为(2,1)-1-B.直线经过点,斜率为(2,1)--1C.直线经过点,斜率为(1,2)--1-D.直线经过点,斜率为(1,2)-1-3. 直线,当变化时,所有直线恒过定点().130kx y k-+-=kA.B.(3,1)C.D.(0,0)(1,3)(1,3)--4. 直线的倾斜角比直线的倾斜角大,且直线的纵截距为3,则直线的方程.l12y=+45οl5. 已知点,则线段的垂直平分线的方程.(1,2),(3,1)AB AB1. 已知三角形的三个顶点,求这个三角形的三边所在的直线方程.(2,2),(3,2),(3,0)A B C-2. 直线过点且与轴、轴分别交于两点,若恰为线段的中点,求直线l(2,3)P-x y,A B P AB的方程.l6§ 3.2.2直线的两点式方程1.掌握直线方程的两点的形式特点及适用范围;2.了解直线方程截距式的形式特点及适用范围.一、课前准备:(预习教材P105~ P106,找出疑惑之处)复习1:直线过点,斜率是1,则直线方程为;直线的倾斜角(2,3)-为,纵截距为,则直线方程为.60ο3-2.与直线垂直且过点的直线方程为21y x=+(1,2).3.方程表示过点,斜率是,倾斜角是,在y轴上的截()331--=+xy__________________距是的直线.______4.已知直线经过两点,求直线的方程.l12(1,2),(3,5)P P l二、新课导学:※学习探究新知1:已知直线上两点且,则通过这两点的直线方程为112222(,),(,)P x x P x y1212(,)x x y y≠≠,由于这个直线方程由两点确定,所以我们把它叫直线的两点1112122121(,)y y x xx x y yy y x x--=≠≠--式方程,简称两点式(two-point form).问题1:哪些直线不能用两点式表示?例已知直线过,求直线的方程并画出图象.(1,0),(0,2)A B-新知2:已知直线与轴的交点为,与轴的交点为,其中,则直l x(,0)A a y(0,)B b0,0a b≠≠线的方程叫做直线的截距式方程.l1=+byax注意:直线与轴交点(,0)的横坐标叫做直线在轴上的截距;直线与y轴交点(0,)x a a x b的纵坐标叫做直线在轴上的截距.b y问题3:,表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?a b问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?※典型例题例1求过下列两点的直线的两点式方程,再化为截距式方程.⑴;(2,1),(0,3)A B-⑵.(4,5),(0,0)A B--例2 已知三角形的三个顶点,(5,0),(3,3)A B--,求边所在直线的方程,以及该边上中线所在直线的方程.(0,2)C BC,则.(,)M x y 2121,22x x y y x y ++==的值为( ).b 需满足条件( ),,A B C 的直线方程 .取到最小值时,求直线的方||||PA PB ⋅l .§ 3.2.3直线的一般式方程1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.一、课前准备:(预习教材P 107~ P 109,找出疑惑之处)复习1:⑴已知直线经过原点和点,则直线的方程 .(0,4)⑵在轴上截距为,在轴上的截距为3的直线方程 .x 1-y ⑶已知点,则线段的垂直平分线方程是.(1,2),(3,1)A B AB 复习2:平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?,x y 二、新课导学:※ 学习探究新知:关于的二元一次方程(A ,B 不同时为0)叫做直线的一般式方程,,x y 0Ax By C ++=简称一般式(general form ).注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题4:在方程中,为何值时,方程表示的直线⑴平行于轴;⑵平行0Ax By C ++=,,A B C x 于轴;⑶与轴重合;⑷与重合.y x y ※ 典型例题例1 已知直线经过点,斜率为,求直线的点斜式和一般式方程.(6,4)A -12例2 把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上l 260x y -+=l x y 的截距,并画出图形.变式:求下列直线的斜率和在轴上的截距,并画出图形⑴;⑵;⑶y 350x y +-=145x y-=;⑷;⑸.20x y +=7640x y -+=270y -=10※ 动手试试练1.根据下列各条件写出直线的方程,并且化成一般式:⑴ 斜率是,经过点;12-(8,2)A -⑵ 经过点,平行于轴;(4,2)B x ⑶ 在轴和轴上的截距分别是;x y 3,32-⑷ 经过两点.12(3,2),(5,4)P P --练2.设A 、B 是轴上的两点,点P 的横坐标为2,x 且|PA |=|PB |,若直线PA 的方程为,求直线PB 的方10x y -+=程三、总结提升:※ 学习小结1.通过对直线方程的四种特殊形式的复习和变形,概括出直线方程的一般形式:(A 、B 不全为0);0Ax By C ++=2.点在直线上00(,)x y 0Ax By C ++=⇔00Ax By +※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1 斜率为,在轴上截距为2的直线的一般式方程是( ).3-x A . B .360x y ++=320x y -+=C .D .360x y +-=320x y --=2. 若方程表示一条直线,则( ).0Ax By C ++= A . B .1A ≠0B ≠C . D .0AB ≠220A B +≠3. 已知直线和的夹角的平分线为,如果的方程是,那么的1l 2l y x =1l 0(0)ax by c ab ++=>2l 方程为( ).A .B .0bx ay c ++=0ax by c -+=C .D .0bx ay c +-=0bx ay c -+=4. 直线在轴上的截距为,在轴上的截距为,则.270x y ++=x a y b a b +=5. 直线与直线1:2(1)40l x m y +++=2:3l mx y+平行,则. 20-=m =1. 菱形的两条对角线长分别等于8和6,并且分别位于轴和轴上,求菱形各边所在的直线x y 的方程.2.光线由点射出,在直线上进行反射,已知反射光线过点,(1,4)A -:2360l x y +-=62(3,13B 求反射光线所在直线的方程.§ 3.1两条直线的交点坐标1.掌握判断两直线相交的方法;会求两直线交点坐标; 2.体会判断两直线相交中的数形结合思想.一、课前准备:(预习教材P 112~ P 114,找出疑惑之处)1.经过点,且与直线垂直的直线.(1,2)A -210x y +-+2.点斜式、斜截式、两点式和截距式能否表示垂直于坐标轴的直线?3.平面直角系中两条直线的位置关系有几种?二、新课导学:※ 学习探究问题1:已知两直线方程,,如何判断这两条直线的1111:0l A x B y C ++=222:l A x B y +20C +=位置关系?问题2:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?※ 典型例题例1 求下列两直线,1:3420l x y +-=2:22l x y ++的交点坐标.0=变式:判断下列各对直线的位置关系.如果相交,求出交点坐标.⑴,;1:0l x y -=2:33100l x y +-=⑵,;1:30l x y -=2:630l x y -=⑶,.1:3450l x y +-=2:68100l x y +-=例2 求经过两直线和的交点且与直线平行的直线方程.2330x y --=20x y ++=310x y +-=变式:求经过两直线和的交点且与直线垂直的直线方程.2330x y --=20x y ++=310x y +-=例3 已知两点,求经过两直线和的交点和线段(2,1),(4,3)A B -2310x y -+=3210x y +-=中点的直线的方程.AB l ※ 动手试试练1. 求直线关于直线对称的直线方程.20x y --=330x y -+=练2. 已知直线的方程为,直线1l 30Ax y C ++=2l 的方程为,若的交点在轴上,求的值.2340x y -+=12,l l y C 三、总结提升:※ 学习小结1.两直线的交点问题.一般地,将两条直线的方程联立,得方程组,若方程1112220A x B y C A x B y C ++=⎧⎨++=⎩组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行..※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两直线的交点坐标为( ).12:210,:220l x y l x y ++=-++=A . B . C . D .13(,)2413(,)24-13(,24--13(,)24-2. 两条直线和的位置关系是( ).320x y n ++=2310x y -+=A .平行 B .相交且垂直 C .相交但不垂直 D .与的值有关n 3. 与直线关于点对称的直线方程是( ).2360x y +-=(1,1)-A .B .3220x y -+=2370x y ++=C .D .32120x y --=2380x y ++=4. 光线从射到轴上的一点后被轴反射,则反射光线所在的直线方程.(2,3)M -x (1,0)P x 5. 已知点,则点关于点的对称点的坐标.(5,8),(4,1)AB A BC 1. 直线与直线的交点在第四象限,求的取值范围.54210x y m +--=230x y m +-=m 2. 已知为实数,两直线:,:相交于一点,求证交点不可能在a 1l 10ax y ++=2l 0x y a +-=第一象限及轴上.x§ 3.3.2两点间的距离1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性. 3.体会事物之间的内在联系,,能用代数方法解决几何问题.一、课前准备:(预习教材P 115~ P 116,找出疑惑之处)1.直线,无论取任意实数,它都过点.0mx y m +-=m 2.若直线与直线的交点为,则.111:1l a x b y +=222:1l a x b y +=(2,1)-112a b -=3.当为何值时,直线过直线k 3y kx =+2x y-与的交点?10+=5y x =+二、新课导学:※ 学习探究问题1:已知数轴上两点,怎么求的距离?,A B ,A B 问题2:怎么求坐标平面上两点的距离?及的中点坐标?,A B ,A B 新知:已知平面上两点,则.111222(,),(,)P x y P xy 12PP 特殊地:与原点的距离为.(,)P xy OP =※ 典型例题例1 已知点求线段的长及中点坐标.(8,10),(4,4)A B -AB 变式:已知点,在轴上求一点,使,并求的值.(1,2),A B -x PA PB =PA 2 证明平行四边行四条边的平方和等于两条对角线的平方和.变式:证明直角三角形斜边上的中点到三个顶点的距离相等.).D. 较差10分)计分:).D .3 )三角形.=10和2-=10相交于一点,则的值( ).y x y a .1-,使,则.P PA PB =PA =P (1,0)后被轴反射,则反射光线所在的直线的方程 x 3的交点,且垂直于第一条直线.0,:相交于一点,求证交点不可01=++y 2l 0=-+a y x.的坐标为,直线方程P 00(,)x y 中,如果,或,怎样用点的坐标和直线的方程直接求点P 到直0A =0B =.到直线的距离.(1,0)B -34-1x y -0=:,:1l 2380x y +-=2l 23x y +,1l 10Ax By C ++=2:l平行且到的距离为2的直线方程.1260y -+=l ). C. 一般 D. 较差5分钟 满分:10分)计分:的距离( )12530x y +-=C . D .14132813).B.240x y +-=D.350x y +-= ).B .0x y +=D .0x y -=2-1=0和3x -2+1=0的距离y y 距离为1,且与点距离为2的直线共有条.(1,2)A (3,1)B ,一边所在直线的方程为,求其他三边所在的直(1,0)G -350x y +-=的,求菱形各边和两条对角线所在直线的倾斜角和斜率.ABCD 60O BAD ∠=中,,ABC ∆(1,1),(5,1)A B .求45O .和的交点,且在两坐标轴上的截距相等的直线方3260x y ++=2570x y +-=,1:40l ax by -+=2:(1)l a x y-+的值.,a b ,并且直线与直线垂直;⑵直线与直线平行,并且坐标原点到3,1)-1l 2l 1l 2l .例5 过点作直线分别交轴、轴正半轴于两点,当面积最小时,求直线(4,2)P l x y ,A B AOB ∆的方程.l ※ 动手试试练1. 设直线的方程为,根据下列条件分别求的值.l (2)3m x y m ++=m ⑴在轴上的截距为;l x 2-⑵斜率为.1-练2.已知直线经过点且与两坐标轴围成单位面积的三角形,求该直线的方程.l (2,2)-三、总结提升:※ 学习小结1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般 式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差5分钟 满分:10分)计分:1. 点关于直线对称的点的坐标是().(3,9)3100x y +-=A .B.(1,3)--(17,9)-C .D .(1,3)-(17,9)-2.方程所表示的直线( ).(1)210()a x y a a R --++=∈A .恒过定点 B .恒过定点(2,3)-(2,3)C .恒过点和D .都是平行直线 (2,3)-(2,3)3.已知点到直线的距离等于1,则( ).(3,)m 40x +-=m= A B .C .D4.已知在过和的直线上,则.(3,)P a (2,1)M -(3,4)N -a =5. 将直线绕点按顺时针方向旋转,所得的直线方程是.2)y x =-(2,0)30o 1.已知直线12:220,:1l x ay a l ax y +--=+-a -.0=⑴若,试求的值;12//l l a ⑵若,试求的值12l l ⊥a 2.两平行直线分别过点和,12,l l 1(1,0)P (0,5)P ⑴若与的距离为5,求两直线的方程;1l 2l ⑵设与之间的距离是,求的取值范围.1l 2l d d。
3.1.1直线的倾斜角和斜率一、选择题1.下列说法正确的是…………………………………………………………( )A .一条直线和X 轴的正方向所成的正角,叫做这条直线的倾斜角B .直线的倾斜角α的取值范围是第一或第二象限C .和X 轴平行的直线,它的倾斜角为 180D .每一条直线都存在倾斜角,但并非每一条直线都存在斜率2.直线053=-+y x 的倾斜角是……………………………………………( )A . 120B . 150C . 60D . 303.过点P(2, 3)与Q(1, 5)的直线PQ 的斜率为………………………………( )A.23B.5C.2-D.21- 4.如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则 ………………( )A.k 1<k 2<k 3 B .k 3<k 1<k 2C.k 3<k 2<k 1 D .k 1<k 3<k 2二、填空题1.过点A(2, b)和点B(3, –2)的直线的倾斜角为43π,则b=____ ; 2.如果已知直线的倾斜角为32π,则直线的斜率为___________; 3.如果直线的斜率不存在,则直线的倾斜角为__________________; 4.若直线k 的斜率满足333<<-k ,则该直线的倾斜角α的范围是 . 三、解答题1.过点M(–2, a), N(a, 4)的直线的斜率为21-,求a 的值。
2.已知点P(3 2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,求点Q 的坐标。
3.已知直线1l 和2l 关于直线y=x 对称,若直线1l 的斜率为3,求直线2l 的斜率和倾斜角。
3.1.2两条直线平行和垂直的判定一、选择题1、下列命题正确的是……………………………………………………………( ) A 、平行的两条直线的斜率一定存在且相等 B 、平行的两条直线的倾斜角一定相等 C 、垂直的两条直线的斜率之积为—1 D 、只有斜率相等的两条直线才平行。
2、若直线1l 的倾斜角为1α,直线2l 的倾斜角为2α,且21l l ⊥,则有………( ) A 、02190=-αα B 、01290=-αα C 、02190=-αα D 、02190=+αα3、若直线1l 的倾斜角为1α,直线2l 的倾斜角为2α,且21sin sin αα=,试着判断两条直线的位置关系………………………………………………………( ) A 、平行 B 、相交 C 、相交或平行 D 、相交、平行或重合均有可能4、已知直线02:1=-+y x l 和直线02:2=+-y x l ,则两直线的关系为…( ) A 、平行 B 、相交 C 、相交且垂直 D 、无法确定二、填空、判断题1、已知点)12,2(),6,12(),4,6(),2,4(D C B A --,试着判断下列结论的正确性。
(1)、CD AB //【 】 (2)、CD AB ⊥ 【 】 (3)、BD AC // 【 】(4) 、BD AC ⊥【 】2、若直线21,l l 的斜率是方程0162=--x x 的两个根,则21,l l 的位置关系为_______;3、已知三点A (1,-1),B (4,P ),C (P ,0)共线,则P 的值为_________;4、若两条不重合的直线21,l l 的倾斜角分别为βα,,且21//l l ,则βα,的关系是__________。
三、解答题1、已知点)1,2(A 和直线04:=++y x l ,分别求过A 点l 的垂线和平行线。
2、若平行四边形ABCD 三个顶点的坐标为A(1,0),B(5,8),C(7,-4),求第四个顶点D 的坐标。
3、ABC ∆的顶点为),2(),1,1(),1,5(m C B A -,若ABC ∆是直角三角形,求m 的值。
3.2.1直线的点斜式方程一、选择题1、经过点(-2,2)倾斜角是030的直线的方程是………………………( ) A 、y +2 =33( x -2) B 、y+2=3(x -2) C 、y -2=33(x +2) D 、y -2=3(x +2) 2、已知直线方程y -3=3(x -4),则这条直线经过的已知点,倾斜角分别是……………………………………………………………………………( ) A 、(4,3);3π B 、(-3,-4);6π C 、(4,3);6π D 、(-4,-3);3π3、直线方程可表示成点斜式方程的条件是………………………………( ) A 、直线的斜率存在 B 、直线的斜率不存在 C 、直线不过原点 D 、不同于上述答案4、如图,直线aax y 1+=的图象可能是……………………………………( )二、填空题1、直线2)1(++=x k y 必定经过的点为___________;2、已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x=______________________;3、直线(m +2)x +(2-m)y=2m 在x 轴上的截距为3,则m=____________________ ;4、在y 轴上截距是2的直线的斜截式方程为______________________;三、解答题1、求过点A (-1,2)且倾斜角正弦值为53的直线方程.2、已知α是直线012=-+y x 的倾斜角,求α2sin 。
3、求直线02=+y x 的关于y 轴对称的直线方程。
3.2.2直线的两点式方程一、选择题1、过(x 1,y 1)和(x 2,y 2)两点的直线方程是………………………………( ) A 、121122x x x x y y y y --=-- B 、y y y y x x x x --=--121212 C 、()()()()x x x x y y y y 2112110-----= D 、(0))(())(112112=-----y y x x x x y y2、原点在直线l 上的射影为点P(-2,1),则直线l 的方程是…………………( ) A 、x +2y=0 B 、2x +y +3=0 C 、x -2y +4=0 D 、2x -y +5=03、直线 l 过点A(2,2),且与直线x -y -4=0和x 轴围成等腰三角形,则这样的直线的条数共有……………………………………………………………………( ) A 、1条 B 、2条 C 、3条 D 、4条4、经过点(3,9)和(1,1)的直线在x 轴上的截距为………………………( )A 、43B 、32- C 、 32D 、2二、填空题1、过点(2,3),且在两轴上截距相等的直线的方程为________________ ;2、已知点A(x ,-4)、B(2,8)、C(-4,x)三点共线,则x=______________________;3、若直线l 经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l 的有__ ___条。
4、由一条直线2x-y +2=0与两轴围成一直角三角形,则该三角形外接圆半径为___________。
三、解答题1、已知ABC ∆的顶点为)2,0(),6,4(),0,5(C B A ---,求三角形三边所在的直线方程和中线方程。
2、已知直线l在两轴上截距相等且与坐标轴围成的三角形的面积为2,求l的方程。
3、已知点A(2, 0), B(0, 6), O为坐标原点,若点C在线段OB上,已知三角形△ABC 的面积为4,求直线AC所在的方程。
3.2.3直线的一般式方程一、选择题1、下列直线中,斜率为34-,且不经过第一象限的是………………………( ) A 、3x +4y +7=0 B 、4x +3y +7=0 C 、4x +3y-42=0 D 、3x +4y-42=0 2、如果直线01=++y x 的倾斜角为………………………………………( ) A.045 B.0135 C. 030 D.不确定 3、线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是………………………………………………………………………( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-, 4、若直线0=++C By Ax 平行于y 轴,则满足条件………………………( ) A 、0,0≠=B A B 、0,0=≠B A C 、0,0≠=A C D 、0,0≠=C A二、填空题1、直线)0,0(1≠≠=+b a bya x 的一般式为__________________; 2、已知432,4322211=-=-y x y x ,则过点()()2211,,,y x B y x A 的直线l 的方程是_________________;3、直线032=++y x 与坐标轴围成的三角形面积是________________________;4、直线02=++y x 不通过第______________象限三、解答题1、已知直线0=++C By Ax ,(1)当0≠B 时,直线的斜率为多少?当0=B ? (2)当系数C B A ,,取什么值时,直线过原点?2、求经过两直线2=1-yx的交点且平行于直线x和0++y1+2=-yx的直线方程。
-74=33、一条光线从点)4,6(P射出,与x轴交于点)0,2(Q,经过x轴反射,求反射光线所在直线方程。
3.3.1两条直线的交点坐标一、选择题1、已知直线01=++y ax 和03=+-by x 交点是(1,1),则b a ,的值为…( ) A 、1,1==b a B 、4,2=-=b a C 、2,2=-=b a D 、2,4=-=b a2、点A (4,0)关于直线01=++y x 的对称点B 的坐标为…………………( ) A 、(1,5) B 、(-1,5) C 、(1,-5) D 、(-1,-5)3、若直线4x-3y-12=0被两坐标轴截得的线段长为c1,则c 的值为………( )A.1B. 51 C.±51D.±14、两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是……( ) A.平行 B.相交 C.重合 D.与m 有关二、填空题1、若直线01=++y ax 和直线0142=-+y x 没有交点,则a 的取值范围______________;2、直线012=+-y x 和直线03=++y x 的交点坐标为_____________;3、经过两条直线0543=-+y x 和0832=+-y x 的交点,且到()3,41P 和)5,4(2-P 两点距离相等的直线l 的方程为______________________;4、直线,031=-+-k y kx 当k 变动时,所有直线都过定点_______________。