2020年年高中数学第一章计数原理1.2.2第一课时组合与组合数公式学案
- 格式:pdf
- 大小:167.42 KB
- 文档页数:7
第一课时 组合与组合数公式从1,3,5,7问题1:所得商和积的个数相同吗? 提示:不相同. 问题2:它们是排列吗?提示:从1,3,5,7中任取两个数相除是排列,而相乘不是排列. 1.组合一般地,从n 个不同的元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 2.组合数从n 个不同的元素中取出m (m ≤n )个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.组合定义的理解(1)组合要求n 个元素是不同的,被取出的m 个元素也是不同的.(2)无序性是组合的特点,取出的m 个元素是不讲顺序的,也就是说元素没有位置的要求.(3)只要两个组合中的元素完全相同,则无论元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从1,3,5,7中任取两个数相除. 问题1:可以得到多少个不同的商? 提示:A 24=4×3=12个不同的商. 问题2:如何用分步法求商的个数?提示:第1步,从这四个数中任取两个数,有C 24种方法;第2步,将每个组合中的两个数排列,有A 22种排法.由分步乘法计数原理,可得商的个数为C 24A 22.问题3:由问题1、问题2你能得出计算C 24的公式吗? 提示:能.因为A 24=C 24A 22,所以C 24=A 24A 22=6.问题4:你能把问题3的结论推广到一般吗?提示:可以,从n 个不同元素中取出m 个元素的排列数可由以下两个步骤得到:第1步,从这n 个不同元素中取出m 个元素,共有C m n种不同的取法; 第2步,将取出的m 个元素全排列,共有A mm 种不同的排法. 由分步乘法计数原理知,A m n=C m n·A m m,故C m n=A m nA m m.组合数公式乘积形式C m n=A mn A m m=n n -n -n -m +m !阶乘形式C mn =n !m !n -m !n mmm组合数公式C mn =n n -n -n -m +m !的分子是连续m 个正整数n ,n -1,n -2,…,(n -m +1)的乘积,即从n 开始减小的连续m 个自然数的积,而分母是1,2,3,…,m 的乘积.当含有字母的组合式要进行变形论证时,利用此公式较为方便.判断下列各事件是排列问题还是组合问题. (1)10个人相互各写一封信,共写多少封信? (2)10个人相互通一次电话,共通了多少次电话? (3)从10个人中选3个代表去开会,有多少种选法? (4)从10个人里选出3个不同学科的代表,有多少种选法? (1)是排列问题.因为发信人与收信人是有区别的.(2)是组合问题.因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别. (3)是组合问题.因为3个代表之间没有顺序的区别.(4)是排列问题.因为3个人中,担任哪一学科的代表是有顺序区别的.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.从5个不同的元素a ,b ,c ,d ,e 中取出2个,写出所有不同的组合.解:要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示.由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de .(1)计算:C 410-C 37·A 33;(2)若1C 3n -1C 4n <2C 5n ,求n 的取值集合.(1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)由6n n -n --24n n -n -n -<240n n -n -2n -n -,可得n 2-11n -12<0, 解得-1<n <12. 又n ∈N *,且n ≥5,所以n ∈{5,6,7,8,9,10,11}.所以n 的取值集合为{5,6,7,8,9,10,11}.在利用组合数公式进行计算、化简时,要灵活运用组合数的性质,一般地,计算C mn 时,若m 比较大,可利用性质①,不计算C m n 而改为计算C n -mn ,在计算组合数之和时,常利用性质②.1.计算:C 58+C 98100·C 77.解:原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4 950=5 006.2.求等式C 5n -1+C 3n -3C 3n -3=195中的n 的值. 解:原方程可变形为C 5n -1C 3n -3+1=195,C 5n -1=145C 3n -3,即n -n -n -n -n -5!=145·n -n -n -3!,化简整理,得n 2-3n -54=0.解此二次方程,得n =9或n =-6(不合题意,舍去),所以n =9为所求.少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人中只能有1人参加.(1)从中任取5人是组合问题,共有C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C 59=126种不同的选法.(4)甲、乙、丙三人中只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C 13=3种选法;再从另外9人中选4人,有C 49种选法.共有C 13C 49=378种不同的选法.解答简单的组合问题的方法 (1)弄清要做的这件事是什么事;(2)选出的元素是否与顺序有关,也就是看看是不是组合问题; (3)结合两计数原理利用组合数公式求出结果.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名教师去参加会议,有多少种不同的选法? (2)选出2名男教师或2名女教师去外地学习的选法有多少种? (3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法? 解:(1)从10名教师中选2名去参加会议的选法种数为C 210=10×92×1=45.(2)可把问题分两类情况:第1类,选出的2名是男教师有C 26种选法; 第2类,选出的2名是女教师有C 24种选法.根据分类加法计数原理,共有C 26+C 24=15+6=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26×C 24=6×52×1×4×32×1=90种不同的选法.3.关注组合数中字母的取值范围已知:1C m 5-1C m 6=710C m 7,求m 的值.依题意,m 的取值范围是{m |0≤m ≤5,m ∈N *}. 因为m !-m !5!-m !-m !6!=7×m !-m !10×7!,化简得m 2-23m +42=0, 解得m =21或m =2. 因为0≤m ≤5,m ∈N *, 所以m =21舍去,所以m =2.1.运用组合数公式转化为关于m 的一元二次方程后,易忽略0≤m ≤5的取值范围,导致错误.解这类题目时,要将C mn 中m ,n 的范围与方程的解综合考虑,切忌盲目求解.2.应用组合数性质C m n =C pn 可以得到m =p 或m +p =n 两种可能.切忌只考虑到了两者相等的情况,而忽略了m +p =n 的情况,从而导致错误.已知C x -212=C 2x -412,则x 的值是( )A .2B .6 C.12 D .2或6解析:选D 根据组合数性质C mn =C n -mn 可得 若C mn =C pn ,则{ 0≤m ≤n ,p ≤n ,m =p 或m +p =n ,根据题意得{ 0≤x -2≤12,x -4≤12,x -2=2x -4或x -+x -=12.解得x =2或x =6.1.方程C x28=C 3x -828的解为( ) A .4或9 B .4 C .9D .其他解析:选A 当x =3x -8时,解得x =4;当28-x =3x -8时,解得x =9.2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14 B.24C.28 D.48解析:选A 从6人中任选4人的选法种数为C46=15,其中没有女生的选法有1种,故至少有1名女生的选法种数为15-1=14.3.计算:C4850+C4950=____________.解析:C4850+C4950=C4951=C251=51×502×1=1 275.答案:1 2754.10个人分成甲、乙两组,甲组4人、乙组6人,则不同的分组种数为________.(用数字作答)解析:先给甲组选4人,有C410种选法,余下的6人为乙组,故共有不同的分组种数为C410=210.答案:2105.7名男生、5名女生中选取5人,分别求符合下列条件的选法总数有多少种.(1)A,B必须当选;(2)A,B必不当选;(3)A,B不全当选.解:(1)由于A,B必须当选,那么从剩下的10人中选取3人即可,故有不同的选法种数为C310=120.(2)从除去的A,B两人的10人中选5人即可,故有不同的选法种数为C510=252.(3)全部选法有C512种,A,B全当选有C310种,故A,B不全当选的选法种数为C512-C310=672.一、选择题1.某乡镇共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该乡镇内建“村村通”工程,共需建公路的条数为( )A.4 B.8C.28 D.64解析:选C 由于“村村通”公路的修建是组合问题,故共需要建C28=28条公路.2.已知C7n+1-C7n=C8n,则n等于( )A.14 B.12C.13 D.15解析:选A ∵C7n+1=C8n+1,∴7+8=n+1,∴n=14.3.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有( ) A.252种 B.112种C.20种 D.56种解析:选B 每个宿舍至少2名学生,故甲宿舍安排的人数可以为2人,3人,4人,5人,甲宿舍安排好后,乙宿舍随之确定,所以有C27+C37+C47+C57=112种分配方案.4.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是( )A .C 310C 35 B .C 410C 25 C .C 515D .A 410A 25解析:选B 按性别分层,并在各层按比例随机抽样,则需从10名男性中抽取4人,5名女性中抽取2人,共有C 410C 25种抽法.5.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是( ) A .20 B .9 C .C 39D .C 24C 15+C 25C 14解析:选B 分两类:第1类,在直线a 上任取一点,与直线b 可确定C 14个平面;第2类,在直线b 上任取一点,与直线a 可确定C 15个平面.故可确定C 14+C 15=9个不同的平面.二、填空题 6.从0,1,2,π2,3,2这六个数字中,任取两个数字作为直线y =x tan α+b 的倾斜角和截距,可组成________条平行于x 轴的直线.解析:要使得直线与x 轴平行,则倾斜角为0,截距在0以外的五个数字均可,故有C 15=5条满足条件. 答案:57.不等式C 2n -n <5的解集为________. 解析:由C 2n -n <5,得n n -2-n <5,∴n 2-3n -10<0.解得-2<n <5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}8.设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 中含有3个元素的子集共有________个. 解析:从5个元素中取出3个元素组成一组就是集合A 的子集,则共有C 35=10个子集. 答案:10 三、解答题9.计算:(1)C 47+C 4850·C 99; (2)C 05+C 15+C 25+C 35+C 45+C 55; (3)C n n +1·C n -1n .解:(1)原式=C 37+C 250×1=7×6×53×2×1+50×492×1=35+1 225=1 260.(2)原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2⎝ ⎛⎭⎪⎫6+5×42×1=32.(3)法一:原式=C n n +1·C 1n =n +!n !·n =n +n !n !·n =(n +1)·n =n 2+n .法二:原式=(C nn +C n -1n )·C n -1n =(1+C 1n )·C 1n =(1+n )·n =n 2+n .10.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法? (1)甲当选且乙不当选;(2)至少有1女且至多有3男当选.解:(1)甲当选且乙不当选,只需从余下的8人中任选4人,有C 48=70种选法. (2)至少有1女且至多有3男时,应分三类: 第1类是3男2女,有C 36C 24种选法; 第2类是2男3女,有C 26C 34种选法; 第3类是1男4女,有C 16C 44种选法.由分类加法计数原理知,共有C 36C 24+C 26C 34+C 16C 44=186种选法.11.判断下列问题是组合问题还是排列问题,然后再算出问题的结果. (1)集合{0,1,2,3,4}的含三个元素的子集的个数是多少?(2)用没有任何三点共线的五个点可以连成多少条线段?如果连成有向线段,共有多少条?(3)某小组有9位同学,从中选出正、副班长各一个,有多少种不同的选法?若从中选出2名代表参加一个会议,有多少种不同的选法?解:(1)由于集合中的元素是不讲次序的,一个含三个元素的集合就是一个从集合{0,1,2,3,4}中取出3个数的组合.这是一个组合问题,组合的个数是C 35=5×4×33×2×1=10,所以子集的个数是10.(2)由5个点中取两个点恰好连成一条线段,不用考虑这两个点的次序,所以是组合问题,组合数是C 25=5×42×1=10,连成的线段共有10条.再考虑有向线段问题,这时两个点的先后排列次序不同对应两个不同的有向线段,所以是排列问题,排列数是A 25=5×4=20,所以有向线段共有20条.(3)选正、副班长时要考虑次序,所以是排列问题.排列数是A 29=9×8=72,所以选正、副班长共有72种选法.选代表参加会议是不用考虑次序的,所以是组合问题.组合数是C 29=9×82×1=36,所以不同的选法有36种.。
1.2.2 组合整体设计教材分析排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关的是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以在学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.课时分配3课时第一课时教学目标知识与技能理解组合的意义,能写出一些简单问题的所有组合.明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题.过程与方法通过具体实例,体会组合数的意义,总结排列数A m n与组合数C m n之间的联系,掌握组合数公式,能运用组合数公式进行计算.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合的概念和组合数公式.教学难点:组合的概念和组合数公式.教学过程引入新课提出问题1:回顾分类加法计数原理和分步乘法计数原理,排列的概念和排列数公式.活动设计:教师提问.活动成果:1.分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.3.排列的概念:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数的定义:从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.5.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N,m≤n).6.阶乘:n!表示正整数1到n的连乘积,叫做n的阶乘.规定0!=1.7.排列数的另一个计算公式:A m n=n!(n-m)!.设计意图:检查学生的掌握情况,为新知识的学习奠定基础.提出问题2:分析下列两个问题是不是排列问题,为什么?问题(1):从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题(2):从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?活动设计:学生自己分析,教师提问.活动成果:问题(1)中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而问题(2)只要求选出2名同学,是与顺序无关的,不是排列.我们把这样的问题称为组合问题.设计意图:引导学生通过具体实例找出排列与组合问题的不同,引出组合的概念.探索新知提出问题1:结合上述问题(2),试总结组合和组合数的概念.活动设计:学生小组讨论,总结概念.活动成果:1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合数的概念:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C m n表示.设计意图:培养学生的类比和概括能力.理解新知提出问题1:判断下列问题是组合问题还是排列问题?(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:小组交流,共同分析.活动成果:(1)(3)(4)是排列;(2)(5)是组合.设计意图:通过具体实例比较排列和组合,加深对组合的理解.提出问题2:试找出排列和组合的区别和联系.活动设计:小组交流,教师提问,学生补充. 活动成果:1.区别:(1)排列有顺序,组合无顺序.(2)相同的组合只需选出的元素相同,相同的排列则需选出的元素相同,并且选出元素的顺序相同.2.联系:(1)都是从n 个不同的元素中选出m(m≤n)个元素; (2)排列可以看成先组合再全排列.设计意图:加深对排列组合的理解,为推导组合数公式奠定基础. 提出问题2:你能类比排列数的推导过程和排列与组合的联系推导出从4个不同元素a ,b ,c ,d 中取出3个元素的组合数C 34是多少吗?活动设计:小组交流,共同推导. 活动成果:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数A 34可以求得,故我们可以考察一下C 34和A 34的关系,如下:组合 排列abc→abc,bac ,cab ,acb ,bca ,cba abd→abd,bad ,dab ,adb ,bda ,dba acd→acd,cad ,dac ,adc ,cda ,dca bcd→bcd,cbd ,dbc ,bdc ,cdb ,dcb由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数A 34,可以分如下两步:①考虑从4个不同元素中取出3个元素的组合,共有C 34个;②对每一个组合的3个不同元素进行全排列,各有A 33种方法.由分步乘法计数原理得:A 34=C 34·A 33,所以,C 34=A 34A 33.设计意图:从具体实例出发,探索组合数的求法.提出问题3:你能想出求C mn 的方法吗? 活动设计:小组交流,共同推导. 活动成果:一般地,求从n 个不同元素中取出m 个元素的组合数C mn ,可以分如下两步:①先求从n 个不同元素中取出m 个元素的排列数A mn ;②求每一个组合中m 个元素的全排列数A m m ,根据分步乘法计数原理得:A m n =C m n ·A mm . 得到组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).规定:C 0n =1.设计意图:引导学生逐步利用分步乘法计数原理推导出组合数公式. 运用新知类型一:组合数公式的应用1计算:(1)C 47; (2)C 710. 解:(1)C 47=7×6×5×44!=35;(2)解法1:C 710=10×9×8×7×6×5×47!=120.解法2:C 710=10!7!3!=10×9×83!=120.【巩固练习】 求证:C mn =m +1n -m·C m +1n . 证明:∵C mn =n !m !(n -m)!,m +1n -m·C m +1n=m +1n -m ·n !(m +1)!(n -m -1)!=m +1(m +1)!·n !(n -m)(n -m -1)!=n !m !(n -m)!,∴C mn =m +1n -m·C m +1n . 【变练演编】设x∈N *,求C x -12x -3+C 2x -3x +1的值.解:由题意可得:⎩⎪⎨⎪⎧2x -3≥x-1,x +1≥2x-3,解得2≤x≤4,∵x∈N *,∴x=2或x =3或x =4.当x =2时原式的值为4;当x =3时原式的值为7;当x =4时原式的值为11. ∴所求的值为4或7或11.类型二:简单的组合问题例2一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案? (2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?思路分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从17个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案种数为C 1117=12 376. (2)教练员可以分两步完成这件事情:第1步,从17名学员中选出11人组成上场小组,共有C 1117种选法;第2步,从选出的11人中选出1名守门员,共有C 111种选法. 所以教练员做这件事情的方式种数为 C 1117×C 111=136 136. 【巩固练习】(1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段条数为C 210=10×91×2=45.(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段条数为A 210=10×9=90. 【变练演编】(1)凸五边形有多少条对角线?(2)凸n(n>3)边形有多少条对角线?解答:(1)凸五边形的五个顶点中,任意两个顶点的连线是凸五边形的一条对角线或是一条边,所以,凸五边形的对角线条数为C 25-5=5.(2)凸n 边形的n 个顶点中,任意两个顶点的连线是凸n 边形的一条对角线或是一条边,所以,凸n 边形的对角线条数为C 2n -n =n(n -3)2.【达标检测】1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法? (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法? 2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( ) A .42 B .21 C .7 D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )A .15对B .25对C .30对D .20对 答案:1.(1)是组合问题 (2)是排列问题 2.B 3.A 课堂小结1.知识收获:组合概念、组合数公式. 2.方法收获:化归.3.思维收获:分类讨论、化归思想. 补充练习 【基础练习】1.A ,B ,C ,D ,E 5个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?2.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?3.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值? 4.写出从a ,b ,c ,d ,e 这5个元素中每次取出4个的所有不同的组合.答案:1.(1)10 (2)20 2.(1)C 310=120 (2)C 410=210 3.C 14+C 24+C 34+C 44=24-1=15. 4.a ,b ,c ,d a ,b ,c ,e a ,b ,d ,e a ,c ,d ,e b ,c ,d ,e. 【拓展练习】5.第19届世界杯足球赛于2010年夏季在南非举办,共32支球队有幸参加,他们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三名、第四名,问这次世界杯总共将进行多少场比赛?解:可分为如下几类比赛:(1)小组循环赛:每组有C 24=6场,8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,共有8C24+8+4+2+2=64场比赛.设计说明本节课是组合的第一课时,主要目标是学习组合的概念,探究组合数公式,并利用组合数公式解决简单的计数问题.主要特点是:类比排列数公式的推导方法,抓住排列和组合的区别和联系,利用排列数公式推导出组合数公式.本节课的设计充分体现教师所提问题的主导作用和学生根据问题自主探究的主体地位,学生在与教师和与同学的思维碰撞中自主学习、自主探究.备课资料在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?误解:因为是8个小球的全排列,所以共有A88种方法.错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有:C38=56种排法.。
第1课时 组合与组合数公式学习目标 1.理解组合的定义,正确认识组合与排列的区别与联系.2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.3.会解决一些简单的组合问题.知识点一 组合的定义思考 ①从3,5,7,11中任取两个数相除; ②从3,5,7,11中任取两个数相乘.以上两个问题中哪个是排列?①与②有何不同特点?答案 ①是排列,①中选取的两个数是有序的,②中选取的两个数无需排列.梳理 一般地,从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 知识点二 组合数与组合数公式 组合数及组合数公式 组合数定义及表示从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.组合数公式乘积形式 C mn =n (n -1)(n -2)…(n -m +1)m !阶乘形式 C mn =n !m !(n -m )!性质 C mn =C n -mnC m n +1=C m n +C m -1n 备注 规定C 0n =11.从a 1,a 2,a 3三个不同元素中任取两个元素组成一个组合是C 23.( × ) 2.从1,3,5,7中任取两个数相乘可得C 24个积.( √ ) 3.C 35=5×4×3=60.( × ) 4.C 2 0162 017=C 12 017=2 017.( √ )类型一组合概念的理解例1 给出下列问题:(1)a,b,c,d四支足球队之间进行单循环比赛,共需比赛多少场?(2)a,b,c,d四支足球队争夺冠、亚军,有多少种不同的结果?(3)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)从全班40人中选出3人参加某项活动,有多少种不同的选法?在上述问题中,哪些是组合问题,哪些是排列问题?考点组合的概念题点组合的判断解(1)单循环比赛要求两支球队之间只打一场比赛,没有顺序,是组合问题.(2)冠、亚军是有顺序的,是排列问题.(3)3人分别担任三个不同职务,有顺序,是排列问题.(4)3人参加某项相同活动,没有顺序,是组合问题.反思与感悟区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.跟踪训练1 判断下列问题是排列问题还是组合问题,并求出相应的结果.(1)集合{0,1,2,3,4}的含三个元素的子集的个数是多少?(2)某小组有9位同学,从中选出正、副班长各一个,有多少种不同的选法?若从中选出2名代表参加一个会议,有多少种不同的选法?考点组合的概念题点组合的判断解(1)由于集合中的元素是不讲次序的,一个含三个元素的集合就是一个从0,1,2,3,4中取出3个数组成的集合.这是一个组合问题,组合的个数是C35=10.(2)选正、副班长时要考虑次序,所以是排列问题,排列数是A29=9×8=72,所以选正、副班长共有72种选法;选代表参加会议是不用考虑次序的,所以是组合问题,所以不同的选法有C29=36(种).类型二 组合数公式及性质的应用 命题角度1 有关组合数的计算与证明 例2 (1)计算C 410-C 37·A 33; 考点 组合数公式题点 利用组合数公式进行计算(1)解 原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)求证:C mn =m +1n +1C m +1n +1. 考点 组合数公式 题点 组合数公式的应用 (2)证明 因为右边=m +1n +1C m +1n +1=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn , 左边=C mn ,所以左边=右边,所以原式成立.反思与感悟 (1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算.(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的两个性质: ①C m n =C n -m n ;②C m n +1=C m n +C m -1n .跟踪训练2 (1)计算C 34+C 35+C 36+…+C 32 017的值为( ) A .C 42 017 B .C 52 017 C .C 42 018-1D .C 52 017-1(2)计算C 98100+C 199200=________. 考点 组合数性质 题点 的性质计算与证明 答案 (1)C (2)5 150 解析 (1)C 34+C 35+C 36+…+C 32 017 =C 44+C 34+C 35+C 36+…+C 32 017-C 44 =C 45+C 35+…+C 32 017-1=… =C 42 017+C 32 017-1=C 42 018-1. (2)C 98100+C 199200=C 2100+C 1200 =100×992+200=5 150.命题角度2 含组合数的方程或不等式 例3 (1)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m8;(2)解不等式C 4n >C 6n . 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 (1)∵1C m 5-1C m 6=710C m 7,∴m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!.∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21. ∵0≤m ≤5,∴m =2, ∴C m8+C 5-m8=C 28+C 38=C 39=84.(2)由C 4n >C 6n ,得⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6即⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6,解得⎩⎪⎨⎪⎧-1<n <10,n ≥6,又n ∈N *,∴该不等式的解集为{6,7,8,9}.反思与感悟 (1)解题过程中应避免忽略根的检验而产生增根的错误,注意不要忽略n ∈N *. (2)与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C m n 中的m ∈N *,n ∈N *,且n ≥m 确定m ,n 的范围,因此求解后要验证所得结果是否适合题意.跟踪训练3 解方程3C x -7x -3=5A 2x -4. 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 原式可变形为3C 4x -3=5A 2x -4, 即3(x -3)(x -4)(x -5)(x -6)4×3×2×1=5(x -4)(x -5),所以(x-3)(x-6)=5×4×2=8×5.所以x=11或x=-2(舍去).经检验符合题意,所以方程的解为x=11.类型三简单的组合问题例4 有10名教师,其中6名男教师,4名女教师.(1)现要从中选2名去参加会议,有________种不同的选法;(2)选出2名男教师或2名女教师参加会议,有________种不同的选法;(3)现要从中选出男、女教师各2名去参加会议,有________种不同的选法.考点组合的应用题点无限制条件的组合问题答案(1)45 (2)21 (3)90解析(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×92×1=45(种).(2)可把问题分两类情况:第1类,选出的2名是男教师有C26种方法;第2类,选出的2名是女教师有C24种方法.根据分类加法计算原理,共有C26+C24=15+6=21(种)不同选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有不同的选法C26×C24=6×52×1×4×32×1=90(种).反思与感悟(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用.在分类和分步时,一定注意有无重复或遗漏.跟踪训练4 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出的3个小球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?考点组合的应用题点有限制条件的组合问题解(1)从口袋内的8个球中取出3个球,取法种数是C38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C37=7×6×53×2×1=35.1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加2个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中选出4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?其中组合问题的个数是( )A.3 B.2 C.1 D.0考点组合的概念题点组合的判断答案 B解析①与顺序有关,是排列问题,②③均与顺序无关,是组合问题,故选B.2.集合M={x|x=C n4,n≥0且n∈N},集合Q={1,2,3,4},则下列结论正确的是 ( ) A.M∪Q={0,1,2,3,4} B.Q⊆MC.M⊆Q D.M∩Q={1,4}考点组合数公式题点利用组合数公式进行计算答案 D解析由C n4知n=0,1,2,3,4,因为C04=1,C14=4,C24=4×32=6,C34=C14=4,C44=1,所以M={1,4,6}.故M∩Q={1,4}.3.若C n12=C2n-312,则n等于( )A.3 B.5 C.3或5 D.15考点组合数性质题点含有组合数的方程或不等式的问题答案 C解析由组合数的性质得n=2n-3或n+2n-3=12,解得n=3或n=5,故选C.4.某校开设A类选修课3门,B类选修课5门,一位同学要从中选3门,若要求两类课程中至少各选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种 考点 组合的应用题点 有限制条件的组合问题 答案 C解析 分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.5.五个点中任何三点都不共线,则这五个点可以连成________条线段;如果是有向线段,共有________条. 考点 组合的概念 题点 组合的判断 答案 10 20解析 从五个点中任取两个点恰好连成一条线段,这两个点没有顺序,所以是组合问题,连成的线段共有C 25=10(条) .再考虑有向线段的问题,这时两个点的先后排列次序不同则对应不同的有向线段,所以是排列问题,排列数是A 25=20.所以有向线段共有20条.1.排列与组合的联系与区别(1)联系:二者都是从n 个不同的元素中取m (m ≤n )个元素. (2)区别:排列问题中元素有序,组合问题中元素无序. 2.关于组合数的计算(1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算;(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)组合数的两个性质: 性质1:C mn =C n -mn ; 性质2:C mn +1=C mn +C m -1n .一、选择题1.以下四个问题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开同一辆车往返甲、乙两地考点 组合的概念 题点 组合的判断 答案 C解析 只有从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题. 2.A 3101C 2100+C 97100等于( ) A.16 B .101 C.1107D .6考点 组合数公式题点 利用组合数公式进行计算 答案 D解析 A 3101C 2100+C 97100=A 3101C 2100+C 3100=A 3101C 3101=A 33=6.3.下列等式不正确的是( ) A .C mn =n !m !(n -m )!B .C m n =C n -mn C .C m n +1=C mn +C m -1n D .C mn =C m +1n +1考点 组合数公式 题点 组合数公式的应用 答案 D解析 A 是组合数公式;B ,C 是组合数性质;C mn =n !m !(n -m )!,C m +1n +1=(n +1)!(m +1)!(n -m )!,两者不相等,故D 错误.4.若A 3n =6C 4n ,则n 的值为( ) A .6 B .7 C .8 D .9 考点 组合数性质题点 含有组合数的方程或不等式的问题 答案 B解析 由题意知n (n -1)(n -2)=6·n (n -1)(n -2)(n -3)4×3×2×1,化简得n -34=1,所以n =7.5.把三张游园票分给10个人中的3人,则分法有( ) A .A 310种B .C 310种C.C310A310种D.30种考点组合的应用题点无限制条件的组合问题答案 B解析三张票没区别,从10人中选3人即可,即C310.6.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( )A.24种B.10种C.12种D.9种考点组合的应用题点有限制条件的组合问题答案 C解析第一步,为甲地选1名女教师,有C12=2(种)选法;第二步,为甲地选2名男教师,有C24=6(种)选法;第三步,剩下的3名教师到乙地,故不同的安排方案共有2×6×1=12(种),故选C.7.现有6个白球,4个黑球,任取4个,则至少有两个黑球的取法种数是( )A.115 B.90 C.210 D.385考点组合的应用题点有限制条件的组合问题答案 A解析依题意根据取法可分为三类:两个黑球,有C24C26=90(种);三个黑球,有C34C16=24(种);四个黑球,有C44=1(种).根据分类加法计数原理可得,至少有两个黑球的取法种数是90+24+1=115,故选A.8.对于所有满足1≤m≤n≤5的自然数m,n,方程x2+C m n y2=1所表示的不同椭圆的个数为( )A.15 B.7 C.6 D.0考点组合数性质题点利用组合数的性质进行计算与证明答案 C解析因为1≤m≤n≤5,且方程表示椭圆,所以C m n可能为C12,C13,C23,C14,C24,C34,C15,C25, C35,C45,其中C13=C23,C14=C34,C15=C45,C25=C35,所以x2+C m n y2=1能表示的不同椭圆有6个.二、填空题9.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则m∶n=________.考点 组合的概念 题点 组合的判断 答案 1∶2解析 ∵m =C 24,n =A 24,∴m ∶n =1∶2.10.从进入决赛的6名选手中决出1名一等奖、2名二等奖、3名三等奖,则可能的决赛结果共有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 60解析 根据题意,所有可能的决赛结果有C 16C 25C 33=6×5×42×1=60(种).11.不等式C 2n -n <5的解集为________. 考点 组合数性质题点 含有组合数的方程或不等式的问题 答案 {2,3,4} 解析 由C 2n -n <5,得n (n -1)2-n <5,即n 2-3n -10<0, 解得-2<n <5.由题意知n ≥2,且n ∈N *,则n =2,3,4, 故原不等式的解集为{2,3,4}. 三、解答题12.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 考点 组合数公式 题点 组合数公式的应用 解 由已知得2C 5n =C 4n +C 6n ,所以2×n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14, 要求C 12n 的值,故n ≥12, 所以n =14,于是C 1214=C 214=14×132×1=91. 13.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加.考点 组合的应用题点 有限制条件的组合问题解 (1)从中任取5人是组合问题,共有C 512=792(种)不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36(种)不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C 59=126(种)不同的选法.四、探究与拓展14.以下三个式子:①C mn =A m n m !;②A m n =n A m -1n -1;③C m n ÷C m +1n =m +1n -m .其中正确的个数是____. 考点 组合数公式题点 组合数公式的应用答案 3解析 ①式显然成立;②式中A m n =n (n -1)(n -2)…(n -m +1),A m -1n -1=(n -1)(n -2)…(n -m +1),所以A m n =n A m -1n -1,故②式成立;对于③式C mn ÷C m +1n =C m n C m +1n =A mn ·(m +1)!m !·A m +1n =m +1n -m ,故③式成立. 15.某届世界杯举办期间,共32支球队参加比赛,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛1场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,即八分之一淘汰赛,四分之一淘汰赛,半决赛,决赛,最后决出冠、亚军,此外还要决出第三、四名,问这届世界杯总共将进行多少场比赛?考点 组合的应用题点 有限制条件的组合问题解 可分为如下几类比赛:(1)小组循环赛,每组有C 24=6(场),8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,每2支球队一组,每组比赛1场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强中每2支球队一组,每组比赛1场,可以决出4强,共有4场;(4)半决赛,根据赛制规则,4强每2支球队一组,每组比赛1场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另2支球队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,总共将进行48+8+4+2+2=64(场)比赛.。
1.2.2 组合课堂探究探究一 组合的概念判断一个问题是排列问题还是组合问题,关键在于选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有影响,则是组合问题.【典型例题1】 判断下列问题是排列问题还是组合问题,并求出相应的排列数或组合数.(1)10人相互通一次电话,共通多少次电话?(2)10支球队以单循环进行比赛(每两队比赛一次),共进行多少场次?(3)从10个人中选出3个人作为代表去开会,有多少种选法?(4)从10个人中选出3个人担任不同学科的课代表,有多少种选法?思路分析:先分清是否与顺序有关,再确定是用排列数公式还是用组合数公式计算. 解:(1)是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别,组合数为C 210=45.(2)是组合问题,因为每两个队比赛一次,并不需要考虑谁先谁后,没有顺序的区别,组合数为C 210=45.(3)是组合问题,因为三个代表之间没有顺序的区别,组合数为C 310=120.(4)是排列问题,因为三个人担任哪一科的课代表是有顺序区别的,排列数为A 310=720. 探究二 组合数公式的应用解决有关涉及组合数的具体数字计算问题,可用展开式形式进行计算.而对于含有字母的组合数的式子进行变形或论证通常利用阶乘式,在应用组合数公式的过程中,应注意隐含条件(m ,n ∈N +,m ≤n ).【典型例题2】 (1)计算C 410-C 37·A 33=__________.(2)解方程:3C x -7x -3=5A 2x -4.思路分析:(1)应用组合数展开式计算.(2)应用组合数阶乘式求解,并注意检验.(1)解析:C 410-C 37A 33=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0. 答案:0(2)解:由排列数和组合数公式,原方程可化为3·(x -3)!(x -7)!4!=5·(x -4)!(x -6)!,则3(x-3)4!=5x-6,即为(x-3)(x-6)=40.所以x2-9x-22=0,解之,可得x=11或x=-2.经检验知x=11是原方程的根,x=-2是原方程的增根.所以方程的根为x=11.探究三组合应用问题解决有关组合的实际问题,应首先确定是否是一个组合问题,再灵活选用直接法或间接法,结合两个计数原理进行计算.【典型例题3】在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法.(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.思路分析:本题各个小题中被选出的元素均没有顺序,因而是组合问题.解:(1)先选内科医生有C36种选法;再选外科医生有C24种选法.故有选派方法C36·C24=120(种).(2)既有内科医生又有外科医生,正面思考应包括四种情况,共有选派方法C16·C44+C26·C34+C36·C24+C46·C14=246(种).若用间接法,则有C510-C56=246(种).(3)包含两类情况:选1名主任有C12·C48种;选2名主任有C22C38种.故共有选派方法C12·C48+C22·C38=196(种).若用间接法,则有C510-C58=196(种).(4)外科主任成为“热点”元素.若选外科主任,则其余可任意选取,有C49种选取方法;若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有(C48-C45)种.故共有选派方法C49+C48-C45=191(种).点评有限制条件的组合问题,其限制条件主要表现在取出的元素中“含”或“不含”某些元素,一般遵循先特殊再一般、正难则反的策略.对“至多”“至少”“最多”等问题要仔细审题,理解其含义,灵活选择合适方法(直接法、间接法)解决.用间接法时要注意“至少”“最多” “至多”等词语的含义,找到其对立面;用直接法时常以某条件为主线进行分类,做到不重复、不遗漏.探究四 易错辨析易错点:对组合数公式中隐含条件重视不够导致增解【典型例题4】 已知1C m 5-1C m 6=710C m 7,求m . 错解:由已知得m !(5-m )!5!-m !(6-m )!6!=7(7-m )!m !10×7!,即60-10(6-m )=(7-m )(6-m ),整理得m 2-23m +42=0,解得m =21或m =2.错因分析:这是一个关于m 的方程.上面解法中,将原式转化为关于m 的一元二次方程后,忽略了m 的取值范围导致错误.解这类题时,要将C m n 中m ,n 的取值范围与方程的解综合考虑,切忌盲目求解.正解:由题意可知m 的取值范围是{m |0≤m ≤5,m ∈N }.由已知得m !(5-m )!5!-m !(6-m )!6!=7(7-m )!m !10×7!,整理得m 2-23m +42=0,解得m =21或m =2.因为m ∈{m |0≤m ≤5,m ∈N },所以m =2.精美句子1、善思则能“从无字句处读书”。
1.2.2组合(1):(2):例本;精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太)要求每个盒子教学过程设计队进半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作游客每人一份,又有多阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
1.2.2组合与组合数公式一、课前准备1.课时目标(1) 理解组合的定义,能区分一个问题是组合还是排列;(2) 熟记组合数公式,能利用组合数进行熟练的计算;2.基础预探1.一般地,从n 个不同的元素中,任意取出m ()m n ≤个元素 ,叫做从n 个不同元素中取出m ()m n ≤个元素的一个组合.2.从n 个不同的元素中,任意取出m ()m n ≤个元素 的个数,叫做从n 个不同的元素中取出m ()m n ≤个元素的组合数,用符号 表示.3.组合数的计算公式:()m mn nA C == = ,由于0!= ,所以0n C =__________(*,n m N ∈,并且m≤n)。
4.组合数的性质:①____m n C =;②1______.m n C +=+二、学习引领1. 处理组合问题应注意什么?①组合要求n个元素是不同的,被取的m个元素也是不同的,即从n个不同元素中进行m次不放回的取出.②组合定义中包含了两点:一是“取出元素”,二是“并成一组”即与元素的顺序无关,无序性是组合的本质.如从某班中找出10名同学为组合,若找出10名同学后再排成一队则为排列问题。
③如果两个组合中的元素完全相同,不管它们的顺序如何都是相同的组合.当两个组合中的元素不完全相同,即使只有一个元素不相同,就不是相同的组合.2. 组合与排列有何异同?组合与排列的共同点是都要“从n个不同元素中取出m(m≤n)个元素”.不同点是前者是“不管顺序并成一组”,而后者要“按照一定顺序排成一列”. 区分某一个问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有影响,则是组合问题.3.组合数的计算有什么技巧?①“组合”与“组合数”是两个不同的概念,组合是一个具体的事件,不是一个数;而“组合数”是符合条件的所有组合的个数,它是一个数. ②利用组合数公式进行计算、证明时,要注意隐含条件m≤n且n 为整数. ③计算m n C 时还要灵活运用组合数的性质,若m比较大,可利用性质m n m n n C C -=;不计算m nC 而改为计算n m n C -;在计算多个组合数和时,注意性质11m m m n n n C C C -+=+.三、典例导析题型一 简单的组合问题的应用例1 甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种思路分析:本题的解决要分为三步,甲选2门,乙选3门,丙选3门,然后利用分步乘法计数原理得到总的种数。
1.2.2 组合预习导航一、组合1.一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合.从排列和组合的定义可知,排列与取出元素的顺序有关,而组合与取出元素的顺序无关.2.从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中,任意取出m个元素的组合数,用符号C m n表示.思考1组合与排列的异同点是什么?提示:共同点:都是“从n个不同元素中取出m(m≤n)个元素”;不同点:组合是对元素的顺序没有限制,并成一组,而排列是元素按照一定的顺序排成一列.思考2一个组合与组合数有何区别?提示:一个组合是具体的一件事,它不是一个数;而组合数是指所有组合的个数,它是一个数.二、组合数公式1.组合数的计算公式:C m n=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,这里m∈N,n∈N+,并且m≤n.2.C0n=1.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
第一课时组合与组合数公式[教材研读]预习教材P21~24,思考以下问题1.组合的概念是什么?2.什么是组合数?组合数公式是怎样的?3.组合数有怎样的性质?[要点梳理]1.组合的定义从n个不同元素中取出m(n≥m)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念、公式、性质[自我诊断]判断(正确的打“√”,错误的打“×”)1.从a,b,c三个不同的元素中任取两个元素的一个组合是C23.( )2.从1,3,5,7中任取两个数相乘可得C24个积.( )3.1,2,3与3,2,1是同一个组合.( )4.C35=5×4×3=60.( )[答案] 1.× 2.√ 3.√ 4.×题型一组合的概念思考:区分一个问题是排列问题还是组合问题的关键是什么?提示:关键是看它有无顺序,有顺序的是排列问题,无顺序的是组合问题.(1)判断下列问题是组合问题还是排列问题:①设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?②某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?③3人去干5种不同的工作,每人干一种,有多少种分工方法?④把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?(2)从5个不同元素a,b,c,d,e中任取2个,写出所有不同的组合.[思路导引] 对于(1)关键是看有无顺序,有顺序的是排列问题,无顺序的即为组合问题;对于(2)每次取出两个元素即可,无顺序,但注意不重不漏.[解] (1)①因为本问题与元素顺序无关,故是组合问题.②因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.③因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.④因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.(2)要写出所有的组合,首先要把元素按一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出.如图所示:因此可得所有组合为ab,ac,ad,ae,bc,bd,be,cd,ce,de.区分排列与组合的方法区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.【温馨提示】排列与组合的联系与区别联系:二者都是从n个不同的元素中取m(n≥m)个元素.区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.[跟踪训练]判断下列问题是组合问题还是排列问题.(1)从a,b,c,d四名学生中选两名学生完成一件工作,有多少种不同的选法?(2)从a,b,c,d四名学生中选两名学生完成两件不同的工作,有多少种不同的选法?(3)a,b,c,d四支足球队之间进行单循环比赛,共需比赛多少场?(4)a,b,c,d四支足球队争夺冠、亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种?(6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种?[解] (1)两名学生完成的是同一件工作,没有顺序,是组合问题.(2)两名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.(4)冠、亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的元素,没有顺序,是组合问题.(6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题.题型二组合数的计算与证明思考:我们知道,“排列”与“排列数”是两个不同的概念,那么,“组合”与“组合数”是同一个概念吗?为什么?提示:“组合”与“组合数”是两个不同的概念,“组合”是指“从n个不同元素中取出m(m≤n)个元素合成一组”,它不是一个数,而是具体的一件事;“组合数”是指“从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数”,它是一个数.(1)计算:①C 410-C 37A 33;②C 9798+2C 9698+C 9598;③C 55+C 56+C 57+C 58+C 59+C 510. (2)证明:m C mn=n C m -1n -1.[思路导引] 利用组合数公式及性质求解.[解](1)①C 410-C 37A 33=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.②原式=(C 9798+C 9698)+(C 9698+C 9598)=C 9799+C 9699=C 97100=C 3100=100×99×983×2×1=161700.③原式=(C 66+C 56)+C 57+C 58+C 59+C 510=(C 67+C 57)+C 58+C 59+C 510=…=C 610+C 510=C 611=C 511=11×10×9×8×75×4×3×2×1=462.(2)证明:左边=m ·n !m !n -m !=n n -!m -!n -m !=nn -!m -!n -m !=n Cm -1n -1=右边,∴m C m n=n C m -1n -1.(1)有关组合数的两个公式的应用范畴是有所区别的,C m n=Am nA m m常用于n ,m 为具体自然数的题目,一般偏向于具体组合数的计算;公式C mn=n !m!n -m!常用于n ,m 为字母或含有字母的式子的题目,一般偏向于方程的求解或有关组合数的恒等式的证明.(2)关于组合数的性质1(C mn=Cn -m n)①该性质反映了组合数的对称性,即从n 个不同的元素中取出m 个元素的每一个组合,都对应着剩下的n -m 个元素的一个组合,反过来也一样,这是一一对应的关系.②当m >n2时,通常不直接计算C m n,而改为计算Cn -m n.(3)关于组合数的性质2(Cm n +1=C m n+Cm -1n)①形式特点:公式的左端下标为n +1,右端下标为n ,相差1,上标左端与右端的一个相同,右端的另一个比它们少1;②作用:常用于有关组合数式子的化简或组合数恒等式的证明.应用时要注意公式的正用、逆用和变形用.正用是将一个组合数拆成两个,逆用则是“合二为一”,使用变形Cm -1n=Cm n +1-C m n,为某些项前后抵消提供了方便,在解题中要注意灵活应用.[跟踪训练]1.计算:C 38-n 3n+C3n n +21的值.[解]∵38-n ≤3n ,3n ≤n +21,∴9.5≤n ≤10.5.∵n ∈N *,∴n =10. ∴C38-n3n+C3n n +21=C 2830+C 3031=C 230+C 131=30×292×1+31=466.2.求使3C x -7x -3=5A 2x -4成立的x 值.[解] 根据排列数和组合数公式,原方程可化为3·x -!x -!4!=5·x -!x -!,即x -4!=5x -6,即为(x -3)(x -6)=40. ∴x 2-9x -22=0,解得x =11或x =-2. 经检验知x =11时原式成立.3.证明下列各等式.(1)C m n=m +1n +1C m +1n +1;(2)C 0n +C 1n +1+C2n +2…+Cm -1n +m -1=Cm -1n +m.[证明] (1)右边=m +1n +1·n +!m+!n +-m+1!=m +1n +1·n +!m +!n -m !=n !m !n -m !=C mn =左边,∴原式成立.(2)左边=(C 0n +1+C1n +1)+C 2n +2+C3n +3+…+Cm -1n +m -1=(C1n +2+C 2n +2)+C 3n +3+…+Cm -1n +m -1=(C2n +3+C3n +3)+…+Cm -1n +m -1=(C3n +4+C4n +4)+…+C m -1n +m -1=…=Cm -2n +m -1+Cm -1n +m -1=Cm -1n +m=右边,∴原式成立.题型三简单的组合应用题现有10名教师,其中男教师6名,女教师4名.(1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法?(3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[思路导引] 利用组合数C mn 求解时,确定好m 、n 的值,结合两个计数原理解题.[解](1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即有C 210=10×92×1=45种不同的选法.(2)可把问题分两类:第1类,选出2名男教师,有C26种方法;第2类,选出2名女教师,有C24种方法,即共有C26+C24=21种不同的选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有C26·C24=6×52×1×4×32×1=90种不同的选法.解答简单的组合问题的思路(1)弄清楚做的这件事是什么;(2)分析这件事是否需分类或分步完成;(3)结合两计数原理利用组合数公式求出结果.[跟踪训练]一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?[解] (1)从口袋内的8个球中取出3个球,取法种数是C38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C37=7×6×53×2×1=35.1.本节课的重点是组合的概念、组合数公式及其性质、简单的组合应用问题,难点是组合数的性质及应用.2.本节课要重点掌握的规律方法(1)组合概念的理解,见典例1;(2)组合数的计算与证明,见典例2;(3)会解决简单的组合应用题,见典例 3.3.本节课的易错点是利用组合数性质C x n=C y n解题时,易误认为一定有x=y,从而导致解题错误.事实上,C x n=C y n?x=y或x+y=n,x≤n,y≤n,x,y∈N*.。