问题:怎么在整个定 义域 R范围作出正弦
函数的图像呢?
2
4
6
x
-
-
因为终边相同的角的三角函数值相同,所以y=sinx的图象在
4,2,2 ,0,0, 2 ,2 ,4 , ……与y=sinx,x∈[0,2π]的图象相同
想一想:余弦函数图象又该如何作图?
探索画图方法 (1)、描点法 (2)、几何法(利用三角函数线) (3)、利用图象平移法
y cos x sin( x )
2
发现问题:余弦函数 y cos x, x R与函数y sin( x ), x R 2
是同一个函数;余弦函数的图像可以通过正弦曲线向左平移 2
各单位长度而得到.
2. y=cosx的图象
3
5 2
2
3 2
y
1
2
0
-1
y csions x , x R
(3) 连线(用光滑的曲线顺次连结五个点)
图象的最高点 (0,1)
y cos x , x [0 , 2 ]
与x轴的交点 (2 ,1)
( , 0) ( 3 , 0)
图象2的最低点2 ( , 1)
正弦、余弦函数的图象
例1 画出函数y=1+sinx,x[0, 2]的简图:
x
0
sinx
0
1+sinx 1
(2) 描点(定出五个关键点)
(3) 连线(用光滑的曲线顺次连结五个点)
y sin x , x [0 , 2 ]
图象的最高点
(
, 1)
2
与x轴的交点
(0, 0) ( , 0) (2 ,0)
简图作法 (五点作图法)
图象的最低点 ( 3 , 1)